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Abstract
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Figure 1: Zombie computers.

[Source: http://uvmzombies.blogspot.com.au/2013/02/computer-zombies.html]

1 Introduction

In many economic systems conflicts between two sets of agents may arise for the appropri-

ation and the protection of valuable resources. When one set of agents unleashes attacks

against another, the latter is left to bear the cost of being under attack. Initial attacks

may provoke secondary attacks, which amplifies the outreach/consequences of the attacks,

affecting the entire environment in which both attackers and defenders interact with one

another. Examples of these conflicts can be found in cybercrime, the other side of which

involves cybersecurity, or biological warfare demanding immunization, or the economics of

tax evasion1

In these examples, prospective attackers assess their idiosyncratic gains from succeeding

against the losses from failing. Similarly, defenders assess their idiosyncratic losses from

attacks against the cost of investing in protection. Both, the defenders’ individual and the

aggregate investment in protection determine how exposed they are to such attacks. Con-

versely, the aggregate investment in protection together with the institutions in the economy

determine how adverse the environment is for potential attackers. As the adversity in-

creases, prospective attackers envisage an increased rate of failure from pursuing attacks,

1See Becker (1968), for a study of the economics of crime and punishment more in general.
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and more attackers refrain from attacking. Similarly, an increase in the defenders’ exposure

to potential attacks increases their incentives to seek protection. Once defenders, in their at-

tempt to avoid being ‘sitting ducks’, demand protection from specialized firms that supply

it, a market for protection is formed.

These markets are special because they involve complex demand and supply side effects.

Two channels form the demand side effect. First, there is a direct channel working as fol-

lows. When the proportion of protected defenders increases, all defenders’ exposure reduces.

Second, there is an indirect channel working as follows. When the proportion of protected

defenders increases, the adversity attackers face increases, dissuading some of them from

attacking, which also reduces the defenders’ exposure. This reduction in exposure decreases

the defenders’ demand for protection.

There is a single channel supply side effect. As fewer attackers attack, the cost of indi-

vidual protection decreases, increasing the supply of protection. We refer to the supply-side

effect as ‘economies of use’. These economies of use are different from economies of scale.

Economies of use come about because the use of protection deters attackers and thereby

leads to fewer modes of attack. By contrast, economies of scale come about solely from cost

savings of producing a larger quantity, irrespective of how many units are consumed.

To study these markets, we construct a game with heterogeneous populations of attackers

and defenders. Each attacker decides whether to perpetrate untargeted attacks. Attacking

is risky; it may fail or succeed. Each defender chooses whether to pay for protection or

remain exposed to an attack. If attacked, an unprotected defender risks suffering losses.

We provide sufficient conditions for the existence and uniqueness of a Nash equilibrium,

characterized by the proportion of attackers that attack and the proportion of defenders

paying for protection. We explore the incentives for the private provision of protection to

defenders, at a price, by a monopoly and by firms within Cournot and Bertrand oligopolies.

We discuss the social welfare consequences of the private choices in the market for protection

and provide simulations for such markets.

We find that, if protection is provided at a fixed price in a market, the is a unique Nash

equilibrium in the population game. The demand for protection coming out of the population

game is downward-sloping. Next we explicitly introduce the cost of providing protection and

define welfare in this economy and show that any market solution is inefficient. We give

sufficient conditions under which a monopolist charges a finite price. However, because

for reasonable assumptions on the distributions of the defenders potential losses and the

attackers potential gains demand can be convex, the monopoly problem need not be concave

and therefore may have multiple local and even global maxima. Whether it does depends on

the relative convexity of the demand and the cost of protection. We show that the monopolist
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may supply in the elastic, unit-elastic, or the inelastic portion of the demand, as a result of

the relative size of the direct and indirect cost effect, that is, of the extent of the economies

of use.

We characterize possible Cournot and Bertrand equilibria in the market for protection.

For Cournot competition, we show that, contrary to standard Cournot models, the firms’

supplied quantity of protection need not be strategic substitutes under all circumstances.

They are strategic complements if the supply-side economies of use dominate the demand-

side network effect. For Bertrand competition, we first show that multiple equilbria cannot

be ruled out in general. We then provide a sufficient condition for the equilibrium to be

unique. Roughly speaking, this condition holds if the demand-side network effect dominates

the economies of use. We extend our analysis to the situation in which both the price and

the quality of protection are the choice of a monopoly. All results obtained with perfect

protection hold. In addition, we provide an optimality condition for quality provision of the

monopolist. This condition resembles the Dorfman-Steiner condition for optimal advertising.

Finally, we provide parametrized examples for our models for the market for protection, from

monopoly to oligopoly, and simulate results within these environments for several distribution

functions.

Many studies devote attention to aspects such as the reliability of the cyberspace and

the feasibility of data encryption methods (e.g., in computer science). This may also in-

volve focusing on the analysis of the underlying architecture of networks, connecting agents

susceptible to attacks. The objective is to capture the agents’ exposure to attacks, which

is likely to depend on the degree of their connectedness within a network.2 Other studies

concentrate on the epidemiology aspect of contagion and its containment in the event of

an outbreak/pandemic, therefore neglecting the perpetrated component of the attacks we

are interested in capturing instead.3 However, a comprehensive study of the economics of

attacks and defense, looking at the incentives of attackers and defenders to respectively en-

gage in attacks and in seeking protection at a price in a market environment is still missing.

By allowing for alternative market structures for the provision of protection and alternative

pricing schemes for the supply of protection, the present work attempts to overcome this

gap.

2This is done, to study how connectedness affects the speed at which contagion can occur and spread,
within those networks. Findings of these studies suggest ways to make a network more secure including
how to design networks to better block attacks from propagating, as in Goyal and Vidier (2014). See also
Chowdhury and Topolyan (2016) for a study of attack and defense in group contests.

3See Toxaerd (2009, 2015) for good examples of studies of the economics of non-perpetrated attacks and
defense from an epidemiological standpoint.
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2 The Model

Consider a simultaneous move, static game of complete information between two hetero-

geneous populations. There is a continuum, unit mass of defenders in population J and

a continuum, unit mass of attackers in population I. Each attacker i ∈ I, decides if she

attacks or not whereas each defender j ∈ J chooses to pay for protection against attacks

or to save resources, risking to suffer the negative consequences of an attack. All players

are utility maximizers. An attack is successful if and only if the defender did not pay for

protection (an attack fails if and only if the defender paid for protection). Attackers cannot

observe if a defender has protection or not. Let ω ∈ Ω be a state of the world; that is, a

collection of parameters, and Ω denote the set of all possible states; that is, the set of all

feasible collections of parameters.

Attackers Let FX denote the continuous, atomless distribution of payoffs for a successful

attack. As usual, FX(+∞) = 1. Attacker i obtains a direct payoff of xi > 0 if her attack

succeeds. She also obtains an indirect payoff of xi from all unprotected defenders her target

is directly or indirectly connected to during the attack.

If an attacker decides not to attack, her payoff is zero for sure. Denote the mass of

defenders not taking protection be λ, with 0 ≤ λ ≤ 1. For every λ, attacker i’s utility if she

does not attack is given by:

Ui(no attack | λ) = 0.

An attacker loses payoff for each attack that fails. For each state ω ∈ Ω, β(λ;ω) is a

function of the mass of defenders not taking protection, λ. For convenience, we will write

just β(λ), or simply β, if the context is clear. If player i ∈ I decides to attack her utility is:

Ui(attack | λ) = xi − β.

The adversity function β(λ), capturing how difficult the attack environment common to

all attackers is, enters the payoff component from attacking for all attackers, while the term

xi depends on each attacker’s idiosyncratic gain from succeeding in an attack. A natural

assumption would be for β to be positive, and weakly decreasing in λ.4 An attacker i ∈ I
prefers to attack if Ui(attack | λ) > Ui(no attack | λ); that is, if:

xi > β(λ).

4Increasing or decreasing functions mean strictly increasing or decreasing. To refer to weakly monotonic
function, the word ”weak” is always written.
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For each attacker, the aggregate behavior of other attackers is not important; she only

cares about the aggregate behavior of defenders. Let χ be the mass of attackers choosing

not to attack, with 0 ≤ χ ≤ 1. Then:

χ = FX(β(λ)) .

Defenders For each state ω ∈ Ω and mass of attackers choosing not to attack χ, let

P (χ, λ;ω) > 0 be the price of protection. If the context is clear, we write P (χ, λ) or just P .

Defender j obtains payoff −P if she has paid for protection. It does not matter how large the

population of attackers is or if protected defender j is attacked many times, once, or not at

all; if she paid for protection, her payoff is always −P . This formulation is compatible with

full protection (for defenders that choose to protect themselves against a possible attack),

costing each defender an amount P .5 For every χ:

Vj(protection | χ) = −P .

Defender j obtains payoff −sj < 0 if she is attacked one or more times and does not have

protection. Let FS denote the continuous distribution of costs for unprotected, attacked

defenders. The payoff of the unprotected defender j depends on being attacked (directly

or indirectly). For now, we abstract from the process of direct and indirect consequences

of attacks and consider the suffering from attacks to be captured by the exposure function

δ = δ(χ, λ;ω), decreasing with χ, increasing with λ, and such that the payoff of being

unprotected is:

Vj(no protection | χ, λ) = −sjδ.

For every fixed ω and λ, as more attackers attack, χ decreases, function δ(χ, λ) increases,

and the payoff of being unprotected Vj(no protection| χ, λ) becomes more negative. For every

fixed ω and χ, as more defenders become unprotected, λ increases, and then, δ increases,

making the payoff of every unprotected defender to decrease. Defender j prefers to pay for

protection if Vj(protection | χ) > Vj(no protection | χ, λ); that is, −P > −sjδ. Equivalently:

sj >
P (χ, λ)

δ(χ, λ)
.

Each defender j cares about the aggregate behavior of both populations. Defenders j such

that sj ≤ P (χ, λ)/δ(χ, λ) prefer to take a chance and not pay for protection. The mass of

unprotected defenders is:

λ = FS

(
P (χ, λ)

δ(χ, λ)

)
.

5We examine the case of partial protection in an extension of the model, and otherwise maintain the full
protection assumption for the rest of the analysis.
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Consider the elasticities εP,χ and εδ,χ, respectively, of P and δ with respect to χ. Let εP,λ

and εδ,λ denote the elasticities of P and δ, respectively, with respect to λ. Formally:

εP,χ =
∂P

∂χ

χ

P
, εδ,χ =

∂δ

∂χ

χ

δ
,

εP,λ =
∂P

∂λ

λ

P
, εδ,λ =

∂δ

∂λ

λ

δ
.

3 Attack-Defense Equilibrium

A function is smooth if it is differentiable infinitely many times. Consider the following

collection of technical assumptions. Under these assumptions, there is a Nash equilibrium.

These assumptions must hold for every state ω ∈ Ω.

Assumption 1 The distributions of X and S are continuous, atomless, have probability

density functions (PDFs from now on) fX and fS, respectively, and support contained on

the set of non-negative real numbers. Moreover, fX(xi) > 0 and fS(sj) > 0, for every xi > 0

and sj > 0.

Assumption 2 Function (χ, λ) 7→ δ(χ, λ) is smooth and 0 < δ(χ, λ) < +∞, for every

0 < χ < 1 and 0 ≤ λ ≤ 1. Moreover, ∂δ/∂χ < 0 and ∂δ/∂λ > 0.

This assumption implies that δ(χ, λ) decreases with χ, and increases with λ. Also,

function δ(χ, λ) is maximized at (χ, λ) = (0, 1).

Assumption 3 Function (χ, λ) 7→ P (χ, λ) is smooth and P (χ, λ) > 0, for every 0 ≤ χ ≤ 1.

Assumption 4 Function λ 7→ β(λ) is smooth; β(λ) ≥ 0, for every λ ≥ 0. For every λ > 0,

d/dλ [β] < 0.

This assumption implies that, for λ > 0, function λ 7→ β(λ) is strictly decreasing. Hence

the function β(λ) is minimized at λ = 1, and maximized in the limit, as λ→ 0.

Remark 1 Each defender has an idiosyncratic loss that, weighted by the exposure δ, de-

termines his willingness to pay. Similarly, each attacker has an idiosyncratic gain from

attacking that, weighted with the fail-success-ratio β to capture the adversity of the environ-

ment in which attacks are executed, determines his willingness to attack. In typical models,

both are constants. Contrary to this, in our model, both the exposure and the adversity factors

depend on the aggregate outcomes in the economy.
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An outcome for the game is a pair (χ, λ), where χ is the mass of attackers that do not

attack and λ is the mass of defenders that do not pay for protection. The outcome (χ∗, λ∗)

is a Nash equilibrium if:

χ∗ = FX(β(λ∗)) , (1)

λ∗ = FS

(
P (χ∗, λ∗)

δ(χ∗, λ∗)

)
. (2)

The equilibrium (χ∗, λ∗) generates the correct incentives for the two populations. Devi-

ations by subsets of players with zero measure are allowed because these deviations do not

change incentives. Hence, uniqueness of equilibrium refers to uniqueness up to changes of

behavior by zero measure subsets of players.

To economize on notation, let χ = FX(β(λ)), for every 0 ≤ λ ≤ 1. Define the elasticity

of χ with respect to λ as

εχ,λ =
dχ

dλ

λ

χ
= fX(β(λ))

dβ

dλ

λ

χ
.

Consider the auxiliary variable ε defined by:

ε =
λδ(FX(β(λ)), λ)

P (FX(β(λ)), λ)fS

(
P (FX(β(λ)),λ)
δ(FX(β(λ)),λ)

) .

Given the previous assumptions, it is clear that ε ≥ 0.

Proposition 1 Fix a state ω ∈ Ω. Suppose that assumptions 1 through 4 are satisfied.

Then, the game with parameters characterized by state ω has at least one Nash equilibrium.

In all Nash equilibria, 0 ≤ λ∗ ≤ 1 and 0 ≤ χ∗ ≤ 1. There is a unique Nash equilibrium if for

every 0 ≤ λ ≤ 1 the following inequality is satisfied:

εP,λ + εP,χεχ,λ < εδ,λ + εδ,χεχ,λ + ε. (3)

Because ε ≥ 0, regardless of the value of 0 ≤ λ ≤ 1, then uniqueness of the Nash

equilibrium holds if εP,λ + εP,χεχ,λ < εδ,λ + εδ,χεχ,λ, for every 0 ≤ λ ≤ 1. The terms εP,λ and

εP,χεχ,λ capture the direct and the indirect (via changes in the mass of inactive attackers)

sensitivity of the price to changes in the mass of unprotected defenders. Similarly, the terms

εδ,λ and εδ,χεχ,λ capture the direct and the indirect sensitivity of the exposure to changes in

the mass of unprotected defenders. Therefore, uniqueness holds if the price of protection,

P , is less sensitive to changes in the mass of unprotected defenders than the exposure, δ, for

every 0 ≤ λ ≤ 1.

Regarding comparative statics, suppose there is a unique Nash equilibrium (χ∗, λ∗), with

0 < λ∗ < 1 and 0 < χ∗ < 1. Then, the equilibrium number of unprotected defenders

7



decreases (i.e., more defenders get protection) as the potential payoffs of successful attacks

increases, or as the distribution of costs for unprotected, attacked defenders shifts right

(increases). Intuitively, as potential attackers potential gains from successful attacks increase,

the mass of active attackers will also increase. As a consequence, the risk of being unprotected

is higher and more defenders will get protection.

Similarly, if the potential gains of successful attacks increase, fewer attackers stay inactive,

and the risk of attacks increases. Hence, fewer defenders stay unprotected. The next result

makes this intuition more precise by comparing distributions using a notion of strict first

order stochastic dominance. The result has two parts. In the first, the distribution S changes

to Ŝ and the distribution X stays the same. In the second part, the distribution X changes

to
̂̂
X while the distribution S stays the same.

Corollary 1 Suppose that assumptions 1 through 4 are satisfied. Suppose that condition (3)

holds for every 0 ≤ λ ≤ 1. Denote the unique Nash equilibrium (χ∗, λ∗) when the primitive

distributions are S and X. When only the distribution S is perturbed, becoming Ŝ (i.e., the

distribution X is unchanged), suppose that there is still a unique Nash equilibrium denoted

(χ̂, λ̂). When only the distribution X is perturbed, becoming
̂̂
X (i.e., the distribution S is

unchanged), suppose that there is still a unique Nash equilibrium denoted (̂̂χ, ̂̂λ).

(1) Suppose that the distribution Ŝ dominates the distribution S in the following precise

sense: FŜ(s) < FS(s), for all s > 0. Suppose that X is unchanged. Then, the equilibrium

mass of unprotected defenders decreases, λ̂ < λ∗, and the mass of inactive attackers increases,

χ̂ > χ∗.

(2) Assume that function P (χ, λ) is weakly decreasing with χ; that is, the price of pro-

tection weakly increases with the mass of active attackers. Suppose that the distribution
̂̂
X

dominates the distribution X in the precise sense that F ̂̂
X

(x) < FX(x), for all x > 0. Suppose

that distribution S is unchanged. Then, the equilibrium mass of inactive attackers decreases,̂̂χ < χ∗, and the mass of unprotected defenders decreases,
̂̂
λ < λ∗.

Section 9 contains some explicit examples of distributions. In these examples, the distri-

butions are parametrized. Then, the domination relation described in Corollary 1 becomes

simply the comparison of a parameter.

4 Cost of Protection Provision

Let K be a positive integer number. Let there be a set K = {1, . . . , k, . . . , K} of providers

of protection. These providers could be private firms, governments, or even clubs. We

assume each defender is protected by only one provider. That is, if the mass of defenders
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protected by provider k is given by qk, then the total mass of protected defenders is given

by Q =
∑

k∈K qk and the mass of unprotected defenders is λ = 1−Q.

The cost of a typical provider k, denoted Ck(χ, qk), is a function of the mass of defenders

protected by provider k, qk, and the mass of attackers that choose not to attack, χ.

Assumption 5 Each function Ck(χ, qk) are smooth, with Ck(χ, qk) > 0, ∂Ck/∂χ < 0 and

∂Ck/∂qk > 0.

This assumption implies that each function Ck(χ, qk) decreases with χ and increases with

qk. In particular, it is maximized at (χ, qk) = (0, 1). The aggregate cost to society when a

mass 1− χ of attackers attack and firms 1, 2, . . . , K provide q1, q2, . . . , qK is the summation

of the cost over all k,
∑

k∈K Ck(χ, qk).

Because attackers choose their actions optimally, the mass of inactive attackers is given by

χ = FX(β(λ)). A protection provider’s choice of protecting more defenders deters attackers,

which lowers all providers’ cost of protection. The term economies of use refers to this

effect. This is the fundamental difference of the cost structure in the classical framework to

ours: The cost function of every single provider depends on the aggregate outcomes in the

population subgame between attackers and defenders.

Development and Service Technology To illustrate, assume each provider k ∈ K has

a cost function with potentially two components: CD(χ) and qkCU(χ). We shall refer to

CD(χ) as the development cost and to CU(χ) as the per-user cost of protection or service

cost to provide protection to each defender. Function CD(χ) pertains to the development of

protection measures and procedures that can be adopted by all clients. Take, for example,

the development of software for protection. Function CU(χ) is, for instance, the per-user

cost of the building up and/or maintenance of defensive network infrastructures.

If firm k incurs both service and development costs, its total cost of providing protection

to a mass qk of defenders, given that a mass 1− χ of attackers are attacking, is:

Ck(χ, qk) = qkCU(χ) + CD(χ). (4)

The mass of protected defenders affects this total cost directly and indirectly. First, there

is a direct effect : if the measure of protected defenders increase, the factor qk also increases;

more users will be protected. Second, there is an indirect effect : as more defenders become

protected, the payoffs of attacking diminish, potentially changing the incentives of a positive

mass of attackers. Some attackers may switch their preferred action from attack to not

attack. The mass of attackers not attacking, χ, increases. In turn, this decreases the cost

of protection per (protected) defender/user. To capture this indirect effect, we assume that
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CU(χ) and CD(χ) are decreasing with χ. Under fewer attacks, producing protection to each

defender becomes cheaper; there need to be fewer specific modes of protection. Formally:

Assumption 6 The cost functions for the monopoly to protect each defender are decreasing

with the quantity of attackers that prefer not to attack:

d

dχ
[CU ] < 0,

d

dχ
[CD] < 0.

Example 1 Assume a unique provider, k = 1. This unique provider’s cost is C1(χ, q1) =

q1CU(χ) + CD(χ) = (1− λ)CU(χ) + CD(χ).

Example 2 Assume an industry in which only one provider, labelled k = 1, incurs devel-

opment costs and all other providers use the developed technology and incur only a per-user

cost. Then, C1(χ, q1) = CD(χ) and Ck(χ, qk) = qkCU(χ) for all other k 6= 1. Because attack-

ers choose their actions optimally, the quantity choice qk of each protection provider k 6= 1

impacts the per-user and the development cost of all providers.

In this example, the aggregate cost of providing protection is given by

CD(χ) +
∑
k∈K

qkCU(χ) = CD(χ) + CU(χ)
∑
k∈K

qk = CD(χ) + (1− λ)CU(χ).

5 Welfare

This section analyses welfare in the face of attackers who react optimally, that is, given

χ = FX(β(λ)). For that, define social welfare as the sum of the expected losses incurred by

unprotected defenders and the cost of protecting the other defenders. Hence, for any given

λ and χ, social welfare can be written as

W = −
∫ F−1

S (λ)

sj=0

sjδ(χ, λ)fS(sj)dsj −
∑
k∈K

Ck(χ, qk). (5)

As always, the socially optimal allocation is characterized by two decisions: How to

produce and how much to produce.

Development and Service Technology Assume the Development and Service Technol-

ogy as described in section 4. Then, the development cost should be incurred only once. Let

q = 1 − λ denote the mass of protected defenders. The providers that incur costs qCU and

CD need not to be the same. In this case, χ = FX(β(λ)), as attackers react optimally, and

the welfare becomes simply:

W = −
∫ F−1

S (λ)

sj=0

sjδ(χ, λ)fS(sj)dsj − (1− λ)CU(χ)− CD(χ). (6)
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With this formulation, welfare is a function of λ only. Suppose that a social planner

maximizes welfare by solving the problem:

max
0≤λ≤1

−
∫ F−1

S (λ)

sj=0

sjδ(χ, λ)fS(sj)dsj − (1− λ)CU(χ)− CD(χ).

The first order condition is:

dW

dλ
= [CU(χ)− F−1(λ)δ(χ, λ)]

<0︷ ︸︸ ︷
−dδ
dλ

∫ F−1(λ)

0

sjfS(sj)dsj

<0︷ ︸︸ ︷
−
(

(1− λ)
d

dλ
[CU ] +

d

dλ
[CD]

)
.

The derivatives d
dλ

[CU ] and d
dλ

[CD] are positive because dCU/dχ < 0, dCD/dχ < 0,

fX > 0, dβ/dλ < 0 and:

d

dλ
[CU ] =

dCU
dχ

dχ

dλ
=
dCU
dχ

fX(β(λ))
dβ

dλ
> 0,

d

dλ
[CD] =

dCD
dχ

dχ

dλ
=
dCD
dχ

fX(β(λ))
dβ

dλ
> 0.

The welfare is surely decreasing with λ if CU(χ)− F−1(λ)δ(χ, λ) ≤ 0.

6 Monopoly Provision of Protection

In this section we explore the incentives for a monopoly to provide protection to defenders for

a payment of a uniform per-user price P (χ, λ) = p. The timing is as follows. The monopoly

publicly announces a price. After observing the price, all defenders and attackers simulta-

neously choose their actions in the population subgame described in section 4. As usual,

the solution is by backwards induction and, hence, the monopoly anticipates the outcome of

the population subgame for each possible price and announces the profit-maximizing price.

Attackers and defenders react optimally to this price.

6.1 Revenue

In order to find the monopoly solution, let us first write expressions for the change in the

equilibrium values χ∗ and λ∗ with changes in the price charged by the monopolist. For each

price p > 0, the equilibrium level λ∗ is characterized by equation (8). By plugging λ∗ into

the right-hand side of equation (7), the equilibrium χ∗ is calculated:

χ∗ = FX(β(λ∗)) , (7)

λ∗ = FS

(
p

δ (FX(β(λ∗)) , λ∗)

)
. (8)
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Given Proposition 1, for each price p > 0, this equilibrium (χ∗, λ∗) exists, is unique and

interior. Attackers and defenders take the monopolistic price as given when they make their

decisions. Hence, εP,χ = εP,λ = 0. This implies that the sufficient condition for uniqueness

obtained in equation (3) simplifies to 0 < εδ,λ + εδ,χεχ,λ + ε. This inequality always holds as

εδ,λ > 0, εδ,χ < 0, εχ,λ < 0, and ε > 0.

The next results explain how the equilibrium variables χ∗ and λ∗ change with marginal

increases in the price p.

Lemma 1 The functions χ∗(p) and λ∗(p) are differentiable and their derivatives are given

by

d

dp
[λ∗] =

fS

(
p

δ(χ∗,λ∗)

)
δ(χ∗, λ∗)

δ2(χ∗, λ∗) + pfS

(
p

δ(χ∗,λ∗)

)(
∂δ
∂χ
fX(β(λ∗)) d

dλ
[β] + ∂δ

∂λ

) , (9)

and

d

dp
[χ∗] =

fX(β(λ∗)) d
dλ

[β] fS

(
p

δ(χ∗,λ∗)

)
δ(χ∗, λ∗)

δ2(χ∗, λ∗) + pfS

(
p

δ(χ∗,λ∗)

)(
∂δ
∂χ
fX(β(λ∗)) d

dλ
[β] + ∂δ

∂λ

) . (10)

The next result proves that the demand for protection decreases as the price goes up.

Lemma 2 The equilibrium share of the defenders not buying protection is always increasing

and the equilibrium share of the attackers not attacking is always decreasing with the price:

d

dp
[λ∗] > 0,

d

dp
[χ∗] < 0.

6.2 Costs

The total cost of providing protection depends on the equilibrium values of the share of

defenders buying protection (1− λ∗) and the share of attackers attacking (1− χ∗). Assume

the monopolist’s cost takes the form of Example 1 in subsection 4. Every p > 0 induces a

corresponding equilibrium of the population subgame (χ∗, λ∗). Let q∗ = 1−λ∗. By an abuse

of notation, when referring to the cost of the monopoly, drop subscript k and write:

C(χ∗, q) = q∗CU(χ∗) + CD(χ∗) = (1− λ∗)CU(χ∗) + CD(χ∗).

Let MC and AC denote the marginal and average cost and assume that attackers react
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optimally to any mass of protected defenders. Then:

MC = − d

d(1− λ∗)
[(1− λ∗)CU(FX(β(λ∗))) + CD(FX(β(λ∗)))]

= CU(FX(β(λ∗)))−
(

(1− λ∗)dCU
dχ

+
dCD
dχ

)
d

dλ
[FX(β(λ∗))].

AC = CU(FX(β(λ∗))) +
CD(FX(β(λ∗)))

1− λ∗
.

When the monopolist increases the price p, it will also increase the costs of protection

provision per defender. Indeed, because dχ∗/dp < 0, ∂CU/∂χ < 0 and ∂CD/∂χ < 0, then:

d

dp
[C∗U ] =

∂CU
∂χ

d

dp
[χ∗] > 0, (11)

d

dp
[C∗D] =

∂CD
∂χ

d

dp
[χ∗] > 0. (12)

Consider the impact of a price increase on this cost. On the one hand, lemma 2 states that

an increase in the price will increase the equilibrium share of unprotected defenders, which

means they need not be protected, lowering the cost. This is the usual direct effect of price

on the demand. On the other hand, the increase in the equilibrium share of unprotected

defenders decreases the share of inactive attackers, which increases the cost of protecting

each of the defenders. This is an indirect effect, a novelty of this model. The two effects

push the total cost in opposite directions. Formally, the total cost’s derivative with respect

to the price is:

d

dp
[(1− λ∗)CU(χ∗) + CD(χ∗)] =

(
(1− λ∗)∂CU

∂χ
+
∂CD
∂χ

)
d

dp
[χ∗]︸ ︷︷ ︸

indirect effect, >0

−CU(χ∗)
d

dp
[λ∗]︸ ︷︷ ︸

direct effect, <0

.

In order to find out which effect dominates, one needs to compare:(
(1− λ∗)∂CU

∂χ
+
∂CD
∂χ

)
d

dλ
[χ∗]

d

dp
[λ∗] and CU(χ∗)

d

dp
[λ∗].

Because dλ∗/dp > 0, using equation (49), we can conclude that the direct effect is the

dominating one if and only if:(
(1− λ∗)∂CU

∂χ
+
∂CD
∂χ

)
d

dλ
[χ∗]− CU(χ∗) < 0. (13)

Inspection of the formula for the marginal cost yields the following result.

Proposition 2 The marginal cost is positive (negative) if and only if the direct effect dom-

inates (is dominated by) the indirect effect.

13



Lemma 3 Suppose that CD ≥ 0. Assume that d
dχ

[CU ] < 0 or d
dχ

[CD] < 0. Then, the

average cost is strictly larger than the service cost, and both of them are strictly larger than

the marginal cost:

AC ≥ CU > MC, (14)

with AC = CU if CD = 0.

Define the price elasticity of protection demand as

εQ∗,p =
dQ∗

dp

p

Q∗
. (15)

Lemma 4 Suppose that CD > 0, d
dχ

[CU ] < 0 or d
dχ

[CD] < 0. Then, the average cost is

strictly increasing in p. More precisely:

dAC

dp
= −εQ

∗,p

p
(AC −MC) (16)

dAC

dp
> 0. (17)

This lemma implies that the average cost is decreasing in the quantity of protected

defenders. The next corollary formalizes it.

Corollary 2 Suppose that CD > 0, d
dχ

[CU ] < 0 or d
dχ

[CD] < 0. Then, the average cost is

strictly decreasing in 1− λ∗. More precisely:

dAC

d(1− λ)
< 0.

If CD > 0, then the market is a natural monopoly because decreasing average costs are

present for any level of protection provided by the monopoly.

Assume, to the contrary, that CD = 0 and dCU/dχ < 0. Then, decreasing average

costs over the whole range of the demand would be driven by decreasing marginal costs,

whether one or many providers were to provide protection, violating the condition for a

natural monopoly to exist. In this second scenario decreasing average costs are simply a

consequence of the increased aggregate use of protection.

6.3 Profit Maximization

When the monopolist sets a price p for protection, the total revenue is given by (1 − λ∗)p.
Then its profit is given by π = (1 − λ∗)(p − CU(χ∗)) − CD(χ∗) and its profit maximization

problem is:

max
p>0

{(1− λ∗)(p− CU(χ∗))− CD(χ∗)} ,

14



where χ∗ and λ∗ are determined by:

χ∗ = FX(β(λ∗)) ,

λ∗ = FS

(
p

δ(χ∗, λ∗)

)
.

Call the lowest price that covers the service costs p.

Assumption 7 Function CU(χ) is such that there exists a unique p such that CU(χ∗(p)) = p,

CU(χ∗(p)) > p for all p < p and CU(χ∗(p)) < p for all p > p.

Assumption 8 Both partial derivatives of the exposure are bounded. Formally, δλ < +∞
and δχ > −∞.

Assumption 9 limp→+∞(p− CU(χ∗(p))) fS(p/δ)
1−FS(p/δ)

> 1.

Assumption 10 The expected damage of successful attack is finite,
∫ +∞

0
sf(s)ds < +∞,

and there is a number s > 0 such that fS is weakly decreasing for every s ≥ s.

Proposition 3 Under Assumptions 8 – 10, the monopoly maximizes its profit by choosing

a finite price p ≥ p.

Remark 2 The profit-maximizing price need not be unique because, under very reasonable

assumptions, d2

dp2
[λ∗] < 0; that is, the demand for protection, 1 − λ∗, is downward sloping,

but convex.

The derivative of the monopolist’s profit with respect to price is:

dπ

dp
= (1− λ∗)−

(
p
d

dp
[λ∗] +

(
(1− λ∗)∂CU

∂χ
+
∂CD
∂χ

)
d

dp
[χ∗]− CU(χ∗)

d

dp
[λ∗]

)
, (18)

where the derivative ∂C/∂χ is calculated at χ∗ = FX(β(λ∗)). By equation (10), the first

order condition dπ/dp = 0 becomes:

1− λ∗
d
dp

[λ∗]
= p+

(
(1− λ∗)∂CU

∂χ
+
∂CD
∂χ

)
dχ∗

dλ
− CU(χ∗), (19)

where dχ∗/dλ is calculated at λ = λ∗, and ∂C/∂χ is calculated at χ∗ = FX(β(λ∗)). The

expression in parenthesis on the right-hand side is the sum of the price p and the left-hand

side of inequality (13), which is the difference of the indirect and the direct effects. This

difference can be negative (so the direct effect is dominating), but when we add p, the result

must be positive because 1 − λ∗ > 0 and dλ∗/dp > 0. Hence, any price that satisfies the
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first order condition sets an upper bound on how much the direct effect can dominate the

indirect effect, both effects evaluated at the equilibrium of the population subgame for this

price.

The sign of the elasticity εQ∗,p is the opposite of the sign of dλ∗/dp. Some algebra leads

to:
1− λ∗

p d
dp

[λ∗]
=

q∗

p d
dp

[1− q∗]
=

−1
p
q∗

d
dp

[q∗]
=
−1

εQ∗,p
. (20)

It is possible to express the monopoly mark-up in relation to the price elasticity of the

demand for protection. Dividing both sides of equation (19) by p and using equation (20)

imply that the profit maximization condition dπ/dp = 0 can be rewritten to resemble the

standard Lerner rule:

−1

εQ∗,p
=

p−

marginal cost︷ ︸︸ ︷(
CU(χ∗)−

(
(1− λ∗)∂CU

∂χ
+
∂CD
∂χ

)
dχ∗

dλ

)
p

. (21)

Remember, the marginal defender’s willingness to pay depends of the distribution of losses

and the defenders’ exposure, p = F−1
S (λ)δ(FX(β(λ)), λ). Hence, it is possible to decompose

the price elasticity of demand into two parts, the exposure elasticity of demand, εQ,δ = dQ
dδ

δ
Q

and the loss distribution elasticity of demand, εQ,F−1
S

= dQ

dF−1
S

F−1
S

Q
. Decomposing the price

elasticity of demand leads to:
1

εQ,p
=

1

εQ,δ
+

1

εQ,F−1
S

. (22)

Therefore, the modified Lerner rule can be expressed as:

−1

εQ,δ
+
−1

εQ,F−1
S

=
p−

(
CU(χ∗)−

(
(1− λ∗)∂CU

∂χ
+ ∂CD

∂χ

)
dχ∗

dλ

)
p

. (23)

The elasticity of the demand with respect to the loss distribution on the left-hand side

of equation (23) derives from the classical effect: Individuals have their idiosyncratic loss

and as the quantity is expanded, price needs to be lowered. The exposure elasticity of

demand derives from the (demand side) network effect. The right-hand side of equation

(23) represents the monopoly mark-up over the service cost plus a positive term related to

economies of use. The economies of use effect is weakly positive,
(

(1− λ∗)∂CU
∂χ

+ ∂CD
∂χ

)
dχ∗

dλ
≥

0 and, hence, attenuates the mark-up.

Repeating these steps with inequalities instead of equalities leads to:

dπ

dp
≥ 0⇔ −εQ∗,p

p−MC

p
≤ 1. (24)
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At every price p > 0 where the monopoly profit is zero, π = 0, the rate of change of the

profit with respect to the price is positive (zero, negative) if and only if the rate of change

of the average cost with respect to the price is smaller than (equal to, greater than) one.

Remark 3 In all monopolistic markets, we have:

dπ

dp
− π

q∗
dq∗

dp
= q∗

(
1− dAC

dp

)
. (25)

In particular, if dAC
dp

> 1, then dπ
dp
< 0. If dπ

dp
> 0, then dAC

dp
< 1. Now, suppose π = 0. By

equations (24) and (25),

dπ

dp
≥ 0⇔ −εQ∗,p

p−MC

p
≤ 1⇔ dAC

dp
≤ 1,

with equality holding on the left-hand side if and only if it holds on the right-hand side.

Next, let pM be any price that satisfies the first order condition of the monopoly profit

maximization problem. Then:

π > 0⇔ dAC(pM)

dp
< 1.

Finally, let dAC/dp = 1. Then:

dπ

dp

p

π
= εQ∗,p.

If the profit is positive and dAC/dp = 1, then the monopolist should increase its price. If it

is negative and dAC/dp = 1, then the monopolist should decrease its price.

Remark 4 In our model, dAC/dp > 0. Hence, q∗(1 − dAC/dp) < q∗. By equation (25),

this puts an upper bound on the marginal profit with respect to price:

dπ

dp
<

π

q∗
dq

dp
+ q∗.

Proposition 4 Let p be any price that satisfies the first order condition of the monopoly

profit maximization problem. Then, the following three statements are equivalent:

1. At p, the marginal cost of protection is strictly positive (strictly negative; zero);

2. At p, the direct cost dominate the economies of use (the economies of use dominate the

direct cost; the direct cost equal the economies of use);

3. At p, the demand for protection is elastic (inelastic; unit-elastic).
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Example 3 Suppose that the service cost is identically zero, CU(χ) = 0, for every χ ∈ [0, 1].

Then, the cost to protect consists of only a fixed cost for the development of specific modes

of protection. Clearly, this is a natural monopoly.

Interestingly, even though the cost are exclusively fixed cost in the sense that, once the

monopolist has found a protection for a particular attacker’s mode of attack, it can use it for

every defender without additional cost, the marginal cost is not zero. It is negative.

As before, assume this development cost CD(χ) is decreasing in χ. Equation (12) reveals

that the development cost increases with the price. In this example, this means that the total

cost increases with the price. If the monopolist increases its “output”, i.e., lowers its price

and provides protection to more defenders, then the number of attackers that does not attack

in equilibrium increases, lowering the monopolist’s cost.6

Suppose the monopoly lowers the price. Then, the number of defenders served increases.

Hence, the total cost of providing defense falls. The marginal cost of production is negative.

The Lerner rule in equation (21) becomes simply:

−1

εQ∗,p
=
p+ ∂CD

∂χ
dχ∗

dλ

p
.

Contrary to the standard monopoly solution, the monopoly mark-up is greater than unity

and the monopolist will produce in the inelastic part of the demand, |εQ∗,p| < 1.

Example 4 Assume there are no development costs, i.e., CD(χ) = 0 for every χ ∈ [0, 1].

Then the Lerner rule in equation (21) becomes simply:

−1

εQ∗,p
=
p− CU(χ∗) + (1− λ∗)∂CU

∂χ
dχ∗

dλ

p
.

The term −CU(χ∗) + (1 − λ∗)∂CU
∂χ

dχ∗

dλ
> 0 if and only if CU(χ∗) < −q∗ dCU

dq
, or, put dif-

ferently, if and only if −(dCU/dq)/(CU/q
∗) > 1. In this case, once more, contrary to the

standard monopoly solution, the monopoly mark-up is greater than unity and the monopolist

will produce in the inelastic part of the demand, |εQ∗,p| < 1.

6.4 Induced Welfare under Monopoly

Let WJ denote the welfare of the defenders, for any set price p:

WJ = −
∫ F−1

S (λ∗)

sj=0

sjδ(χ
∗, λ∗)fS(sj)dsj − (1− λ∗)p. (26)

6With a negative marginal cost of production and free disposal of any quantity produced, one would
optimally produce an infinite quantity and dispose of everything that has not been consumed. Note that, in
our model, free disposal does not hold because the cost-relevant quantity is not determined by production
decisions but by equilibrium consumer behavior.
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Proposition 5 Suppose Assumptions 1-4 hold. Then, for every p > 0, the defenders’ welfare

is strictly decreasing in the price. Formally, dWJ/dp < 0.

Define the social welfare under monopoly as the sum of the defenders’ welfare and the

monopolist’s profit, W = WJ + π. Since the revenues of providing protection and the

defenders’ expenses of purchasing protection cancel out when summing them up, social

welfare can simply be written as

W = −
∫ F−1

S (λ∗)

sj=0

sjδ(p)fS(sj)dsj − (1− λ∗)CU(χ∗)− CD(χ∗). (27)

Proposition 6 Under Assumptions 8 – 10, the price that maximizes welfare is strictly

smaller than any price pM that maximizes the monopoly profit.

Stronger than that, we can show that, for all prices for which the monopolist recovers

the service cost, welfare is decreasing in price.

Proposition 7 Suppose Assumption 2, in particular ∂
∂λ

[δ(χ, λ)] > 0, holds or Assumption

2, in particular ∂
∂χ

[δ(χ, λ)] < 0, and Assumption 4, in particular d
dλ

[β(λ)] < 0, hold or

Assumption 6 holds. Then for every p ≥ p, welfare is strictly decreasing in the price.

Proposition 8 Suppose Assumption 8 holds. Suppose that when all defenders are protected

and no attackers attack, the direct cost effect outweighs the indirect cost effect; that is, the

marginal cost is positive at (χ, λ) = (1, 0). Then, the welfare maximizing price of protection

is strictly greater than zero. Mathematically, the welfare maximizing price is strictly greater

than zero if:

CU(1) >

(
∂CU(1)

∂χ
+
∂CD(1)

∂χ

)
d

dλ
[χ∗(0)].

Remark 5 (Policy: Subsidizing the development cost in a competitive industry)

Suppose the government covers the development costs and gives the developed product for free

to a free-entry industry that provides the protection service. If this avoids duplication of devel-

opment costs, it may be welfare-enhancing. However, Proposition 7 implies that the resulting

equilibrium is still inefficient. Welfare can be improved by supplying more protection at a

lower price. This holds even if the service and development cost functions are not decreasing

in χ. It also holds if the exposure, δ, was only a function of the number of active attackers

and not – as we assumed – of the protected defenders, i.e., if there were no indirect attacks.

Remark 6 (Policy: Subsidizing the development cost in a monopoly) Suppose the

government covers the development costs and gives the developed product for free to a monopoly.
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Then, as long as the development cost depends on the measure of active attackers, welfare is

decreased compared to the situation in which the monopolist covers the development cost. In

the monopolist’s first order condition the derivative of the development cost enters negatively,

implying this result.

Remark 7 (Policy: Subsidizing the service cost in a monopoly) Suppose the govern-

ment grants a subsidy of z per unit of service in a monopoly. Then, the monopolist’s first

order condition changes to:

dπ

dp
= (1− λ∗)−

(
p
d

dp
[λ∗] +

(
(1− λ∗)∂CU

∂χ
+
∂CD
∂χ

)
d

dp
[χ∗]− (CU(χ∗)− z)

d

dp
[λ∗]

)
.

7 Oligopolistic Provision of Protection

7.1 Cournot Competition

Assume an oligopolistic market with K identical profit-maximizing firms that compete by

choosing quantities qk ≥ 0, for k ∈ {1, · · · , K}. Assume consumers perceive their protection

services as homogeneous.

Suppose that when a mass of 1−χ attackers are active, firm k’s cost function is Ck(χ, qk) =

qkCU(χ). The aggregate quantity isQ =
∑K

k=1 qk. Then, λ = 1−Q is the mass of unprotected

defenders, and χ = FX (β(1−Q)) is the mass of inactive attackers. The market price p is

determined in equilibrium by the following equation:

1−Q = FS

(
p

δ (FX (β(1−Q)) , 1−Q)

)
.

Then, the price is p = F−1
S (1 − Q)δ (FX (β(1−Q)) , 1−Q). The profit of each firm k is

πk = qkp− Ck(χ, qk) = qk(p− CU(χ)). Hence:

πk = qkF
−1
S (1−Q)δ (FX (β(1−Q)) , 1−Q)− qkCU (FX (β(1−Q))) . (28)

The marginal profit of firm k is:

dπk
dqk

= F−1
S δ + qkδ

d

dqk
[F−1
S ] + qkF

−1
S

d

dqk
[δ]− qk

d

dqk
[CU ]− CU .

Thus, firm k’s first order condition dπk/dqk = 0 is:

F−1
S δ + qkδ

d

dqk
[F−1
S ]− CU︸ ︷︷ ︸

traditional effects

+ qk

(
F−1
S

d

dqk
[δ]− d

dqk
[CU ]

)
︸ ︷︷ ︸

novel effects

= 0.
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Consider the network effect, qkF
−1
S dδ/dqk. This effect is negative, it attenuates each

firm’s output reaction to its competitors’ quantities. Now, consider the economies of use,

dCU/dqk. This effect is positive, it amplifies each firm’s output reaction to its competitors’

quantities.

Figure 2 illustrates the two effects’ impact on a firm’s best response to an output reduction

of their competitors in the Cournot model.

𝑞𝑞𝑘𝑘𝑞𝑞𝑘𝑘
∆𝑞𝑞𝑘𝑘 ∆𝑞𝑞𝑘𝑘

𝑃𝑃

𝑀𝑀𝑀𝑀 𝑃𝑃𝑃
𝑀𝑀𝑀𝑀𝑃

𝑃𝑃

𝑀𝑀𝑀𝑀

𝑃𝑃𝑃

𝑀𝑀𝑀𝑀𝑃
𝑀𝑀𝑀𝑀
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Figure 2: Response to an output increase of ∆Q. Right: When the network effect dominates
the economies of use, quantities are strategic substitutes. Left: When economies of use
dominate the network effect, quantities are strategic complements. P , MR and MC are
firm k’s inverse demand, marginal revenue and marginal cost before the rival’s quantity
increase by ∆Q. P ′, MR′ and MC ′ are firm k’s inverse demand, marginal revenue and
marginal cost after the rival’s quantity increase by ∆Q.

Simplification of the firms’ first order conditions leads to the following equilibrium con-

dition, which resembles the Lerner rule:

1

K

(
−1

εQ,p

)
=
p−

(
CU − qk d

dqk
[CU ]

)
p

. (29)

Using the elasticity decomposition in equation (22), it is easy to visualize the two novel

effects in the model.

Proposition 9 Suppose all firms in a Cournot oligopoly have the same cost function, Ck(χ, qk) =

qkCU(χ), where Q = Kqk and χ = FX (β(1−Q)). Then, at the Cournot equilibrium the
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following condition holds:

1

K

(
−1

εQ,δ
+
−1

εQ,F−1
S

)
=
p−

(
CU − qk d

dqk
[CU ]

)
p

.

The exposure elasticity, εQ,δ, captures the network effects in the demand. Everything else

equal, the stronger the network effects, the higher the markup over the traditional marginal

cost. The economies of use, qk
d
dqk

[CU ], has the opposite impact. The stronger the economies

of use, the lower is the markup over the traditional marginal cost.

Remark 8 (Alternative cost structures: development costs) We could consider al-

ternative cost structures. If, for example, the Cournot competitors were to incur a devel-

opment cost as considered in equation (4) in section 4, then their first order condition,

dπk/dqk = 0, would change to:

F−1
S δ + qkδ

d

dqk
[F−1
S ] + qkF

−1
S

d

dqk
[δ]− qk

d

dqk
[CU ]− CU −

d

dqk
[CD] = 0.

Assuming once more dCD/dχ < 0, the additional term, − d
dqk

[CD], is negative. Hence, holding

everything else fixed, this modification lowers individual firm output and equilibrium output

and increases equilibrium prices, all assuming CD is not prohibitively high so that firms

produce positive output.

Remark 9 (Alternative cost structures: service costs) So far, we have assumed that,

for a given share of inactive attackers, a firm’s total service cost is proportional to the share

of the mass of defenders it protects. Suppose, instead, that the cost function of each firm k

is:

Ck(qk, χ) = g(qk)CU(χ),

for some differentiable function g(qk) with dg/dqk > 0. So far, g(qk) = qk. With the more

general formulation, the Cournot competitors’ first order condition dπk/dqk = 0 would change

to:

F−1
S δ + qkδ

d

dqk
[F−1
S ] + qkF

−1
S

d

dqk
[δ]− g(qk)

d

dqk
[CU ]− CU

d

dqk
[g] = 0.

Assume, for example, g(qk) =
√
qk. Then g(qk) ≥ qk and dg/dqk ≥ 0. Alternatively, one

could assume g(qk) = q2
k. Then g(qk) ≤ qk and dg/dqk ≥ 0.

7.2 Bertrand Competition

Consider an oligopolistic market with K identical firms that choose prices pk ≥ 0, for k ∈
{1, . . . , K}. Suppose that consumers perceive their protection services as homogeneous.

Further, assume that each firm’s cost function only consists of service costs.

22



Assumption 11 Ck(χ, qk) = qkCU(χ), CU(0) < +∞, and CU(1) > 0.

The profit of each firm k is πk = qkpk − qkCU(χ), where:

qk =

{
0, if firm k does not have the lowest price;
1−λ∗(p)

m
, if k is one of m lowest price firms.

Further assume the following restrictions on β(λ) and δ(χ, λ).

Assumption 12 limλ→0 β(λ) = +∞, β(1) = 0, δ(0, 1) < +∞, and δ(1, 0) > 0.

Proposition 10 Suppose Assumptions 11 and 12 hold.

1. Then there exists an equilibrium price p such that p = CU(χ∗(p)).

2. Denote p = min {p| p = CU(χ∗(p))}. Then the equilibrium is unique if and only if
d
dp

[
CU
(
χ∗
(
p
))]

< 1, irrespective of how many members {p| p = CU(χ∗(p))} has.

Figure 3 illustrates the existence and uniqueness of the Bertrand equilibrium.
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Figure 3: Existence and uniqueness of the Bertrand equilibrium. Left: Equilibrium is unique
at p1 = p. p2 and p3 are not equilibria: firms would have an incentive to undercut to a price
p̃ < p2 as this gives strict positive profits. Right: Both p1 = p and p2 = p̂ are equilibria.

Define the elasticity of the service cost with respect to the mass of inactive attackers,

denoted εCU ,χ, and the elasticity of the price with respect to the mass of inactive attackers,

denoted εp,χ, as follows:

εCU ,χ =
d

dχ

[
CU
(
χ∗
(
p
))] χ∗(p)

CU(χ∗(p))
,

εp,χ =
1

d
dp

[
χ∗
(
p
)] χ∗(p)

p
.
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Corollary 3 A sufficient condition for the equilibrium to be unique is CU(χ)εCU ,χ > pεp,χ

for all χ.

There are multiple equilibria if d
dχ

[
CU
(
χ∗
(
p
))]

d
dp

[
χ∗
(
p
)]

= 1 and {p| p = CU(χ∗(p))}
has several members.

Corollary 4 In any equilibrium, CUεCU ,χ ≥ pεp,χ.

Proposition 7 implies that any Bertrand equilibrium in the present model is inefficient.

Indeed, our average cost is decreasing in the mass of protected defenders and, therefore, the

marginal cost is smaller than the average cost everywhere. This implies in particular that,

in any Bertrand equilibrium, the price is strictly larger than the marginal cost of protection.

Corollary 5 Suppose the assumptions from Proposition 7 hold. Then any Bertrand equilib-

rium in the Attack-and-Defense model is inefficient.

This has important policy implications. Suppose a social planner is able to raise non-

distrotive lump-sum taxes. Assume further, this social planner’s development cost is not

higher than that in the private sector. Suppose such a social planner supplies the Bertrand

oligopolists with the developed protection technology such that there is no duplication of the

development costs. Even in this case, Bertrand competition leads to an inefficient outcome.

A subsidy would solve the problem. Referring to equation 6 in section 5, we find the optimal

subsidy, denoted ζ, is given by:

ζ = CU(β(λo))− F−1
S (λo)δ(FX(β(λo)), λo),

where

λo = arg max
λ

{
−
∫ F−1

S (λ)

0

sδ(FX(β(λ)), λ)fs(sj)dsj − (1− λ)CU(FX(β(λ)))− CD(FX(β(λ)))

}
.

Because the average cost is decreasing everywhere, the optimal subsidy is strictly larger

than the difference between marginal cost and the price in any, including the lowest-price,

laissez-faire Bertrand equilibrium.

There could be alternative, neither better nor worse, ways of implementing the efficient

outcome. We refrain from characterising them. Furthermore, of course there are important

political economy aspects of the subsidy solution. These aspects are well beyond the scope

of the present paper and are left for further research.

24



Remark 10 (Alternative Cost Structures) When there are development costs or when

the service cost is not linear in qk, the existence of a Nash equilibrium becomes a more delicate

issue. In fact, the existence of a Nash equilibrium in the classical Bertrand competition model

is an active area of research. The results on this direction depend on assumptions on fixed

costs and on the sub-additivity of the cost function. For more details, see Saporitiy and

Coloma (2010) and the references therein.

8 Partial Protection

8.1 Partial Protection Setup

Consider a modified monopoly model that allows for partial protection. Suppose that the

monopolist can choose the level of protection 0 ≤ φ ≤ 1 that protected defenders obtain.

Full protection is obtained when φ = 1. In general, protection is effective with probability φ

only.

Assume that the utility of a defender j who buys protection is given by:

Vj(Protection) = −p− (1− φ)δ(χ, λ;φ)sj. (30)

As before, assume the utility of defender j who does not buy protection is:

Vj(No Protection) = −δ(χ, λ;φ)sj. (31)

Suppose that β(λ;φ) ≥ 0, ∂β
∂λ
< 0 and ∂β

∂φ
> 0. Let the utility of an active attacker be given

by:

Ui(Attack) = xi − β(λ;φ) (32)

The population game equilibrium is given by:

χ∗ = FX (β(λ∗;φ)) , and

λ∗ = FS

(
p

φδ(χ∗, λ∗;φ)

)
.

Under assumptions 1–3 together with the assumptions on β(λ;φ) made here, this equilibrium

can easily be shown to exist and to be unique. The equilibrium of the population game

implies

p = φδ(FX(β(λ∗;φ)), λ∗;φ)F−1
S (λ∗).

Next, suppose that the cost of protection depends both on the share of unprotected

defenders, λ, the share of inactive attackers, χ, and the level of protection, φ. Assume a

modified development and service technology leading to the following cost function

C(χ, λ, φ) = (1− λ)CU(χ, φ), (33)
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with ∂CU/∂χ < 0 and ∂CU/∂φ > 0.

Then, the monopolist’s profit maximization problem is given by:

max
λ,φ

{
(1− λ)

(
φδF−1

S (λ)− CU(χ, φ)
)}

. (34)

8.2 Solving the Model of Monopoly with Partial Protection

The monopolist’s first order conditions are given by:

∂π

∂λ
= (1− λ)φ

d

dλ

[
δF−1

S

]
− φδF−1

S − (1− λ)
∂CU
∂χ

dχ

dλ
+ CU = 0, (35)

∂π

∂φ
= δF−1

S + φ
d

dφ
[δF−1

S ]− ∂CU
∂χ

fX
∂β

∂φ
− ∂CU

∂φ
= 0. (36)

Equation (35) can be rewritten as:

1

φ

(
CU − (1− λ)

∂CU
∂χ

dχ

dλ

)
= δF−1

S − (1− λ)
d

dλ
[δF−1

S ]. (37)

The first order condition with respect to λ leads to the same Lerner rule we obtained earlier:

− 1

εQ,p
=
p−

(
CU − (1− λ)∂CU

∂χ
dχ
dλ

)
p

.

Equation (36) implies likely imperfect protection if the cost impact of improving protec-

tion efficacy is large. It implies likely perfect protection if the payoff from attacking reacts

strongly with the efficacy of protection.

Define the elasticity of the demand with respect to the level of protection, denoted εQ,φ,

by:

εQ,φ =
dQ

dφ

φ

Q
. (38)

Then, equation (36) can be rewritten as:

δF−1
S + φ

d

dφ
[δF−1

S ] =
∂CU
∂χ

fX
∂β

∂φ
+
∂CU
∂φ

.

Some algebra leads to:

dp

dφ

φ

p
=
φdCU

dφ

p
.

Multiplying top and bottom of the leaf-hand side by Q and using the chain rule dp/dφ =

(dp/dQ)(dQ/dφ) leads to:

dp

dQ

Q

p

dQ

dφ

φ

Q
=

φdCU
dφ

p

εQ,φ
εQ,p

=
φdCU

dφ

p
.
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The optimal efficacy of protection is characterized by an equality of the ratio of the

efficacy elasticity of demand over the price elasticity of demand and the ratio of the “efficacy

expenditure” for a given user over the revenue from each user. This condition resembles

Dorfman and Steiner’s (1954) condition for optimal advertising expenditures.

How does the optimal λ depend on the dependence of the willingness to pay and the cost

on the efficacy of protection? Take the derivative of equation (35) with respect to φ. This

is positive if

willingness to pay impact of efficacy increase︷ ︸︸ ︷
φ2

(
(1− λ)

d2

dλdφ
[δF−1

S ]− d

dφ
[δF−1

S ]

)
−


economies of use︷ ︸︸ ︷

(1− λ)
∂CU
∂χ

dχ

dλ
+CU

 >

φ

(
(1− λ)

∂2CU
∂χ∂φ

dχ

dλ
− ∂

∂φ
CU

)
︸ ︷︷ ︸

cost impact of efficacy increase

Take the realistic case of a positive cross-partial derivative of CU . Then the monopolist’s

marginal profit with respect to the quantity increases in the efficacy of protection, φ, as long

as the economies of use are not larger than the cost impact of improving protection efficacy.

In this case, the monopolist’s quantity choice depends positively on φ. If the economies of

use are larger than the cost impact of improving the efficacy of protection, its quantity choice

depends negatively on φ.

9 Networked Defenders under Attack

This section specializes on the main model of attack and defense by incorporating elements

of a network of defenders that may be attacked both directly and indirectly. Indirect attacks

to a defender may come from one of her connections that was successfully attacked.

9.1 Setup

Assume that each target is randomly connected to a share κ of other defenders and that this

is independent of the protection decisions, with 0 ≤ κ ≤ 1.

9.1.1 Attackers

The attacker obtains payoff normalized to −1 for each direct attack that fails, and −(1− ξ),
for each indirect attack that fails, where 0 ≤ ξ ≤ 1 is a measure of the relative safety

of indirect attacks compared to the safety of direct attacks. An attacker may also suffer
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from failed indirect attacks, but maybe not as much as she suffers from a failure in a direct

attack. If ξ = 1, indirect attacks do not cause any extra loss to the attacker; that is, indirect

attacks are totally safe. The only risk for an attacker comes from defense in the primary

computers that are attacked. Indirect attacks hurt only the secondary computer, not the

original attacker.

The other extreme case is ξ = 0. Each failure in a secondary attack causes as much loss

to the attacker as a failure in a direct attack. Indirect attacks are as unsafe as direct ones.

If an attacker decides not to attack, her payoff is zero for sure. Denote the mass of

defenders not taking protection be λ, with 0 ≤ λ ≤ 1. Then for every λ an attacker’s utility

if she does not attack is given by:

Ui(no attack | λ) = 0.

A primary attack triggers a stochastic number of secondary/indirect attacks. If player

i ∈ I decides to attack her utility is:

Ui(attack | λ) = −(1− λ) + λQi, (39)

where:

Qi = xi + κ(λQi − (1− λ)(1− ξ)),

Variable Qi represents the payoff of attacker i after a successful first attack, net of fixed

cost. He gets xi and goes on to make another attack, an indirect one. This new attack finds a

target with probability κ. With probability 1−κ, no new target is found and attacker i gets

only Qi = xi. The second attack leads to the payoff λQi− (1−λ)(1− ξ): with probability λ

it is a success, leading to a return to Qi; and, with probability 1− λ, this secondary attack

fails and the attacker loses (1− ξ). Isolating Qi leads to:

Qi =
xi − κ(1− λ)(1− ξ)

1− λκ
.

Plugging this back into equation (39), the payoff of attacking becomes:

Ui(attack | λ) = −(1− λ) + λ
xi − κ(1− λ)(1− ξ)

1− λκ

=
λxi − (1− λ)(1− κλξ)

1− λκ
.

If indirect attacks are completely safe, ξ = 1, then:

Ui(attack | λ) =
λxi − (1− λ)(1− λκ)

1− λκ
. (40)

If indirect attacks are as unsafe as direct ones, ξ = 0, then the payoff of attacking

becomes:

Ui(attack | λ) =
λxi − (1− λ)

1− λκ
.
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9.1.2 Incentives for Attackers

An attacker i ∈ I prefers to attack if Ui(attack | λ) > Ui(no attack | λ), that is, if:

λxi − (1− λ)(1− λκξ)
1− λκ

> 0.

Solving this inequality for xi results in:

xi > (1− λ)

(
1

λ
− κξ

)
:= β(λ). (41)

Let χ be the mass of attackers choosing not to attack, with 0 ≤ χ ≤ 1. This mass of

attackers that prefer not to attack is given by:

χ = FX

(
(1− λ)

(
1

λ
− κξ

))
.

If κ = 0, there are no indirect attacks because defenders are not connected. In this case,

Qi = xi and inequality (41) becomes simply xi > (1− λ)/λ.

9.1.3 Defenders

The mass of attackers that play attack is 1− χ. Fix an exogenous price of protection p > 0.

Defender j obtains payoff −p if she has paid for protection. It does not matter how large

the population of attackers is or if protected defender j is attacked many times, once, or not

at all; if she paid for protection, her payoff is always −p. For every χ:

Vj(protection | χ) = −p.

Defender j obtains payoff −sj < 0 if she is attacked one or more times and does not have

protection. Let FS denote the continuous distribution of costs for unprotected, attacked

defenders. Assume that the probability of being attacked directly is 1 − χ. The payoff of

the unprotected defender j depends on being attacked (directly or indirectly). So:

Vj(no protection | χ) = (1− χ) (−sj) + χYj, (42)

where:

Yj = κλ(1− χ)(−sj) + κλχYj.

Solving this equation for Yj results in:

Yj =
κλ(1− χ)(−sj)

1− κλχ
.
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Variable Yj represents the payoff of an unprotected defender j if she is not directly

attacked. If κλ > 0, she may be indirectly attacked. Hence, Yj = 0 if κλ = 0, but Yj < 0 if

κλ > 0.

Plugging this back into equation (42) and simplifying leads to:

Vj(no protection | χ) =
(1− χ)(−sj)

1− κλχ
. (43)

9.1.4 Incentives for Defenders

Defender j prefers to pay for protection if Vj(protection | χ) > Vj(no protection | χ), that is,

−p > −sjδ, where:

δ =
1− χ

1− κλχ
.

Equivalently, sj > p/δ, or:

sj >
p(1− κλχ)

1− χ
=

p

δ(χ, λ)
. (44)

Defenders j such that sj ≤ p/δ prefer to take a chance and do not pay for protection. The

mass of unprotected defenders is λ = FS(p/δ):

λ = FS

(
p(1− κλχ)

1− χ

)
.

For κ = 0, this model approaches the one without externalities from getting protection.

In this case, condition (44) becomes sj > p/(1− χ).

9.2 Existence and Uniqueness of Equilibrium

To show existence and uniqueness of an equilibrium in the population subgame, notice that

in the specialized model Assumptions 2 and 4 hold. Both functions β(λ) and δ(χ, λ) are

smooth. Also, β(λ) ≥ 0, 0 < δ(χ, λ) < +∞, dβ/dλ < 0, ∂δ/∂δχ < 0, ∂δ/∂λ > 0, and:

β(λ) = (1− λ)
(

1
λ
− κξ

)
≥ 0, d

dλ
[β] = −1−λκξ

λ2
;

δ(χ, λ) = 1−χ
1−κλχ ,

∂δ
∂χ

= − 1+κλ
(1−κλχ)2

; ∂δ
∂λ

= (1−χ)κχ
(1−κλχ)2

.

Furthermore, for a monopolist setting a positive uniform price also assumption 3 holds.

Hence, the following corollary follows from Proposition 1.

Corollary 6 Under assumption 1, there exists a unique Nash equilibrium in the population

subgame. This equilibrium is such that, for any finite price p, 0 < λ∗ < 1 and 0 ≤ χ∗ ≤ 1.
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The equilibrium values are given by

λ∗ = FS

(
p(1− κλ∗χ∗)

1− χ∗

)
,

χ∗ = FX

(
(1− λ∗)

(
1

λ∗
− κξ

))
.

9.3 Comparative Statics

The next result explains how the equilibrium changes with the parameters of the model.

Proposition 11 Suppose that FS(P ) < 1 and 0 < FX(0) < 1. Then:

1. As the price of protection, p, increases, the equilibrium share of attackers that do

not attack, χ∗, decreases and the equilibrium share of defenders that do not pay for

protection, λ∗, increases:

dχ∗

dp
≤ 0,

dλ∗

dp
≥ 0.

2. As the probability of contagion, κ, increases, the equilibrium share of attackers that do

not attack, χ∗, decreases and the equilibrium share of defenders that do not pay for

protection, λ∗, decreases:

dχ∗

dκ
≤ 0,

dλ∗

dκ
≤ 0.

3. As the safety of indirect attacks, ξ increases, the equilibrium share of attackers that

do not attack, χ∗, increases and the equilibrium share of defenders that do not pay for

protection, λ∗, decreases:

dχ∗

dξ
≥ 0,

dλ∗

dξ
≤ 0.

Higher safety of indirect attacks induces (weakly) more attacks and (weakly) less protec-

tion. More expensive protection leads to (weakly) more attacks and (weakly) fewer protec-

tion. A higher probability of contagion leads to (weakly) more attacks and (weakly) more

protection.
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9.4 Simulation

This subsection develops some simulations for the monopoly solution in the model of net-

worked defenders under attack. Assume the cost of protection is:

CU(χ) =
a

χ+ b
. (45)

In particular, CU(0) = a/b and CU(1) = a/(1 + b). This cost function satisfies the following

assumptions: CU(0) < +∞, CU(1) > 0, and dCU/dχ < 0.

Consider three families of continuous, atomless distribution functions of gains and losses

from a successful attack, FX and FS. Each of the distributions has support on R+ with

FX(0) = FS(0) = 1 and FX(+∞) = FS(+∞) = 1. Each of the distributions has a finite

expected value. Finally, each of the distributions assigns lower probability to high than it

assigns to low payoffs and losses from successful attacks. The three families of distribution

functions are:

1. Lomax distributions7 with CDFs FS(s) = 1− ρ2S
(s+ρS)2

and FX(x) = 1− ρ2X
(x+ρX)2

,

2. Half-Normal distributions with variance parameters σS and σX , folded at 0, with CDFs

FX(x) = Erf
(

x√
2σX

)
and FS(s) = Erf

(
s√
2σS

)
, and

3. exponential distributions with parameters θS and θX , with CDFs FS(s) = 1 − e−
1
θS
s

and FX(x) = 1− e−
1
θX

x
.

In Table 1 we compile the probability distribution functions, the cumulative distribution

functions and the expectations for the three distributions we are using in this subsection.

Table 1: Distribution functions used in the simulation
Distribution pdf cdf E(·)

Lomax
fX(x) =

2ρ2X
(x+ρX)3

fS(s) =
2ρ2S

(s+ρS)3

FX(x) = 1− ρ2X
(x+ρX)2

FS(s) = 1− ρ2S
(s+ρS)2

E(x) = ρX
E(s) = ρS

Half-Normal
fX(x) = 2√

2πσX
e
− x2

2σ2
X

fS(s) = 2√
2πσS

e
− s2

2σ2
S

FX(x) = Erf
(

x√
2σX

)
FS(s) = Erf

(
s√
2σS

) E(x) =
√

2
π
σX

E(s) =
√

2
π
σS

Exponential
fX(x) = 1

θX
e
− 1
θX

x

fS(s) = 1
θS
e
− 1
θS
s

FX(x) = 1− e−
1
θX

x

FS(s) = 1− e−
1
θS
s

E(x) = θX
E(s) = θS

7The Lomax Distribution we use is one with a “shape” parameter equal to 2. It is also known as the Pareto
Type II Distribution. The Lomax Distribution is related to the Beta Prime Distribution with parameters
α = 1 and β = 2, modulo a change of variables of the sort of x = ky, for some constant k > 0.
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Figures 14-16 in the Appendix show how demand depends on the attackers’ and defenders’

distribution parameters. Given any price p, for the Lomax distributions, demand increases

in ρS and ρX , for the Half-Normal distributions, demand increases in σS and σX , and for the

exponential distributions, demand increases in θS and θX .

Figures 4, 6, and 8 present demand, cost, profit and welfare for the Lomax distributions

with ρS = 1 and ρX = 0.5, the Half-Normal distributions with σS = 1 and σX = 0.5, and the

exponential distributions with θS = 2 and θX = 1, all assuming κ = 0.5, ξ = 0.5, a = 0.1, b =

0.1. Note that our model assumes that the cost to the attackers from an unsuccessful direct

attack is normalized to 1.

The assumption on the distribution parameters is that the expected losses are larger than

the expected gains from successful attacks. Indeed, it turns out that the industry is only

viable if neither the expected losses nor the expected gains from attacks are not too low.

Figures 5, 7 and 9 display welfare and monopoly profit as functions of the share of

protected defenders. Both welfare and profit have an internal maximum for our parameter

constellation. Notice that the graphs visualize three solutions: The welfare maximum, the

break-even point which represents the Bertrand equilibrium, and the monopoly solution. As

expected, the share of protected defenders is largest in the welfare maximum, it is smaller

in the Bertrand solution and smallest in the monopoly solution.

Figures 5, 7 and 9 illustrate that, for all three families of distributions, the welfare loss

in the monopoly solution is sizeable, irrespective of whether the reference is the Bertrand

solution or social optimum. They also illustrate that the Bertrand solution implies a welfare

loss.

Figures 10 and 11 illustrate how the profit-maximizing share of protected defenders de-

pends on the distributional parameters. The distribution of the defenders’ losses enters only

the monopolist’s revenue, whereas that of the attackers’ gains enters both the monopolist’s

revenue and its cost.

Figure 11 also illustrates how for the Half-Normal and exponential distributions, there

may be multiple monopoly solutions. Assuming the expected gains are much higher than the

expected losses from successful attacks and the Half-Normal distribution, Figures 12 and 13

similarly highlight that there may be several break-even points and several local (and even

global) monopoly profit maxima.

10 Conclusion

This analysis provides two novel effects. First, there is a demand-side network effect.

This effect has a direct and an indirect channel. Suppose the proportion of protected defend-
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ers increases. Then the defenders’ exposure decreases directly as contagion of perpetrated

attacks is reduced. Furthermore this increase in the proportion of protected defenders cre-

ates a more adverse environment for attackers, discouraging some of them from attacking,

hence also decreasing the defenders’ exposure to an attack. Second, there is a supply-side

effect. If fewer attackers attack, there are fewer modes of attack and the cost of individual

protection decreases. We call these cost-reducing effects economies of use.

[To be completed ]

Appendix

Proof of Proposition 1

Existence of equilibrium. Consider the functions g+ : [0, 1]→ [0, 1] and g− : [0, 1]→ [0, 1],

defined at every λ ∈ [0, 1], by:

g+(λ) = λ, (46)

and

g−(λ) = FS

(
P (FX (β(λ)) , λ)

δ (FX(β(λ)) , λ)

)
. (47)

Suppose g−(0) = 0. Then g−(0) = 0 = g+(0). In this case, (χ∗, λ∗) = (FX(β(0)), 0) is an

equilibrium. Next suppose g−(1) = 1. The, g−(1) = 1 = g+(1). In this case, (χ∗, λ∗) =

(FX(β(1)), 1) is an equilibrium. Finally, suppose g−(0) > 0 and g−(1) < 1. Consider the

function g−(λ) − g+(λ). This function is continuous, strictly positive at λ = 0, strictly

negative at λ = 1. By the intermediate value theorem, there exists a λ∗ ∈]0, 1[ such that

g−(λ∗) = g+(λ∗). In this case, (χ∗, λ∗) = (FX(β(λ∗)), λ∗) is an equilibrium.

Uniqueness of equilibrium. Let g(λ) = g−(λ) − g+(λ). If this function g is strictly

decreasing, the equilibrium has to be unique. This always holds if dg−/dλ < dg+/dλ, for all

0 < λ < 1. Once more, to economize on notation, let χ = FX(β(λ)), for every 0 ≤ λ ≤ 1.

The derivative of g−, at each point λ, is:

d

dλ
[g−] =

fS

(
P (χ,λ)
δ(χ,λ)

)
δ2 (χ, λ)

{
δ(χ, λ)

∂P

∂χ

dχ

dλ
(λ) + δ(χ, λ)

∂P

∂χ
− P (χ, λ)

∂δ

∂χ

dχ

dλ
(λ)− P (χ, λ)

∂δ

∂λ

}
.

Hence, dropping all arguments, the following inequalities are all equivalent:

d

dλ
[g−] <

d

dλ
[g+],

fS
(
P
δ

)
δ2

(
δ
∂P

∂χ

dχ

dλ
+ δ

∂P

∂χ
− P ∂δ

∂χ

dχ

dλ
− P ∂δ

∂λ

)
< 1,

δ

(
∂P

∂χ

∂χ

∂λ
+
∂P

∂λ

)
< P

(
∂δ

∂χ

∂χ

∂λ
+
∂δ

∂λ

)
+
δ2

fS
.

34



Multiplying both sides by λ and dividing by δP :

∂P

∂λ

λ

P
+
χ

P

∂P

∂χ

dχ

dλ

λ

χ
<
∂δ

∂λ

λ

δ
+
χ

δ

∂δ

∂χ

dχ

dλ

λ

χ
+

δλ

PfS
.

Using the definitions of the elasticities and ε leads to:

εP,λ + εP,χεχ,λ < εδ,λ + εδ,χεχ,λ + ε.

As ε ≥ 0, a sufficient condition for uniqueness is εP,λ + εP,χεχ,λ < εδ,λ + εδ,χεχ,λ. This

completes the proof. �

Proof of Corollary 1

Part 1: suppose FŜ(s) < FS(s), for all s > 0, and X is unchanged. Define the functions

g+ : [0, 1] → [0, 1] and g− : [0, 1] → [0, 1] as in the proof of Proposition 1. Define function

ĝ− : [0, 1] → [0, 1] similarly as g− : [0, 1] → [0, 1], just changing the cumulative distribution

S by Ŝ. Then, for all 0 < λ < 1:

ĝ−(λ) = FŜ

(
P (FX (β(λ)) , λ)

δ (FX(β(λ)) , λ)

)
< FS

(
P (FX (β(λ)) , λ)

δ (FX(β(λ)) , λ)

)
= g−(λ).

The unique point of the domain where functions ĝ− : [0, 1] → [0, 1] and g+ : [0, 1] → [0, 1]

intersect each other is λ = λ̂. As ĝ−(λ∗) < g−(λ∗), then ĝ−(λ∗)−g+(λ∗) < g−(λ∗)−g+(λ∗) =

0. As, by assumption, the function ĝ−(λ)− g+(λ) is decreasing and ĝ−(λ̂)− g+(λ̂) = 0, then

λ̂ < λ∗.

Define χ̂ = FX

(
β(λ̂)

)
. As λ̂ < λ∗, function β is decreasing and FX is increasing, then

χ̂ = FX

(
β(λ̂)

)
> FX (β(λ∗)) = χ∗.

Part 2: suppose F ̂̂
X

(x) < FX(x), for all x > 0, and S is unchanged. Define the functions

g+ : [0, 1] → [0, 1] and g− : [0, 1] → [0, 1] as in the proof of Proposition 1. Define function̂̂g− : [0, 1] → [0, 1] similarly as g− : [0, 1] → [0, 1], just changing the cumulative distribution

X by
̂̂
X. Then, for all 0 < λ < 1:

̂̂g−(λ) = FS

P
(
F ̂̂
X

(β(λ)) , λ
)

δ
(
F ̂̂
X

(β(λ)) , λ
)
 < FS

(
P (FX (β(λ)) , λ)

δ (FX(β(λ)) , λ)

)
= g−(λ).

The unique point of the domain where functions ̂̂g− : [0, 1] → [0, 1] and g+ : [0, 1] → [0, 1]

intersect each other is λ =
̂̂
λ. As ̂̂g−(λ∗) < g−(λ∗), then ̂̂g−(λ∗)−g+(λ∗) < g−(λ∗)−g+(λ∗) =

0. As, by assumption, the function ̂̂g−(λ)− g+(λ) is decreasing and ̂̂g−(
̂̂
λ)− g+(

̂̂
λ) = 0, then̂̂

λ < λ∗.

To be completed
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Proof of Lemma 1

Equation (8) defines λ∗ as an implicit function of p. Using the implicit function theorem,

taking the implicit derivative with respect to p in both sides of equation (8) and isolating

dλ∗/dp leads to equation (9), where the derivatives ∂δ/∂χ and ∂δ/∂λ are calculated at

(χ∗, λ∗) = (FX(β(λ∗)) , λ∗), and the derivative dβ/dλ is calculated at λ∗. This completes the

first part of the proof.

For the second part, note that, by equation (7), using the chain rule:

d

dλ
[χ∗] = fX(β(λ∗))

d

dλ
[β] . (48)

Using equation (9) and (48), we find the share χ∗ of non-attacking attackers reacts to changes

in the price p of protection as given in equation (10). This completes the proof. �

Proof of Lemma 2

Both the numerator and the denominator of the right-hand side of equation (9) are always

positive. This completes the proof of the first part. By the chain rule:

dχ∗

dp
=
dχ∗

dλ

dλ∗

dp
. (49)

Substitute dχ∗

dλ
by the right-hand side of equation (48) to get

dχ∗

dp
= fX (β(λ∗))

d

dλ
[β]

dλ∗

dp
.

By the first part of this proof, Assumption 4 and fX > 0, this expression is negative. This

completes the proof. �

Proof of Proposition 2

To be written up

Proof of Lemma 3

Because CD
1−λ∗ > 0 and −

(
(1− λ∗)dCU

dχ
+ dCD

dχ

)
d
dλ

[χ∗] < 0, then:

AC = CU +
CD

1− λ∗
> CU > CU −

(
(1− λ∗)dCU

dχ
+
dCD
dχ

)
d

dλ
[χ∗] = MC.

This proves that the inequalities in (14) must hold. This completes the proof. �

Proof of Lemma 4
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Taking the derivative of the average cost with respect to the price leads to:

dAC

dp
=

d

dp

[
CU +

CD
1− λ∗

]
=

dλ∗/dp

1− λ∗

(
CD

1− λ∗
+

(
(1− λ∗) d

dχ
(CU ] +

d

dχ
[CD]

)
dχ∗

dλ

)
=

dλ∗/dp

1− λ∗

(
CD

1− λ∗
+ CU −MC

)
=

dλ∗/dp

1− λ∗
(AC −MC)

=
−εQ∗,p

p
(AC −MC).

As −εQ∗,p > 0, p > 0 and, by the previous lemma, AC −MC > 0. Hence, dAC
dp

> 0. This

completes the proof. �

Proof of Corollary 2

As dAC/dp > 0 and dλ∗/dp > 0, then:

dAC

d(1− λ)
= −dAC

dλ
= −dAC

dλ
=
−dAC/dp
dλ∗/dp

< 0.

This completes the argument. �

Proof of Proposition 3

Consider the first derivative of the monopoly profit:

dπ

dp
= (1− λ∗)−

(
p
d

dp
[λ∗] +

(
(1− λ∗)∂CU

∂χ
+
∂CD
∂χ

)
d

dp
[χ∗]− CU(χ∗)

d

dp
[λ∗]

)
.

Taking the limit of the marginal profit as p→ +∞ results in:

lim
p→+∞

dπ

dp
= lim

p→+∞

(
(1− λ∗)−

(
p
d

dp
[λ∗] +

(
(1− λ∗)∂CU

∂χ
+
∂CD
∂χ

)
d

dp
[χ∗]− CU(χ∗)

d

dp
[λ∗]

))
.

The monopolist charges a finite price if limp→+∞
dπ
dp
< 0. This condition holds if

lim
p→+∞

1− λ∗
d
dp

[λ∗]
< lim

p→+∞

(
p− CU +

(
(1− λ∗)∂CU

∂χ
+
∂CD
∂χ

)
∂χ

∂λ

)
. (50)

Consider the left-hand side of of inequality (50). Using equation (9):

lim
p→+∞

1− λ∗
d
dp

[λ∗]
= lim

p→+∞

1− FS
(
p
δ

)
fS
(
p
δ

) (
δ +

p

δ
fS

(p
δ

)(
δχ
∂χ∗

∂λ
+ δλ

))
.
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The exposure, δ, approaches 1 as p → +∞. Under Assumption 10,
∫ +∞

0
pfS(p)dp < +∞

and therefore limp→+∞ pfS (p) = 0. Because under Assumption 10, for all p ≥ p, fS is weakly

decreasing, pfS(p) ≤ pfS (p/δ) and limp→+∞(p/δ)fS (p/δ) = 0. Using Assumption 8,

lim
p→+∞

1− λ∗
d
dp

[λ∗]
= lim

p→+∞

1− FS (p/δ)

fS(p/δ)
. (51)

Now, consider the right-hand-side of inequality (50). Because

∂χ∗

∂λ
= fX (β)

d

dλ
[β] < 0 and (1− λ∗)∂CU

∂χ
+
∂CD
∂χ
≤ 0,

then:

lim
p→+∞

(p− CU) ≤ lim
p→+∞

(
p− CU +

(
(1− λ∗)∂CU

∂χ
+
∂CD
∂χ

)
∂χ

∂λ

)
.

In order to establish inequality (50), it suffices to prove that:

lim
p→+∞

1− λ∗
d
dp

[λ∗]
< lim

p→+∞
(p− CU) .

Given equation (51), this last inequality is equivalent to:

lim
p→+∞

1− FS
(
p
δ

)
fS
(
p
δ

) < lim
p→+∞

(p− CU) .

This last inequality is equivalent to Assumption 9, limp→+∞(p − CU) fS(p/δ)
1−FS(p/δ)

> 1. Hence,

inequality (50) holds, and the monopoly price is finite. This completes the proof. �

Proof of Proposition 4

This result summarizes Lemma 4 and Equation (21). This completes the proof. �

Proof of Proposition 5

The defenders’ welfare is given by equation (26). Hence, the derivative of WJ , with

respect to the price is

dWJ

dp
= −1 + p

d

dp
[λ∗] + λ∗ − δF−1

S (λ∗)
d

dp
[λ∗]− δp

∫ F−1
S (λ∗)

0

sjfS(sj)dsj.

Using Leibnitz’ rule and the fact that, in equilibrium, F−1
S (λ∗) = p/δ(χ∗), the derivative of

WJ , with respect to the price simplifies to:

dWJ

dp
= −(1− λ∗)− δp

∫ F−1
S (λ∗)

0

sjfS(sj)dsj, (52)

which is strictly negative. This completes the proof. �
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Proof of Proposition 6

Under assumptions 8 – 10, there is a finite monopoly price p = pM , at which dπ/dp = 0.

At this price, d
dp
W
∣∣∣
p=pM

= d
dp
WJ

∣∣∣
p=pM

. Hence, Proposition 5 implies the result. This

completes the proof. �

Proof of Proposition 7

Use equation (27) to find the derivative of W with respect to the price:

d

dp
[W ] =

=−p d
dp

[λ∗]︷ ︸︸ ︷
−δF−1

S (λ∗)
d

dp
[λ∗]−δp

∫ F−1
S (λ∗)

sj=0

sjfS(sj)dsj + CU
d

dp
[λ∗]− (1− λ∗)dCU

dp
− dCD

dp

= −δp
∫ F−1

S (λ∗)

sj=0

sjfS(sj)dsj − (p− CU)
d

dp
[λ∗]− (1− λ∗)dCU

dp
− dCD

dp
.

Hence, for all p ≥ p, d
dp

[W ] < 0. This completes the proof. �

Proof of Proposition 8

The first derivative of the welfare function with respect to the price is:

d

dp
[W ] = −δp

∫ F−1
S (λ∗)

0

sjfS(sj)dsj − (p− CU)
d

dp
[λ∗]− (1− λ∗)∂CU

∂p
− ∂CD

∂p
.

Take the limit with p→ 0. Then the first term goes to zero (using Assumption 8) and

lim
p→0

d

dp
[W ] = lim

p→0

{(
CU(χ∗)− (1− λ∗)∂CU

∂χ

d

dλ
[χ∗]− ∂CD

∂χ

d

dλ
[χ∗]

)
d

dp
[λ∗]

}
.

Under Assumption 8, limp→0
d
dp

[λ∗] > 0. Therefore, and using that, for p → 0, λ∗ → 0 and

χ∗ → 1, this expression is positive if

CU(1) >

(
∂CU(1)

∂χ
+
∂CD(1)

∂χ

)
d

dλ
[χ∗(0)].

This completes the proof. �

Proof of Proposition 9

To be written up

Proof of Proposition 10

(1) Existence Using equations 8 and 7, we rewrite p = CU(χ∗(p)) as:

F−1
S

(
β−1

(
F−1
X (χ∗(p))

))
δ
(
χ∗(p), β−1

(
F−1
X (χ∗(p))

))
= CU(χ∗(p)).
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Because Lemma 2 establishes that χ∗(p) is strictly increasing in p, to show there exists a p

such that p = CU(χ∗(p)), it suffices to show that there exists a χ such that

CU(χ) = F−1
S

(
β−1

(
F−1
X (χ)

))
δ
(
χ, β−1

(
F−1
X (χ)

))
. (53)

Consider χ = 0. We have F−1
X (0) = 0, β−1(0)→ +∞, F−1

S (+∞)→ +∞ and CU(0) < +∞.

Because δ(0, λ) > 0, then CU(0) < F−1
S

(
β−1

(
F−1
X (0)

))
δ
(
0, β−1

(
F−1
X (0)

))
. Next, consider

χ = 1. We have F−1
X (1) → +∞, β−1(+∞) = 0, F−1

S (0) = 0 and CU(1) > 0. Because

δ(1, λ) < +∞, then CU(1) > F−1
S

(
β−1

(
F−1
X (1)

))
δ
(
1, β−1

(
F−1
X (1)

))
. Both sides of this

equation are smooth functions in χ. Hence, the intermediate value theorem implies that

there exists a χ such that equation (53) holds. At the smallest price for which p = CU(χ∗(p)),

no firm has a unilateral incentive to deviate: undercutting would attract the whole demand

but at a loss for every unit; pricing higher would yield a revenue of zero.

(2) Uniqueness Let dCU
dp

[CU(χ∗(p))] < 1. Then, for any p̃ > p such that p̃ = CU(χ∗(p̃)),

there exists a price p < p < p̃ which would attract the entire demand and yields a strictly

positive profit. Let p be the unique equilibrium price. Suppose to the contrary that
dCU
dp

[CU(χ∗(p))] ≥ 1. As CU(χ∗(0)) > 0, we must have dCU
dp

[CU(χ∗(p))] = 1. Further-

more, because limp→+∞CU(χ∗(p)) < +∞, there must be at least one more p > p such that

p = CU(χ∗(p)). Denote p̂ = min
{
p > p

∣∣ p = CU(χ∗(p))
}

. Then there is no price p < p̂ which

yields a strictly positive profit and, hence, p̂ is an equilibrium, contradicting uniqueness. This

completes the proof. �

Proof of Corollary 3

Because CU(χ)εCU ,χ > pεp,χ holds for all χ, then d
dχ

[
CU
(
χ∗
(
p
))]

d
dp

[
χ∗
(
p
)]
< 1. Hence,

uniqueness holds. This completes the proof. �

Proof of Corollary 4

To be written up

Proof of Corollary 5

To be written up

Proof of Corollary 6

This result follows from Proposition 1. This completes the proof. �

Proof of Proposition 11
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Part (i). to be adjusted/checked/rewritten completely – For each p > 0, define

the function x 7→ g−(λ; p), as before, by equation (47). Because FX is weakly increasing

and because fS(·)(1 − κχ)/(1 − χ)(κξ − 1/(FS(·))2) < 0 and hence, κξFS(p(1 − κχ)/(1 −
χ)) − [1 + κξ] + 1/FS(p(1 − κχ)/(1 − χ)) is decreasing in p, we have that C > C ′ implies

g−(χ;C) ≤ g−(χ;C ′). Function g+ does not depend on parameter C and, hence, an increase

in C weakly decreases the equilibrium value for χ∗. Because FX is weakly increasing, by

equation (1), a weak decrease in χ∗ generates a weak decrease in κλ∗ − [1 + κ] + 1/λ∗.

Therefore, because κ− 1/(λ∗)2 < 0, λ∗ must be weakly increasing.

Part (ii). For each κ > 0, define the function x 7→ g−(χ;κ), as before, by equation (47).

As FX is weakly increasing and because ξFS(·)−ξ−κξfS(·)Cχ/(1−χ)−1/(FS(·))2fS(·)Cχ/(1−
χ) < 0 and therefore, κξFS(C(1 − κχ)/(1 − χ)) − [1 + κξ] + 1/FS(C(1 − κχ)/(1 − χ)) is

decreasing in κ, we have that κ > κ′ implies g−(χ;κ) ≤ g−(χ;κ′). Function g+ does not

depend on parameter κ and, hence, an increase in κ weakly decreases the equilibrium value

for χ∗. By equation (2), the equilibrium value for λ∗ weakly decreases. This completes the

proof. �

A Figures
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Figure 4: Willingness to pay, cost, profit and welfare for the Lomax distributions as functions
of the share of protected defenders, 1 − λ. (Assumptions: κ = 0.5, ξ = 0.5, a = 0.1, b =
0.1, E[s] = 1, E[x] = 0.5. The cost of a failed direct attack has been normalised to 1.)

0.2 0.4 0.6 0.8 1.0
1 - λ

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

W, πM

Figure 5: Profit and welfare for the Lomax distributions as functions of the share of protected
defenders, 1−λ. The welfare maximizing share of unprotected defenders is smaller than the
break-even share and the monopoly profit-maximizing share. (Assumptions: κ = 0.5, ξ =
0.5, a = 0.1, b = 0.1, E[s] = 1, E[x] = 0.5. The cost of a failed direct attack has been
normalised to 1.)
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Figure 6: Willingness to pay, cost, profit and welfare for the Half-Normal distributions as
functions of the share of protected defenders, 1 − λ. (Assumptions: κ = 0.5, ξ = 0.5, a =
0.1, b = 0.1, E[s] = 1, E[x] = 0.5. The cost of a failed direct attack has been normalised to
1.)
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Figure 7: Profit and welfare for the Half-Normal distributions as functions of the share
of protected defenders, 1 − λ. The welfare maximizing share of unprotected defenders is
smaller than the break-even share and the monopoly profit-maximizing share. (Assumptions:
κ = 0.5, ξ = 0.5, a = 0.1, b = 0.1, E[s] = 1, E[x] = 0.5. The cost of a failed direct attack has
been normalised to 1.)
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Figure 8: Willingness to pay, cost, profit and welfare for the exponential distributions as
functions of the share of protected defenders, 1−λ. We assume κ = 0.5, ξ = 0.5, a = 0.1, b =
0.1, E[s] = 1, E[x] = 0.5. The cost of a failed direct attack has been normalised to 1.
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Figure 9: Profit and welfare for the exponential distributions as functions of the share
of protected defenders, 1 − λ. The welfare maximizing share of unprotected defenders is
smaller than the break-even share and the monopoly profit-maximizing share. (Assumptions:
κ = 0.5, ξ = 0.5, a = 0.1, b = 0.1, E[s] = 1, E[x] = 0.5. The cost of a failed direct attack has
been normalised to 1.)

44



0 2 4 6 8 10
ρX0.0

0.1

0.2

0.3

0.4
1-λmax

0 2 4 6 8 10 12
σX0.0

0.1

0.2

0.3

0.4
1-λmax

0 2 4 6 8 10
θX0.0

0.1

0.2

0.3

0.4
1-λmax

0 2 4 6 8 10
ρX0.0

0.1

0.2

0.3

0.4

1-λmax

0 2 4 6 8 10 12
σX0.0

0.1

0.2

0.3

0.4

1-λmax

0 2 4 6 8 10
θX0.0

0.1

0.2

0.3

0.4

1-λmax

Figure 10: Profit-maximizing share of protected defenders as a function of the attackers’ dis-
tribution parameters. Left: Lomax Distribution. Center: Half-Normal distribution. Right:
exponential Distribution. (Assumptions: κ = 0.5, ξ = 0.5, a = 0.1, b = 0.1. Top: E[s] = 1.
Bottom: E[s] = 4. The cost of a failed direct attack has been normalised to 1.)
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Figure 11: Profit-maximizing share of protected defenders as a function of the defenders’ dis-
tribution parameters. Left: Lomax Distribution. Center: Half-Normal distribution. Right:
exponential Distribution. (Assumptions: κ = 0.5, ξ = 0.5, a = 0.1, b = 0.1. Top: E[x] = 1.
Bottom: E[x] = 4. The cost of a failed direct attack has been normalised to 1.)
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Figure 12: With the Half-Normal distribution, assuming κ = 0.5, ξ = 0.5, a = 0.1, b = 0.1,
and σS = 0.45, σX = 2 (left; E[s] ≈ .577, E[x] ≈ 2.51) and σS = 0.46, σX = 2 (right;
E[s] ≈ .564, E[x] ≈ 2.51), there are multiple break-even points. Right: Only the lowest
price (highest 1 − λ) break-even point is a Bertrand equilibrium. Left: Both break-even
points are Bertrand equilibria.
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Figure 13: With the Half-Normal distribution, assuming κ = 0.5, ξ = 0.5, a = 0.1, b = 0.1,
and σS = 0.45, σX = 2 (left; E[s] ≈ .577, E[x] ≈ 2.51) and σS = 0.46, σX = 2 (right;
E[s] ≈ .564, E[x] ≈ 2.51), there are multiple local monopoly profit maxima.
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Figure 14: Demand functions for Lomax distribution for several values of ρS and ρX . We assume κ = 0.5, ξ = 0.5, a = 0.1, b = 0.1.
The cost of a failed direct attack has been normalised to 1.
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Figure 15: Demand functions for Half-Normal distribution for several values of σS and σX . We assume κ = 0.5, ξ = 0.5, a =
0.1, b = 0.1. The cost of a failed direct attack has been normalised to 1.
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Figure 16: Demand functions for exponential distribution for several values of θS and θX . We assume κ = 0.5, ξ = 0.5, a =
0.1, b = 0.1. The cost of a failed direct attack has been normalised to 1.
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