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Abstract

This paper tests for explosiveness in G11 currencies in daily data using a
methodology that accounts for the possibility of non-stationary volatility. The
results suggest that bouts of explosiveness in exchange rates are uncommon at
a daily frequency. However, periods of explosiveness tend to last for several
days. Such episodes only involve small changes in actual currency levels,
which usually reverse shortly after. This paper identifies the currency in a
currency pair that is experiencing explosive dynamics by also considering the
dynamics of effective exchange rates of different currencies. There is high
concordance with explosiveness in the broad value of the US dollar exchange
rate, suggesting that there are relatively few instances where explosiveness in
individual cross-rates reflected country-specific factors.
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Non-technical summary

One definition of a ‘bubble’ in an asset price is that the price exhibits explosive
(i.e. exponential) dynamics. Econometric tests for explosiveness have been
widely used in assessing the behaviour of asset prices such as stocks and
housing. The tests developed by Phillips et al. (2015a) and Phillips et al.
(2015b) provide an accurate way to gauge whether asset prices are experiencing
explosive dynamics. These tests have not previously been applied to exchange
rates at a high frequency. This paper applies tests for explosiveness to eleven
of the most commonly traded exchange rates at a daily frequency and over a
long sample.

The volatility of exchange rates tends to be high at a daily frequency. This
volatility can weaken the power of these tests to discriminate between periods
when an exchange rate is explosive and ones where it is not. To address this,
a wild bootstrapping technique is used to assess the statistical significance of
the test results.

The results suggest that bouts of explosiveness in exchange rates are uncom-
mon at a daily frequency. However, periods of explosiveness tend to last for
several days. Such episodes only involve small changes in actual currency
levels, which usually reverse shortly after. To identify the currency that is
experiencing explosive dynamics in a currency pair, the tests are also applied
to effective exchange rates of different currencies as these capture the broad
value of a specific currency. There is strong similarity between explosive
periods in the broad value of the US dollar exchange rate and cross-rates,
suggesting that there are relatively few instances where explosiveness in
individual currencies reflected country-specific factors. There is also evidence
that explosive episodes have tended to coincide with periods of high market
volatility.



1 Introduction

Recently developed tests by Phillips et al. (2015a) and Phillips et al. (2015b)
provide an accurate way to gauge whether asset prices are experiencing
explosive dynamics. There are two important advantages of these tests over
standard unit root tests. The first is that these tests have been shown to be
good at correctly identifying such periods, especially when there are multiple
periods of explosive dynamics over the full sample. Secondly, unlike many of
the earlier tests for bubbles, the validity of these tests for explosiveness is
not dependent on the model used to determine the economic fundamentals
that determine the value of the asset price under consideration.

These tests have already been used in a large number of studies to demon-
strate that many asset prices are prone to periods of explosive behaviour.
Explosiveness implies that there is an explosive root in the autoregressive
representation of a time series, such that a > 0 in xt = (1 + a)xt−1 + εt for
some subperiod of the sample. The intuition behind these tests is that an
asset price contains a component which is driven fundamentals and whose
time series properties are distinguishable from those of any potential bubble
component (which will be explosive process). If the fundamental component
behaves like a random walk with drift (as is the case for many asset price
series), but the asset price also contains a bubble component, then the asset
price series would inherit explosiveness from its bubble component during the
period considered.

Unlike other asset prices, exchange rates do not typically exhibit explosive
growth for extended periods.1 But they can experience explosive dynamics
over short sub-samples.2

This paper makes two contributions to the literature. Firstly, recently
developed tests for explosiveness are applied to eleven of the most commonly
traded exchange rates at a daily frequency and over a long sample. Particularly
at high frequencies such as daily, the volatility of the exchange rate tends to
be high and potentially non-stationary, and there may be a size distortion in
unit root tests causing them to over-reject the null that the series is explosive.

1 With the exception, of course, of the currencies of countries experiencing hyper-inflation
(see Pavlidis et al. 2012) or prolonged bouts of macroeconomic instability. Some central
banks also intervene in foreign exchange markets, which may reduce the volatility of
some currency pairs.

2 Bettendorf and Chen (2013), Jiang et al. (2015) and Hu and Oxley (2017, forthcoming)
apply the tests from Phillips et al. (2011) and Phillips et al. (2015b) to exchange rate
series.
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For this reason, wild bootstrapping is used to compute critical values for
statistical interference.3

Secondly, explosive increases (or collapses) in a given base currency implies
a corresponding collapse (or increase) in the quote currency. This paper
considers the possibility of both expansion and crash periods and identifies
the currency experiencing explosive dynamics by considering the dynamics of
effective exchange rates of different currencies.

This paper is focussed on describing short-term exchange rate volatility. A
large literature attempts to identify ‘rational’ bubbles in asset prices by looking
for significant departures from their theoretically consistent fundamental value.
However, explosive behaviour in an asset price can reflect a host of different
factors, including explosiveness in unobserved fundamentals or large changes
in the discount rate (see Pavlidis et al. 2015), ‘irrational exuberance’ (as
described by Shiller 2005) or the possibility of ‘intrinsic bubbles’ (see Froot
and Obstfeld 1991). Following the recent literature, this paper does not
question the nature of the explosiveness identified and takes the existence of
bubbles as an empirical question.

2 Tests for explosiveness

This paper applies Phillips et al.’s (2015b) test for identifying periods when
asset prices are experiencing exponential growth. The null hypothesis is that
an asset price or returns series (yt) is AR(1) process with drift:

yt = dT−η + θyt−j + et (1)

where smallcase letters denote logarithms, d is the intercept, T is the sample
size, η determines the magnitude of the drift as T tends to infinity, and

3 That said, there may be other limitations to modelling high frequency financial data in
this way, such as the possibility that noise affects the asymptotic properties of the test.
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et ∼ NID(0, σ2
e).

4 A right-tailed ADF test is applied over recursive sub-
samples

∆yt = αr1,r2 + βr1,r2yt−1 +
k∑
j=1

δjr1,r2∆yt−j + εt (2)

where k is the number of lags, ∆ is the difference operator, εt is the error
term and r1 and r2 span the estimation range. The null that β = 1 (i.e. yt
has a unit root) is tested against the alternative β > 1 (i.e. implying local
explosiveness). These tests are run recursively over a flexible sample window
to detect breaks in the AR(1) coefficient. To calculate the distribution of the
ADF statistics under the null of a random walk data generating process with
normal iid errors, the corresponding critical values from the right tail of the
limit distribution are simulated.5 Explosiveness is determined by comparing
the calculated test statistic for each period to the simulated critical values.

Phillips et al. (2015b) assume that the data generating process for the alter-
native distribution exhibits potentially multiple explosive episodes, and when
explosive periods terminate, that the series reverts back to its pre-explosive
level plus a small perturbation and continues to behave like a random walk
with drift: y∗τi,f = yτi,e + Op(1), where yτi,e and yτi,f are the emergence (e)

and termination (f ) levels of the explosive period, respectively, Op(1) is a
small perturbation and y∗τi is the value on termination of the Kth explosive
episodes for i = (1, ..., K). Following Harvey et al. (2015), a more general
alternative specification that permits gradual collapses is used in this paper.
The alternative data generating process assumes that the series reverts back to
random walk behaviour immediately from its termination level: y∗τi = yτi,f +εt

4 Phillips et al. (2015b) focus on the pure random walk case where η = 1 and set d = 1
and θ = 1, while Phillips et al. (2011) focus on η → ∞ (random walk without drift).
Phillips et al. (2015a) show that the distribution of the ADF statistic does not change
significantly for values of η > 1

2 . In the currencies considered, any deterministic drift
component is unlikely to dominate the other components of the series. Phillips et al.
(2014b) show that even for asset prices such as stocks, that have significant stochastic
trends over the sample considered, bubble components can clearly be distinguished
using right-tailed unit root tests. Testing whether a drift component reflecting risk
premia in specific cross-rates can explain deviations from random walk behaviour in
exchange rates is left to future research.

5 Simulations are necessary as the limit distributions of these tests are Brownian motion
and depend on the window size and regression model specification. Specifically, Phillips
et al. (2015b) show that the asymptotic distribution of the BSADF statistic is a Wiener
process, which they approximate using partial sums of iid random draws with 2000
steps.

3



where εt ∼ N(0, σ2). In the context of asset price modeling, Phillips et al.’s
(2015a) assumption implies a return to fundamentals-consistent price level
following the termination of an explosive period. The advantage of Harvey
et al.’s (2015) approach is that it permits a range of price correction processes
and allows an explosive episode to persist until the end of the sample.6

Whereas Phillips et al.’s (2011) earlier SADF test (commonly referred to as
the PWY test) uses an expanding window with the starting point fixed at
the beginning of the sample, Phillips et al.’s (2015b) and Phillips et al.’s
(2015a) more recent approach involves a double recursive approach, nesting
the SADF test in a loop and using rolling samples with an expanding window
and moving starting point (known as the PSY approach). Phillips et al.
(2015b) show, using Monte Carlo simulations, that the PSY approach is
significantly better at detecting explosive periods when there are multiple
episodes in the full sample and that the power of the test to correctly identify
such episodes improves as the sample size expands.

To date-stamp the origination and termination dates of explosive periods, a
‘Backward Sup ADF’ (BSADF) test statistic is calculated as the sup value of
the ADF statistic calculated over the interval:

BSADFr2(r0) = supr1∈[0,r2−r0]ADF
r2
r1

(3)

where the value of the BSADF test statistic is the supremum value of the
sequence of ADF tests (i.e. the maximum value of the set of tests over the
full sample)7. Origination and collapse dates of the ith explosive period are
determined using the infimum (largest lower bound) dating rule used by PSY:

r̃ie = infr∈[ri−1f ,1]r : BSADFr(r0) > CV κ
r (4)

and

r̃if = infr∈[rie+Lt,1]r : BSADFr(r0) < CV κ
r (5)

6 A similar approach is used by Phillips and Shi (2017, forthcoming), who also discuss
the implications of alternative assumptions about the nature of a bubble implosion
in more detail. There are several alternative approaches that attempt to model the
inherent non-linearity of bubble periods, such as using regime switching models that
allow asset price dynamics to differ depending on bubbles size (see Schaller and Norden
1997, or more recently Brooks and Katsaris 2005 or Shi 2013).

7 Where an ADF statistic is calculated as ADF r2r1 =
β̂r1,r2

se(β̂r1,r2)
under the null and when

lags are added to remove serial correlation from the error term.
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where r̃ie and r̃if are the date fractions of origination and collapse and CV κ

are the 100(1− κ)% critical values for significance level κ which are based
on the BSADF statistic for observation fraction r. The start date of an
explosive period is the earliest observation with an BSADF statistic that
exceeds the corresponding critical value under the distribution of the null,
while the collapse date of the explosiveness is taken to be the first time that
the BSADF statistic declines to below the critical value.

A key assumption of these tests is that the volatility of the error term of the
equation for an asset price being modeled is stationary. If this assumption
does not hold it can lead to Type 1 errors (false rejections of the null that
there is no explosiveness present in the sub-sample). Heteroscedasticity is
a common phenomenon in high frequency financial series such as exchange
rates (see for example, Figure 44 in the Appendix).8 In the presence of
heteroscedasticity, the standard PSY test may therefore not be valid for
inference.9 However, Cavaliere and Taylor (2008) show that inference for
(left-sided) unit root testing is robust to non-stationary volatility when a wild
bootstrap is applied.10 This paper uses a wild bootstrap to simulate critical
values for the PSY test that will be applied to exchange rate series.

3 Wild bootstrap procedure for the PSY ap-

proach

Whereas the critical values for the PSY approach depend only on the sample
size, minimum sample fraction r0 and the test specification, in this paper the
wild bootstrapped critical values also depend on the differenced series being

8 The Figure shows that the NZD has the highest nominal volatility in its cross rate with
the USD over the sample period, while the CAD, CHF and USD all have relatively
high volatility in their effective exchange rates.

9 Standard tests for heteroscedasticity, such as the Breusch-Pagan-Godfrey and White
tests, reject the null of no heteroscedasticity for several test specifications for the daily
cross rates considered in this paper. If a series has explosive dynamics, standard tests for
heteroscedasticity or breaks in volatility may not produce consistent results. However,
the wild bootstrap critical values produced for inference in this paper will provide
consistent results whether heteroscedasticity is present in the series or not.

10 Specifically, they show that wild bootstrap test statistics replicate the limit distribution
under the unit root null and non-stationary volatility. Likewise, Goncalves and Kilian
(2004) show that a wild bootstrap estimator is asymptotically valid (i.e. their sizes
unaffected) for univariate autoregressions in the presence of conditional heteroskedas-
ticity, while Xu (2008) demonstrates the same conclusion holds under unconditional
heteroskedasticity.

5



tested. Following Harvey et al. (2015), a wild bootstrap algorithm is used to
compute critical values for inference:

1. For each series, T bootstrap residuals ε∗t are generated as ε∗t = wt∆yt
with ε∗1 = 0 and t = 2, ..., T , after drawing wt from an auxiliary distri-
bution such that {wt}Tt=2 ∼ N(0, 1).11

2. Bootstrap sample (y∗0, ..., y
∗
T ) computed as the partial sum of the boot-

strap residuals: y∗t =
∑t

j=1 ε
∗
j , where t = 1, .., T .

3. Bootstrap test statistics computed as in equations 3 and 4 using y∗t over
the sample window with the starting point r1 = 1, .., r2 − r0 + 1 and
end-point r2 = r0, .., T .

4. Steps 1 to 3 are repeated 2000 times to produce the bootstrap distribu-
tion used to calculate the critical values for the BSADF statistic.

This approach ensures that the bootstrap residuals account for any het-
eroskedasticity present in the series under consideration as they depend on
∆yt and ε∗t are an iid sequence with zero mean and unit variance.12

4 Results

The sample spans 3 January 2000 to 13 July 2016 (4177 observations) for all
G11 currencies.13 Effective exchange rates are based on the Bank of England
Effective Exchange Rate Indices, which have the advantage of being available

11 This paper presents results using a standard normal distribution, but in line with
Cavaliere and Taylor (2008), simulations based on other error distributions (such as
that proposed by Mammen 1993) produced similar results.

12 Caspi (2017, forthcoming) provides an Eviews implementation of a version of the PSY
test that allows for bootstrapping using Harvey et al.’s (2015) approach, as well as
several alternatives. Etienne et al. (2014) and Milunovich et al. (2016) also apply a
wild bootstrap procedure to the PSY test but base the wild bootstrap residuals instead
on the residuals from the AR model in equation 2. Instead of specifically modeling
the process governing volatility, Harvey et al. (2015) show that wild bootstrapping
the PWY test based on the differenced series under consideration to obtain critical
values produces results robust to the possibility of non-stationary volatility. They show
that their variant of the PWY test maintains the size and power properties of the test
when there is heteroscedasticity present in a time series. Following Harvey et al. (2015),
sub-sample regressions are amended when allowing for serial correlation in εt, although
they note that their approach to bootstrapping leaves the asymptotic properties of their
test unaffected when εt is weakly dependent.

13 Daily exchange rates are taken from the Bank of England website and quoted as middle
rates observed in the late afternoon.
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at a daily frequency for a large range of countries and can easily matched to
the daily exchange rate data used.14 For all cross-rates, lag length length of
the test is set to one in equation 2.15 As is typical when modeling financial
market data, a constant is added to the AR regressions in this paper to
account for non-random drift. Critical values are simulated using on 2000
replications. The size of the initial test window needs to be big enough to
provide consistent estimates. In this paper, r0 is set at 158 days, using the
rule of thumb suggested by Phillips et al. (2014a).16 Given the use of daily
data, a minimum period of 1 day is imposed.17 Exchange rates are quoted in
terms of USD, and effective exchange rate indices are indexed to ensure that
values for 1990 average equal 100.

4.1 Tests applied to nominal exchange rates

Appendix A shows results for all nominal exchange rates quoted relative to
USD. The shaded bars in the top panels show the days on which nominal
USD cross rates exhibited explosive behaviour. In the bottom panel, the
red line plots the BSADF test sequence, while the blue line plots the 95
percent simulated critical values. Table 1 compares the number of days with
explosive dynamics in each currency pair. Periods of explosiveness are fairly
uncommon. Between January 2000 and July 2016, less than 7 percent of days
exhibited explosive dynamics on average across the 11 cross-rates. Periods
of explosiveness are most common in the USD:DKK, USD:EUR, USD:CAD
and USD:SEK cross rates, and occur least frequently in the USD:GBP and

14 These indices are constructed by weighting bilateral exchange rates against sterling for
21 currencies, 13 of which are EU currencies, with weights based on each country’s
relative importance to UK trade in manufactures in 1989-1991 (with weights also
capturing third country effects).

15 In the benchmark results, a fixed lag order is one used since Phillips et al. (2015a) show
that the high orders of lags generate a size distortion in the test statistic that increases
with sample size, but that is minimised when using fixed lag lengths. The judgements
reached based on such specifications for the USD:NZD based on zero lags, as well as
specifications selected using a Bayesian information criterion, are similar.

16 The initial window needs to be large enough to ensure that the actual sampling
distribution is not too different from its asymptotic distribution (reducing the risk of
comparing the statistics to incorrect critical values for the first runs of the test), while
not being so large that short-lived bubbles early in the sample are not detected. Phillips
et al. (2014a) suggest that the starting window size should be inversely proportional to
the sample size, and propose the following size rule: r0 = 0.01 + 1.8√

T
.

17 Phillips et al. (2015b) suggest using Lt = δ log(T )
T to determine the minimum period to

use, with the scaling factor δ depending on the frequency of the data in case the user
wishes to impose a minimum of one year, for example (see Phillips et al. 2015a).
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USD:CHF cross-rates.

Table 1 also summarises the characteristics of explosive periods in each
currency pair for days of explosive ‘expansions’ and ‘collapses’, respectively.
Explosive periods are ‘expansions’ (‘crashes’) if the mean of the exchange
rate is higher (lower) over the explosive period than at the start. As all cross
rates are quoted relative to one USD, an increase represents a depreciation
relative to the USD. Expansions are therefor associated with an increase in
the value of the USD, while crashes are associated with an increase in the
quote currency. For G11 currencies overall, explosive appreciations are more
common than explosive depreciations. With the exception of the CAD, JPY,
NOK and SEK, the other seven cross-rates have more explosive episodes
in which the quote currency appreciates than explosive episodes where it
depreciates. The USD:CHF currency pair experienced the highest proportion
of explosive periods involving quote currency depreciation, while the USD:JPY
experienced the highest proportion of appreciation episodes. Explosive periods
lasted longer on average for crashes than for expansions. Such periods were
longest overall on average in the USD:AUD cross-rate. This reflects two very
long periods of explosiveness: 44 days beginning 6 May 2003 and 79 days
beginning on 10 November 2003. The USD:NZD pair has the largest number
of individual explosive episodes, although these have a shorter duration than
some other cross-rates.

These tests identify days during which a series changes from a random walk
process to one with an explosive root. As such, it would be interesting to
assess the speed and magnitude of reversion back to random walk behaviour.
Unfortunately, the test statistics from the test applied in this paper are
not directly related to the size of the explosive period. To compare the
characteristics of periods of explosiveness, Table 1 shows actual changes
in the exchange rate start-to-peak and start-to-trough for each identified
period of explosiveness. Most explosive periods themselves are associated
with relatively small changes in currency levels: usually only single digits in
percentage points between the emergence of explosiveness to its peak/trough.
These are also followed by rapid bounce-backs in the currency over the days
that followed, and the magnitude of adjustments are not particularly large
either.18 On average across the G11 currencies, quote currency depreciations

18 In contrast, for monthly data for G10 currencies, Hu and Oxley (2017, forthcoming) find
explosive periods where some currencies collapse without recovering. They argue that
this motivates the use of a specification without an intercept to exclude such episodes,
although the asymptotic properties of such an approach is not studied. In this paper,
when an intercept is excluded from the specification used for the daily USD:NZD for
example, results are similar to the benchmark results.
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are larger during expansions than quote currency appreciations during crashes.
Depreciations were especially large during late October 2008, when currencies
like the NZD and AUD depreciated by almost 10 percent start-to-peak. On
average, depreciations in the value of the EUR during explosive episodes are
largest out of the G11 currencies at 4 percent, while the NZD appreciated
the most on average during crashes in the USD:NZD pair, at 3.4 percent.

Another interesting question is whether rapid changes in exchange rates
represent reversion back to levels implied by relative prices, changes in which
could cause shifts in the mean level of real exchange rates over time. Although
this paper does not explicitly address whether identified explosiveness forms
part of mean reverting behaviour as such, the figures in Appendix B suggest
that there are several explosive episodes that have followed periods where
specific exchange rates have been far away from their sample mean.19

There is synchronicity in explosiveness across G11 exchange rates (Figure 1),
particularly when distinguishing between expansion and crashing periods in
different currency pairs (Tables 2 and 3 in the Appendix). While there does
not appear to have been distinct changes in the frequency of explosive periods
over time, there are several explosive periods that are common across the
majority of cross-rates. For example, periods of explosiveness are clustered
during September and October 2000 (all expansions), the first half of 2003
(all crashes), October 2008 (all expansions), June and July 2002 (all crashes)
and the final months of 2014 to first few months of 2015 (all expansions).

19 Although exchange rates are expressed here in nominal terms, they will be very highly
correlated with real exchange rates at a high frequency such as daily.
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4.2 Tests applied to effective exchange rates

The existence of an expansion period in a given base currency generally implies
a crash in the other currency in the pair (compare Figures 34 and 45).20 To
investigate which currency is responsible for a given cross-rate’s explosive
dynamics, this section compares tests for explosiveness to G11 base currencies
and considers the dynamics of effective exchange rates, which measures the
broad value of different currencies.

In line with Figure 1, there is significant concordance in the incidence of
explosive dynamics across the base currencies considered here (Figure 2).
Appendix A plots the individual results for the effective exchange rates of
each G11 currency. For all currencies, an increase in the effective exchange
rate index represents an appreciation and explosive expansions would be
associated with an appreciation in the broad value of that currency. For
several cross-rates, periods of explosiveness occurred simultaneously in the
effective exchange rate of the quote currency.

The results suggest that many of the instances of explosiveness that identified
in daily cross rates with the USD may have reflected changes in the broad value
of the quote currencies. Figure 23 in the Appendix also suggests that most of
the crashes in G11 cross-rates correspond to rapid increases in the broad value
of the USD. For example, the crashes (associated with depreciation in quote
rates) identified in all G11 currencies in the first quarter of 2015 in Figure 1
is mirrored in expansions in the effective USD (indicating an appreciation
in its broad value). Instances of explosiveness in individual cross-rates not
matched by explosiveness in the effective USD are relatively rare, suggesting
that there are not many periods where G11 cross-rate explosiveness reflected
country-specific factors. Examples of such episodes include the expansions in
the AUD and NZD in late 2000, expansions in the CHF, DKK and EUR in
May 2010, and crashes in the CHF in June and August 2011.21

20 As discussed earlier, the test applied in this paper are robust to multiple episodes of
expansion and collapse and are not overly sensitive to the way exchange rates are
quoted.

21 The large jumps in the effective measures of the DKK in May 2001 and June 2001 and
CHF in January 2015 also occur in other measures such as the Barclay’s real effective
rate, and reflect developments in their EUR cross rates. While the USD:CHF cross
rate is explosive during the period around the unpegging of the CHF to the EUR in
January 2015, no explosiveness is identified in the effective value of the CHF, in spite
of its dramatic appreciation.
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Figure 1: Concordance of explosive periods in cross-rates

Figure 2: Concordance of explosive periods in effective rates

The focus of this paper is to document the occurrence of bouts of explosiveness
in exchange rates. Determining the factors responsible for driving specific
bouts of rapid exchange rate change is beyond the scope of this research.
That said, to assess the possibility that expansions and collapses of explosive
periods could reflect ‘flight to safety’ in currency markets during periods of
high volatility or risk aversion, Appendix C compares cross-rate explosive
episodes to the VIX index. Such episodes indeed appear to be synchronised
to changes in the VIX. At least one G11 currency experiences an explosive
period during each of the large spikes observed in the VIX.
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5 Conclusion

To test for explosiveness in highly volatile series, this paper applies an
equivalent of the PSY test based on wild-bootstrap critical values. Using a
wild bootstrap is particularly important when applying tests for explosiveness
to exchange rates since volatility of exchange rates tend to vary over time,
especially when measured at high frequencies. Non-stationary volatility
could cause a size distortion in unit root tests. The paper applies a wild
bootstrap-based tests to a range of highly traded exchange rates over a long
sample.

This paper finds that bouts of explosiveness in exchange rates are uncommon
at a daily frequency. Periods of explosiveness tend last for several days but
involve only small changes in currency levels. These also usually reverse
shortly after. There is high concordance with explosiveness in the broad
value of the US dollar exchange rate, suggesting that there are relatively
few instances where explosiveness in individual cross-rates reflected country-
specific factors. There is also evidence that explosive episodes in currency
markets coincide with periods of high market volatility.

This paper is focused on identifying periods of explosiveness in G11 exchange
rates at high frequency and over a long sample. Whether rapid exchange
rate changes have been accompanied by explosive improvements in the
macroeconomic fundamentals is left for future research. For the New Zealand
dollar, for example, Steenkamp (2017) applies these tests to three models
of exchange rate determination to test whether there have been periods
when changes in the exchange rate have been disconnected from changes
in relative economic fundamentals. Another area warranting research is
understanding which factors are responsible for driving specific bouts of rapid
exchange rate change. It would be useful, for example, to assess whether
these represent adjustments following periods of exchange rate overvaluation,
spikes in financial market risk, or shocks to relative fundamentals.
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Appendix A Tests to cross rates and effec-

tive exchange rates

Figure 3: USD:NZD (log) Figure 4: Effective NZD (log)

Figure 5: USD:AUD (log) Figure 6: Effective AUD (log)

Figure 7: USD:GBP (log) Figure 8: Effective GBP (log)

Figure 9: USD:CAD (log) Figure 10: Effective CAD (log)
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Figure 11: USD:DKK (log) Figure 12: Effective DKK (log)

Figure 13: USD:EUR (log) Figure 14: Effective EUR (log)

Figure 15: USD:JPY (log) Figure 16: Effective JPY (log)

Figure 17: USD:NOK (log) Figure 18: Effective NOK (log)
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Figure 19: USD:CHF (log) Figure 20: Effective CHF (log)

Figure 21: USD:SEK (log) Figure 22: Effective SEK (log)

Figure 23: USD Effective exchange rate (log)

Note: Results based on a specification with 1 lag.
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Appendix B Concordance between deviations

from sample mean and explosive

periods
Figure 24: USD:NZD (log) Figure 25: USD:AUD (log)

Figure 26: USD:GBP (log) Figure 27: USD:CAD (log)

Figure 28: USD:DKK (log) Figure 29: USD:EUR (log)

Figure 30: USD:JPY (log) Figure 31: USD:NOK (log)

Figure 32: USD:CHF (log) Figure 33: USD:SEK (log)

Note: Shaded bars represent explosive periods for each currency and blue line is the deviation from sample

mean.
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Appendix C Concordance between explosive

dates in currencies and VIX
Figure 34: USD:NZD Figure 35: USD:AUD

Figure 36: USD:GBP Figure 37: USD:CAD

Figure 38: USD:DKK Figure 39: USD:EUR

Figure 40: USD:JPY Figure 41: USD:NOK

Figure 42: USD:CHF Figure 43: USD:SEK

Note: Shaded bars represent explosive periods for each currency and VIX in red.
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Appendix D Additional Figures

Figure 44: Volatility of daily exchange rates
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Figure 45: Implication of quotation

Note: Results based on PSY test with wild bootstrap, 1 lag and 2000 iterations.
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