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Abstract  
Whether looking at New Zealand’s economy or the global economy, it is important to understand 
and appreciate business and growth cycles. The first step to understanding cycles is to correctly 
identify them. Economists usually reference the time domain to identify cycles. We take an 
alternative view, and reference the frequency domain instead.  
We ran Fourier analysis on several data sources to demonstrate how the frequency domain can 
reveal cyclical behaviour. The data included electricity demand, foreign exchange, monthly retail 
sales, quarterly GDP, labour market, and productivity statistics. 

Introduction 
The importance of identifying business cycles 
There are two reasons to consider and understand business and growth cycles when viewing 
any economy. The first is that business cycles are an intrinsic part of a nation’s macroeconomy. 
Therefore, understanding business cycles helps us to understand that nation’s macroeconomic 
performance. The second is the impact at the micro level – business cycles affect individuals and 
firms.  
Macroeconomists contend the study of business cycles is valuable to society. In 2004, the Nobel 
Prize in Economics went to Finn E. Kydland and Edward C. Prescott for their contribution toward 
understanding the drivers of business cycles. 

Economists usually use the time domain to identify cycles 
Economists have done a lot of work on identifying business cycles in the time domain. This is 
due in part to the data. Macroeconomic data is time series data, which means the data is 
naturally thought of and visualised in the time domain.  
It has therefore been natural for the techniques of identifying cycles to develop within the time 
domain framework. For example, the algorithm approach of Bry and Boschan (1971) in 
identifying cycle turning points was illustrated using macroeconomic data in the time domain. 
Their first illustration used the US unemployment rate for the years 1929 to 1965. 

Other disciplines use the frequency domain to identify cycles 
Rather than use the time domain to conduct their analysis of the data, analysts in other fields use 
the frequency domain. For example, electrical engineers routinely analyse time series data from 
their field to identify its cyclical components. They focus on identifying the cycle, its frequency, 
and its amplitude from the data.  

We use the frequency domain on economic-related data  
Our paper follows the engineering approach by using the frequency domain to analyse time 
series data. We use data from Statistics New Zealand and data from the Electricity Authority. We 
also use gross domestic product (GDP) data from Hall and McDermott (2011) and foreign 
currency data from Interbank FX.  

Our objectives 
We have two objectives in this paper. Our first objective is to show how to use the frequency 
domain on data with known cyclical behaviour. We do this by using quarterly sales data and 
electricity data. Our second objective is to use it on data with less certain cyclical or periodic 
behaviour. In this category lies the other time series data that we investigate. 
The next section reviews the work that Statistics NZ has already done on cycles. The section 
following that provides a brief introduction to the theory behind the frequency domain. The 
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section after that describes the data and data sources used in this paper. After this, we present 
our results. We then summarise our results at the end of the paper. 

Statistics NZ’s previous research on cycles 
In a 2007 paper, Extracting growth cycles from productivity indexes, Statistics NZ described their 
research on identifying cycles in productivity statistics. The department wanted to minimise the 
impact of factors that vary within a cycle so that people using the data could compare productivity 
performance between periods. 

Three methods for identifying the trend in productivity data  
In Extracting growth cycles from productivity indexes Statistics NZ presented three methods for 
identifying the trend in productivity data: the Hodrick-Prescott filter, the Baxter-King filter, and the 
Henderson filter. Each of the three filters was used to remove the trend, or more precisely, leave 
behind the deviations from trend. Statistics NZ defined a peak as the highest deviation above the 
trend and a cycle as the time elapsed between one peak the next in time series data.  

How to use the Hodrick-Prescott filter to remove trends in data  
The first method used the Hodrick-Prescott filter. When they published their paper on the this 
filter, Hodrick and Prescott (1997) considered that a time series 𝑌𝑡 can be decomposed into two 
components; the trend component 𝜏𝑡, and the cyclical component 𝑐𝑡. That is, 

𝑌𝑡 = 𝜏𝑡 + 𝑐𝑡      𝑡 = 1,2, … ,𝑇. 
Given an appropriately chosen positive value of 𝜆 they find the trend component 𝜏𝑡 that solves 
the following equation 

min ��(𝑦𝑡 − 𝜏𝑡)2 + 𝜆�[(𝜏𝑡+1 − 𝜏𝑡)− (𝜏𝑡 − 𝜏𝑡−1)]2
𝑇

𝑡=2

𝑇

𝑡=1

� . 

 
The parameter 𝜆 is the smoothing parameter. That is, you can smooth the trend component 𝜏𝑡 by 
choosing a sufficiently large 𝜆 value. In their paper the authors recommend a 𝜆 value of 1600 for 
quarterly data. 
Subtracting the Hodrick–Prescott trend component 𝜏𝑡 from time series 𝑌𝑡 leaves the cyclical 
component 𝑐𝑡. That is, 

𝑐𝑡 = 𝑌𝑡 − 𝜏𝑡      𝑡 = 1,2, … ,𝑇. 
Statistics NZ labelled the cyclical component 𝑐𝑡 as the deviation from trend. 

How to use the Baxter-King filter to remove trends in data 
The second method Statistics NZ investigated uses the Baxter-King filter. In contrast to the 
Hodrick-Prescott filter, Baxter and King (1999) considered 𝑌𝑡 can be decomposed into three 
components: the trend component 𝜏𝑡, the business-cycle component 𝑐𝑡, and the irregular 
component 𝐼𝑡. That is, 

𝑌𝑡 = 𝜏𝑡 + 𝑐𝑡 + 𝐼𝑡     𝑡 = 1,2, … ,𝑇. 
The Baxter-King filter removes the trend component 𝜏𝑡 and the irregular component 𝐼𝑡, leaving 
the business-cycle component𝑐𝑡. That is, 

𝑐𝑡 = 𝑌𝑡 − 𝜏𝑡 − 𝐼𝑡     𝑡 = 1,2, … ,𝑇. 
Statistics NZ labelled the business-cycle component 𝑐𝑡 as the deviation from trend. 

How to use the Henderson filter to remove trends in data  
The third method uses the Henderson filter. Henderson derived this filter in 1916 for actuarial 
purposes. He considered a time series 𝑌𝑡 to be decomposed into a cubic polynomial trend 

http://www.stats.govt.nz/browse_for_stats/income-and-work/employment_and_unemployment/extracting-growth-cycles.aspx
http://www.stats.govt.nz/browse_for_stats/income-and-work/employment_and_unemployment/extracting-growth-cycles.aspx


Cycle Identification: An old approach to (relatively) new statistics, by Louis Liu, Eldon Paki, 
James Stonehouse, and Jing You 

5 

component 𝑃3(𝑡), and a random component 𝑐𝑡, with the property that the expected value of the 
random component 𝑐𝑡 equals zero. That is, 

𝑌𝑡 = 𝑃3(𝑡) + 𝑐𝑡      𝑡 = 1,2, … ,𝑇 with 𝐸(𝑐𝑡) = 0. 
Henderson estimated the trend component 𝑃3(𝑡) by using weighted least squares methods. 
Subtracting the Henderson trend component 𝑃3(𝑡) from the time series 𝑌𝑡 leaves the random 
component 𝑐𝑡. That is, 

𝑐𝑡 = 𝑌𝑡 − 𝑃3(𝑡)     𝑡 = 1,2, … ,𝑇. 
Statistics NZ labelled the random component 𝑐𝑡 as the deviation from trend. 

There is another way to identify cycles 
Rather than use the methods explained above to remove trends and identify a cycle, or the 
algorithm approach of Bry and Boschan (1971), we used the frequency domain approach. This 
approach is known as Fourier analysis, and is commonly used in fields such as engineering, 
geophysics, and metrology. We now provide a brief introduction to Fourier analysis.  

Using the frequency domain to identify cycles 
For this section, assume the time series data is detrended data. Having graphed the time series 
𝑌𝑡, suppose there is evidence of periodic behaviour. Then a natural model for the time series is 

𝑌𝑡 = 𝑅𝑐𝑜𝑠(𝜔𝑡 + 𝜃) 
where 𝑅 is the amplitude, 𝜔 is the frequency, and 𝜃 is the phase. This is a very simple model in 
the frequency domain with only one frequency.  

Explanation of the harmonic model 
In practice, a time series may have several different frequencies. For example, retail sales data 
may have weekly, monthly, quarterly, and yearly frequencies. In other words, the data may show 
high, medium, and low frequencies. A natural extension of the model above that allows several 
frequencies is 

𝑌𝑡 = �𝑅𝑗𝑐𝑜𝑠�𝜔𝑗𝑡 + 𝜃𝑗�.
𝑘

𝑗=1

 

Making use of the identity 
𝑐𝑜𝑠(𝜔𝑡 + 𝜃) = 𝑐𝑜𝑠𝜔𝑡𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝜔𝑡𝑠𝑖𝑛𝜃 

we obtain 

𝑌𝑡 = ��𝑎𝑗𝑐𝑜𝑠𝜔𝑗𝑡 + 𝑏𝑗𝑠𝑖𝑛𝜔𝑗𝑡�
𝑘

𝑗=1

 

where 𝑎𝑗 = 𝑅𝑗𝑐𝑜𝑠𝜃𝑗 and 𝑏𝑗 = −𝑅𝑗𝑠𝑖𝑛𝜃𝑗 . This is known as the harmonic model. 

Explanation of Fourier analysis 
To simplify matters we work with frequencies in a range from –𝜋 to 𝜋. Without loss of generality, 
suppose that 𝜔𝑘 = 𝜋. Using the identity 

𝑐𝑜𝑠𝜔 + 𝑖𝑠𝑖𝑛𝜔 = 𝑒𝑖𝜔 
we rewrite the model as 

𝑌𝑡 = � 𝑧𝑗𝑒𝑖𝜔𝑗𝑡
𝑘

𝑗=−𝑘
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where 𝑧−𝑗 = 1
2
�𝑎𝑗 + 𝑖𝑏𝑗� and 𝑧𝑗 = 1

2
�𝑎𝑗 − 𝑖𝑏𝑗� are complex numbers for −𝑘 < 𝑗 < 𝑘. 

Using the form in Janacek (2001), the function 

𝐼(𝜔) =
1
𝑁 �
�𝑌𝑡𝑒−𝑖𝜔𝑡
𝑁

𝑡=1

�

2

 

is known as the periodogram of the time series with 𝐼(𝜔) called the power of the periodogram at 
value 𝜔. Its close relative 

𝐽(𝜔) =
1
√𝑁

�𝑌𝑡𝑒−𝑖𝜔𝑡
𝑁

𝑡=1

 

is known as the discrete Fourier transform of the time series. The discrete Fourier transform is 
easily implemented and is part of the Data Analysis package in Microsoft Excel. 
The key point of interest with the periodogram is that when you graph 𝐼(𝜔) with 𝜔 along the x-
axis, any large peak of the periodogram identifies cyclical behaviour. 
Studying a periodogram to identify periodic behaviour is referred to as conducting Fourier 
analysis.  
For the interested reader an excellent introduction to the topic is Chatfield (2004).  

Example of how to conduct Fourier analysis 
We now illustrate how to use Fourier analysis with a stylised example in three parts. 
The first part of the example is 

𝑌𝑡 = 𝑐𝑜𝑠(8𝜋𝑡) 
where the amplitude 𝑅 is one, the frequency 𝜔 is 8𝜋, and the phase 𝜃 is zero. Figure 1 displays 
the time series and its corresponding periodogram. The peaks on the time series occur at a 
frequency of 0.25.  
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Figure 1 

 

 
 
The periodogram has a significant peak at 0.250, which confirms the cycle you can see in the 
time series. 
The second part of the example is  

𝑌𝑡 =
1
3
𝑐𝑜𝑠(24𝜋𝑡) 

with an amplitude of 1
3
 , frequency of 24𝜋, and phase 𝜃 of zero. Figure 2 displays the time series 

and corresponding periodogram.  
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Figure 2 

 

 
 
The periodogram shows a significant period at 0.083 as expected. Note the shorter upward spike 
compared with the first periodogram – this is because of the relatively smaller amplitude. 
The third part of the example combines the two series: 

𝑌𝑡 = 𝑐𝑜𝑠(8𝜋𝑡) +
1
3
𝑐𝑜𝑠(24𝜋𝑡). 

Figure 3 displays the combined time series and associated periodogram.  
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Figure 3 

 

 
 
The resulting periodogram of the combined series shows the two significant periods at 0.250 and 
0.083. When the two frequency components of the new wave form appear together in one 
periodogram, the frequency and amplitude of each is preserved. 

How we used Fourier analysis to identify cycles 
We used Fourier analysis to identify the length of a cycle. Bry and Boschan (1971) outlined an 
approach that identifies cycle start- and end-points. The length of the cycle is inferred from the 
start- and end-points. Our approach is the reverse of Bry and Boschan’s – we identify the length 
of a cycle, and from that can infer the start- and end-points of a cycle.   

Data sources analysed in our paper 
We collected data from several sources. The first is electricity data from the Electricity Authority. 
It is half-hourly data from the Transpower grid exit point at Upper Hutt from 1 January 2010 to 31 
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35,040 data points over the two-year period. The units are kilowatt-hours. The second is foreign 
currency data from Interbank FX. The data is the daily spot price highs and spot price lows of the 
NZD/USD pair in the period April 2004 to December 2010 – some 2,000 data points. The third is 
quarterly GDP data from Hall and McDermott (2011). The rest of the data used in our paper is 
publicly available from Statistics NZ. 

Cycles in data with well-defined periodic characteristics 
We began by looking at data with well-defined periodic characteristics: retail sales and electricity 
use.  

Retail sales data 
We used a periodogram to identify the growth rate cycles in retail sales data. We used monthly 
retail sales for the Auckland region from Statistics NZ. The data is millions of dollars in current 
prices, excluding GST. The time period the data covers is May 1995 to September 2010. 
Figure 4 shows the retail sales data, retail growth rates, and periodogram of the growth rates. 
The main feature from the sales data is the spike in retail sales that appears in December of 
every year. The main feature of the monthly growth rates is the high growth rate in December of 
every year that is followed by a negative growth rate in January of every year. 
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Figure 4 
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The periodogram of the growth rates has five distinct peaks rather than one, which requires an 
explanation. The leftmost peak shows a period of approximately twelve months, indicating the 
yearly cycle as expected. The second peak is at six months, or twice the frequency of the first 
peak. The third peak is at three times the frequency of the first peak. The fourth peak is four 
times, and the fifth peak is five times the frequency of the first. This periodogram is therefore a 
harmonic series. 
A harmonic series has a unique feature: other frequencies are multiples of the fundamental, or 
initial, frequency. Regular or periodic patterns show harmonics as seen in this example. 

Electricity data 
In the next study we show the electricity data from the Electricity Authority. For this example we 
have combined the half-hourly readings into 730 daily readings and show the daily readings over 
the two-year calendar period 2010–11. Figure 5 shows the data and periodogram.  
The main feature of the data is the clear yearly cycle on display. Electricity use starts relatively 
low at the beginning of 2010. As the season changes from summer to autumn to winter, 
electricity use increases. Electricity use peaks mid-way through 2010 then declines as the 
season changes to spring then to summer. The pattern repeats in 2011. Note the two sharp 
peaks in 2011 – these indicate Upper Hutt endured two separate cold snaps in 2011. 
Less clear is the other cycle in the data. Local minima occur on a weekly basis. Compared with 
electricity use during weekdays, electricity use on the weekends is lower. The low for the week is 
always on Saturday or Sunday. 
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Figure 5 
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Figure 6 displays the data and its periodogram. Employee counts trend downward at the 
beginning of the series until 1992. Then for the middle part of the 1990s employment counts 
increase. From mid-1998 to the turn of the century employment is static. Then it resumes its 
upward trend and peaks in the fourth quarter of 2007. 
Figure 6 

 

 
 
The periodogram suggests that for employment in competitive industries, there is a cycle of eight 
years. This matches the time period for a typical business cycle.   
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Figure 7  

 

 
 
The periodogram identified a weekly cycle and its second harmonic. After a careful examination 
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Figure 8 

 

 
The leftmost peak of the periodogram has a power value of 1.07 at 32 quarters, corresponding to 
a cycle of eight years. The next peak has a power value of 1.60 at approximately 18 quarters, 
corresponding to a cycle of four-and-a-half years. Because of the spikes in the periodogram we 
suggest a cycle is present in the data. In addition, because of the distance between the two 
spikes of 32 quarters and 18 quarters we further suggest that the cycle length varies, and that it 
varies between 32 and 18 quarters, or four-and-a-half to eight years.  

Cycles in data with uncertain periodic behaviour 
We now turn our attention to data with uncertain periodic behaviour. 

Labour productivity data 
We investigated labour productivity statistics for the manufacturing industry. In this and 
subsequent studies, to construct the periodogram we detrended the data using the Hodrick-
Prescott filter and conducted a Fourier analysis on the detrended data.  
Figure 9 shows the labour productivity index and associated periodogram. Note the overall 
upward trend in the index with its peak in 2006. 
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Figure 9 

 

 
 
In this study the periodogram shows a labour productivity cycle of eight years in the 
manufacturing industry. That is, labour productivity in the manufacturing industry goes through an 
eight-year cycle. This result is in accord with our previous analysis of the Quarterly Employment 
Survey data, which showed employee counts in the measured sector also experienced an eight-
year cycle. 

Capital productivity input index 
We chose to analyse capital productivity input statistics for the mining industry in part because 
mining is a capital-intensive industry.  
Figure 10 displays the data with its periodogram. The data shows a gradual increase from the 
late 1970s to its smooth peak in 1993. Capital productivity input then gently declines until it 
bottoms in 2002. Since then, capital productivity input has increased and is starting to show signs 
of slowing down. 
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Figure 10 

 

 
 
The periodogram shows that capital productivity input has a cycle of approximately 11 years. We 
suggest this length of time for a cycle is reasonable. Capital-intensive industries like mining 
require large investments, so it would make sense that the cycle would be longer than the typical 
five to eight years. 

Multifactor productivity index data 
The last study we conducted used multifactor productivity (MFP) statistics for the New Zealand 
electricity, gas and water supply industry.  
Figure 11 displays the MFP index data and its periodogram. In contrast to the previous two 
studies, the data here is less smooth and is a story with two parts. The first is the general upward 
trend until it peaks in 1996. The second is the general downward trend since the peak in 1996. 
We note that the electricity industry went through major reform in the latter half of the 1990s. 
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Figure 11 

 

 
 
The periodogram shows a power value of 382 at a period of 6.4 years and a power value of 353 
at a period of 4.0 years. Unlike the quarterly GDP analysis, the two peaks here suggest two 
separate cycles. 
We now turn our attention to providing some brief remarks on the possibility of extending Fourier 
analysis. 

Wavelet analysis could be an extension of Fourier analysis 
Our paper offers a starting point for future applied economic research using wavelet analysis.  
Hubbard (1998) quotes Ronald Coifman from Yale University as saying, “I view wavelet analysis 
as a natural extension of traditional Fourier analysis, and therefore on a scientific level a 
translation of mathematical tools and methods which have been in use in mathematical analysis 
and other sciences for the last 50 years.” 
One advantage of wavelet analysis is that it is unconstrained compared with Fourier analysis. For 
instance, Fourier analysis works best with detrended data, but wavelet analysis works with both 
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trending and detrended data. Wavelet analysis can also identify complicated patterns in time 
series, whereas Fourier analysis is unable to do so. 
Wavelet analysis is used in diverse fields such as signal processing and digital imaging. But it is 
little used in the field of economics. Of the few promoting its use in economics, the most 
prominent one is James Ramsay. Ramsay (1999) investigates the properties of wavelets of 
relevance to the field of economics and finance. Hence our research paper can be extended by 
conducting wavelet analysis on the same data that we use in this paper. Doing so will confirm the 
periodic characteristics that we identified, and may identify other patterns that Fourier analysis is 
unable to detect. 

Summary 
We introduced our paper by stating the importance of cycles in economics. We then introduced 
an alternative method for studying cycles: frequency domain analysis. Frequency domain 
analysis has a long history, but economists have not often used it. However, the 2003 Economics 
Nobel Prizewinner Clive WJ Granger used it to interpret business cycles in his 1966 publication, 
“The typical spectral shape of an economic variable”. 
We then reviewed work previously done by Statistics NZ. We provided a brief introduction to the 
theory underlying Fourier analysis and provided a stylised example of how to conduct Fourier 
analysis. We then applied this method to identify periodic behaviour in eight data sets: 

• monthly retail sales 
• electricity use 
• labour market 
• foreign currency exchange 
• quarterly GDP 
• labour productivity  
• capital productivity  
• multifactor productivity. 

We provided some comments on a natural extension to Fourier analysis, namely wavelet 
analysis. We highlighted its advantages over Fourier analysis and provided a reference for the 
interested reader.  

Fourier analysis can identify economic cycles 
We have deliberately steered away from suggesting points in time where a cycle commenced or 
concluded. More precisely, we have steered away from suggesting cycle turning points. In that 
respect, the approach advocated by Bry and Boschan (1971) is more suitable for selecting cycle 
start- and end-points. Nonetheless, our approach can be used to complement theirs. Once a 
cycle start-point has been identified, our approach of identifying the length of a cycle can be used 
as an estimate for the cycle end-point. For example, Hall and McDermott (2009) identified the 
last New Zealand business cycle trough as the first quarter in 1998. Using our findings from the 
data in Hall and McDermott (2011) of a maximum cycle length of 32 quarters, we estimate the 
next business cycle trough to have occurred in the first quarter in 2006. 
Fourier analysis can be applied to a variety of economic variables. Nerlove (1964) has used it to 
study the Federal Reserve Board index of industrial production and employment data. Granger 
and Morgenstern (1963) have used it to study stock market prices. Cunnyngham (1963) has 
used it to study the monthly money supply. 
The strength of Fourier analysis is its ability to identify cyclic behaviour in any type of time series 
data. In our paper we have shown the results of Fourier analysis on a limited number of time 
series data to demonstrate how you can use it to detect cyclic behaviour. In reality, we conducted 
Fourier analysis on a large number of time series and discarded most of them. In the majority of 
Statistics NZ time series data we didn’t detect any cyclic behaviour at all.   
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