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ABSTRACT 

This paper examines the distributional properties of the relative standard deviation (RSD) 

of points percentages, the most common measure of competitive balance (CB) in the sports 

economics literature, in comparison with other standard-deviation-based CB measures. 

Simulation methods are used to evaluate the effects of changes in competition design on 

the distributions of CB measures for different distributions of the strengths of teams in a 

league. The popular RSD measure performs as expected in cases of perfect balance but, if 

there is imbalance in team strengths, its distribution is very sensitive to changes in 

competition design. This has important implications for comparisons of RSD values for 

different sports leagues with different numbers of teams and/or games played. 

 

Keywords:   

Measuring competitive balance 

Relative standard deviation 

Idealized standard deviation 

Sports economics 

Simulation 
 

JEL classification: 

C63, D63, L83 

 

 

 

 

 

 

* Corresponding author. Tel.: +64 3 479 8655 

Email address: Dorian.Owen@otago.ac.nz 

 

 



 1

1.  Introduction 

Professional sports leagues “are in the business of selling competition on the playing 

field” (Fort and Quirk, 1995, p.1265). An appropriate degree of competitive balance, how 

evenly teams are matched, is central to this endeavour, as this affects the degree of 

uncertainty over the outcomes of individual matches and overall championships. According 

to the ‘uncertainty of outcome hypothesis’ (Rottenberg, 1956), higher levels of competitive 

balance, reflected in more uncertain outcomes, increase match attendances, television 

audiences and overall interest (Forrest and Simmons, 2002; Borland and Macdonald, 2003; 

Dobson and Goddard, 2011). However, in a free market, teams with greater financial 

resources (e.g., due to location in larger population centres or more lucrative sponsorship 

deals) can hire better players, improve team performance and increase their dominance. 

This undermines competitive balance and, hence, uncertainty of outcome, which, in turn, 

threatens the sustainability of the league because of excessive predictability of outcomes. 

Consequently, in sports antitrust cases, a lack of competitive balance is a widely used 

justification for restrictive practices (such as salary caps, player drafts and revenue sharing) 

that would not be countenanced in other industries (Fort and Quirk, 1995; Szymanski, 

2003).   

An important strand of the competitive balance literature involves assessing the extent 

of competitive balance, tracking its movements over seasons, and examining the effects of 

regulatory, institutional and other changes in business practices (Fort and Maxcy, 2003). 

Appropriate measurement of competitive balance is an important prerequisite for such 

analyses. Consequently, considerable effort has gone into measuring competitive balance.  
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Standard measures of dispersion, inequality and concentration, applied to end-of-

season league outcomes such as win percentages or points percentages, are commonly used 

to measure competitive balance. These include the actual standard deviation and the 

relative standard deviation (Noll, 1988; Scully, 1989; Quirk and Fort, 1992; Fort and Quirk, 

1995), the Gini coefficient (Fort and Quirk, 1995; Schmidt and Berri, 2001), the 

Herfindahl–Hirschman index (Depken, 1999), concentration ratios (Koning, 2000) and 

relative entropy (Horowitz, 1997), as well as a variety of other measures (Humphreys, 

2002; Dobson and Goddard, 2011, Ch. 3). 

From this menu, the most commonly used measure of competitive balance in the sports 

economics literature is the ‘relative standard deviation’ (also known as the ‘ratio of 

standard deviations’), RSD, which is generally considered to be the most useful measure of 

competitive balance “because it controls for both season length and the number of teams, 

facilitating a comparison of competitive balance over time and between leagues” (Fort, 

2007, p. 643). The aim of this paper is to examine, using simulation methods, the 

distributional properties of the widely used RSD measure in comparison with other 

standard-deviation-based measures. 

Despite their widespread use, relatively little is known about the properties of the 

sampling distributions of such measures in the context of comparing competitive balance in 

different sports leagues with different design characteristics. One distinctive characteristic 

of sports leagues is that their playing schedules impose restrictions on the distribution of 

wins; for example, teams cannot win matches in which they do not play. Playing schedules 

therefore constrain the range of feasible values of measures of competitive balance 

(Horowitz, 1997; Utt and Fort, 2002; Owen et al., 2007; Owen, 2010; Manasis et al., 2011). 
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Analyses of the implications of this have, so far, concentrated on deriving analytical 

expressions for lower and upper bounds of selected competitive balance measures. These 

lower and upper bounds are found to depend on the number of teams and/or the number of 

games played by each team (Depken, 1999; Owen et al., 2007; Owen, 2010; Manasis et al., 

2011). This complicates the interpretation of balance measures, especially when 

comparisons (e.g., across different leagues or for the same league over time) involve 

different numbers of teams or games played, a situation that is extremely common. 

However, although these results provide useful information in defining the ranges of 

feasible values of the competitive balance measures, actual outcomes may be far from the 

extreme maximum values and, arguably, may be less affected by changes in competition 

design. For meaningful comparisons, it is important to have a clear idea not only of the 

location and range of feasible values of the chosen balance measure, but also how the 

distributions vary in response to different aspects of league design (e.g., the number of 

teams, the number of games played by each team or other variations in the playing 

schedules). Simulation provides an ideal approach to evaluate the effects of such changes 

in competition design on the distributions of different competitive balance measures for 

known distributions of the strengths (abilities) of the teams in the league.  

Simulation methods have been applied to several different aspects of the analysis of 

sports leagues, including predicting the outcomes of matches and tournaments (e.g., Clarke, 

1993; Koning et al., 2003), examining the effects of league or tournament design on 

specific measures of competitiveness or outcome uncertainty (Scarf et al., 2009; Puterman 

and Wang, 2011), assessing the effects on match attendance of changes in league structure 

or of equalizing playing talent across teams (Dobson et al., 2001; Forrest et al., 2005), 
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illustrating the properties of a theoretical model of strategic behaviour in football (Dobson 

and Goddard, 2010), computing measures of match importance (Scarf and Shi, 2008), and 

generating ex ante measures of uncertainty of outcome (King et al., 2011). However, there 

has been surprisingly little use of simulation methods to examine the properties of 

measures of competitive balance. As far as we are aware, the only other study to do so is by 

Brizzi (2002); he considers normalized measures based on the standard deviation, the Gini 

coefficient, the mean absolute deviation and the mean letter spread, all applied to points 

totals rather than point proportions. However, he does not consider the popular RSD 

measure and simulates sampling distributions only for the case of exactly equally matched 

teams, i.e., the polar case of perfect competitive balance.  

In section 2 we outline the various standard deviation-based measures of competitive 

balance that we consider in our analysis. Section 3 contains the details of the simulation 

design and Section 4 the results obtained on the distributions of the various competitive 

balance measures for different numbers of teams and games played. Concluding comments 

and implications for analysts of competitive balance, sports administrators and antitrust 

authorities are contained in Section 5.  

 

2.  Standard-deviation-based measures of competitive balance 

In practice, measurement of competitive balance is complicated by its 

multidimensional nature. The different dimensions include the evenness of teams in 

individual matches, the distribution of wins or points across teams at the end of a season, 

the persistence of teams’ record of wins or points across successive seasons, and the degree 
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of concentration of championship wins over a number of seasons (Kringstad and Gerrard, 

2007).  

In this study we focus on different variants of the standard deviation of points ratios 

(or, equivalently, points percentages) based on end-of-season standings. In many sports, 

including association football, points are allocated for results other than wins (e.g., draws, 

or ties) and different points assignments are possible for wins, draws and losses; therefore, 

examining points ratios is more general than considering win proportions. We emphasize 

standard-deviation-based measures because of their popularity in the analysis of 

competitive balance in practice; however, in principle, the same approach can be used for 

any competitive balance measures. 

The ‘actual’ standard deviation of points ratios, ASD, provides a simple, natural 

measure of the ex post variation in end-of-season points ratios. This can be calculated as 

 

2

1
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where N equals the number of teams in the league, Pi and Ti are, respectively, the actual 

number of points accumulated and the maximum possible points attainable by team i in a 

season, pi = Pi /Ti , and 
1

N

ii
p p

=
=∑  is the league’s mean points ratio. Note that for 

scenarios in which draws are not possible or are worth half a win, then p  always equals 

0.5, so the mean points ratio does not need to be estimated and N can be used, instead of (N 

– 1), as the divisor in calculating the standard deviation.  

Other things equal, the larger the dispersion of points ratios around the league mean in 

any season, the more unequal is the competition. However, although the mathematical 
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expression for ASD does not depend explicitly on the number of games played by each 

team, ASD tends to decrease if teams play more games because the extent of random noise 

in the final outcomes is reduced (Leeds and von Allmen, 2008, p.156). Consequently, 

following Noll (1988) and Scully (1989), sports economists commonly use RSD, which 

compares ASD to a benchmark ‘idealized standard deviation’, ISD. The latter corresponds 

to the standard deviation of the outcome variable in a perfectly balanced league in which 

each team has an equal probability of winning each game.
1
  

If draws are not possible, then ISD can be derived as the standard deviation of a 

binomially distributed random variable with a probability of success of 0.5 across 

independent trials; hence, ISD = 0.5/G0.5, where G is the number of games played by each 

team (Fort and Quirk, 1995). If draws are possible, analogous expressions for ISD can be 

derived, allowing for different possible points assignments for wins, draws and losses (Cain 

and Haddock, 2006; Fort, 2007; Owen, 2012). A variant of ISD has also been proposed to 

allow for home advantage (Trandel and Maxcy, 2011).  

RSD is the most widely used competitive balance measure in the sports economics 

literature (Fort, 2006a, Table 10.1); indeed, it has been described as “the tried and true” 

measure of within-season competitive balance (Utt and Fort, 2002, p.373). RSD, expressed 

as ASD/ISD, takes the value of unity if the league is perfectly balanced, with higher values 

representing greater levels of imbalance. However, Goosens (2006, p.87) criticises RSD for 

sometimes taking values below unity (i.e., ASD < ISD), implying “a competition that is 

more equal than when the league is perfectly balanced”. Such an apparently contradictory 

                                                 
1
 ‘Idealized’, in this context, does not necessarily imply ‘ideal’, in the sense of an optimal value for ASD. 

Perfect balance and complete imbalance are polar cases, but the former is almost certainly not the optimal 

level of competitive balance. What constitutes an optimal level is an open question, and the answer may vary 

from one league to another; see Fort and Quirk’s (2010, 2011) formalization of some of the factors involved. 
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interpretation is feasible because ISD represents an ex ante probabilistic benchmark rather 

than the actual ex post minimum for ASD, i.e., zero, corresponding to a situation in which 

all teams end up with the same number of points or points ratio. To avoid values below 

unity, Goosens (2006) advocates using a normalized standard deviation measure, here 

denoted ASD*, which compares ASD with its maximum feasible value; i.e., ASD* = 

ASD/ASD
ub
, where ASD

ub
 is the upper bound of ASD corresponding to the ex post ‘most 

unequal distribution’ (Fort and Quirk, 1997; Horowitz, 1997; Utt and Fort, 2002).
2
 This 

involves one team winning all its games, the second team winning all except its game(s) 

against the first team, and so on down to the last team, which wins none of its games.  

Of more concern, Owen (2010) shows that RSD has an upper bound, RSDub, which is 

an increasing function of N and K; indeed, RSDub is much more sensitive to variation in the 

numbers of teams and games played than ASD
ub
.
3
 Consequently, comparing competitive 

balance across different leagues using RSD is likely to be more problematical than if ASD 

is used, especially if the relevant upper bounds of RSD (and hence the feasible range of 

outcomes) differ markedly due to differences in these parameters across leagues. 

Paradoxically, RSD is usually advocated for just such comparisons involving scenarios 

with different numbers of teams and/or games played (e.g., Leeds and von Allmen, 2008, 

pp.156-157; Fort, 2011, pp.167-169; Blair, 2012, pp.67-68). Variation in the feasible range 

of values for RSD for different N and K therefore represents a more fundamental 

                                                 
2
 Goosens (2006) calls ASD* the “National Measure of Seasonal Imbalance”. Brizzi (2002) also considers a 

normalized ASD measure, although he applies it to total points and inverts the measure to give an index of 

equality, EQ = 1 − (ASD/ASDmax
), where ASD

max
 is the standard deviation of total points in the most unequal 

distribution. 
3
 For the case of a balanced schedule with no draws (or with draws treated as half a win), RSD

ub
 = 2[K(N + 

1)/12]
0.5
, which is an increasing function of both K and N, compared to ASD

ub
 = [(N + 1)/{12(N − 1)}]0.5, 

which, in the limit, as N increases, tends to (1/12)
0.5
 = 0.289 (Owen, 2010). 
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justification for the use of a normalized standard deviation measure, as ASD* lies in the 

interval [0, 1].4  

The coefficient of variation of points proportions, CV = ASD/ p  is another potential 

standard-deviation–based competitive balance measure. If p  equals 0.5, then variation in 

CV is entirely due to variation in ASD, so nothing is gained by also considering CV. 

However, if draws are possible and are not considered as worth half a win, then p  can vary 

across seasons, and CV is a feasible alternative.
5
  

Overall, however, other than results on the upper bounds of ASD and RSD, little is 

known about the distributional properties of the various standard-deviation–based measures 

of competitive balance under different degrees of inequality in team abilities. 

 

3.  Simulation design 

In order to examine the sensitivity of competitive balance measures to variation in 

basic parameters reflecting the format of a sports league, we consider simulated results for 

a wide range of different scenarios corresponding to different values of N (the number of 

teams), K (the number of rounds of matches), and different distributions of team strengths. 

We also allow for the effects of other features such as whether draws are feasible, existence 

of home advantage, and alternative points assignment schemes, all of which can affect 

match outcomes and hence, ultimately, end-of-season teams’ points proportions and league 

rankings. Our focus is on examining how the distributions of standard-deviation-based 

measures (ASD, RSD, ASD*, CV) of within-season competitive balance applied to end-of-

                                                 
4
 Note that the normalized variant of RSD, defined as RSD* = RSD/RSD

ub
, is identical to ASD/ASD

ub
 = ASD*. 

5
 Note that CV = [2 IGE(2)]

0.5
, where IGE(2) is a member of the family of generalized entropy measures of 

inequality (Bajo and Salas, 2002).  
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season points proportions are affected by common changes in the design of the league, 

particularly variation in N and K.  

Note that, in this paper, we consider only leagues with balanced schedules, in which 

each team plays every other team in the league the same number of times. Consequently, 

the number of games played by each team, G, is the same for all teams and equals K(N – 

1). This format is common in sports leagues, especially in European football (typically with 

K = 2). However, the simulation methods used can be adjusted to reflect the details of any 

unbalanced schedule of matches, in which a team may play some teams more frequently 

than others. 

The simulation design includes the following components:  

(i) An explicit characterization of the strengths of the teams in the league;   

(ii) A model that generates match outcomes that allows for the effects of relative team 

strengths, home advantage (if included) and stochastic factors; 

(iii) Combining generated outcomes for individual matches in the playing schedule of 

matches for the season, using a given points assignment scheme, to arrive at end-of-season 

points totals for each team in the league and hence values of the various competitive 

balance measures; 

(iv) Repeating the generation of individual match outcomes in the playing schedule a large 

number of times to generate a distribution of values for each end-of-season competitive 

balance measure for given values of team strengths and competition design parameters; 

(v) Rerunning the simulations for different assumptions about the distribution of teams’ 

strengths and different N and K. 
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In reality, teams’ strengths are unobservable, and so, therefore, is the degree of 

evenness in the teams’ strengths. One of the main advantages of using a simulation 

approach is that team strengths (or abilities) are pre-specified and hence known. The 

predefined distribution of team strengths will be reflected in match outcomes and hence the 

final points proportions at the end of the season. Simulating a large number of seasons and 

calculating the end-of-season competitive balance measures allows us to examine the 

distributions of these measures for different underlying assumptions about the distribution 

of team strengths and for different competition design characteristics (especially N and K) 

in order to assess which measures provide the most reliable representation of the spread of 

team strengths across a range of different leagues in practice.  

 

3.1 The simulation model for individual matches 

To simulate match outcomes we use a framework similar to that of Stefani and Clarke 

(1992) and Clarke (1993, 2005). The outcome of each match is characterized by the home 

team’s winning margin (points or goals scored by the home team less points or goals scored 

by the away team). The winning margin depends on the teams’ relative playing strengths 

(or abilities) and the extent of home advantage (if any): 

 

 

 Mijm = H + Si – Sj (2) 

 

where Mijm is home team i’s expected winning margin against away team j in match m; H 

is home advantage, and Si is the strength rating for team i.
6
  

                                                 
6
 Mijm < 0 corresponds to an expected win for the away team with a points margin of |Mijm|. 
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To provide plausible values of team strengths and, where considered, home advantage, 

these were calibrated against actual results from English Premier League (EPL) football. 

The model in equation (2) was fitted to match results, season by season, for 10 seasons of 

the EPL (2001/2 to 2010/11), both allowing for a constant home advantage and with H 

omitted. The error in prediction is calculated as: 

 

 Eijm = Aijm – Mijm  (3) 

 

where Aijm and Eijm are, respectively, the actual match winning margin and the error in the 

prediction of the match outcome of home team i against away team j in match m. 

Two approaches were adopted. For what we will denote the ‘linear model’, we 

calculated the strength ratings (and, if included, H) that minimize the sum of squared 

errors, ∑ ,2

ijmE in match outcome predictions for each season (regardless of whether or not 

draws can occur, as there is no specific draws parameter in this method). We also fit a 

Bradley-Terry-type model (Bradley and Terry, 1952), calculating the strength ratings (and, 

if included, H) that maximize the likelihood of observing that season’s results. Because the 

EPL data incorporate draws as possible match outcomes, the Bradley-Terry-type models 

are optimized with a draws parameter present. Because both models use the numerical 

difference in the competing teams’ abilities as the basis of an expected match outcome, we 

can normalize ability ratings to have a mean of zero for both model types.
7
 

Table 1 reports the mean, maximum and minimum ranges of strength ratings for ten 

EPL seasons under each model type. Plots of the ranked strength ratings for the 20 teams in 

the EPL were found to be approximately linear functions of the teams’ rank, in each 

                                                 
7
 A team’s strength rating can be interpreted as the expected points margin resulting from a match against an 

average team at a neutral venue (with no home advantage for either team). 
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season. We therefore maintain this observed linear pattern and range of fitted strength 

ratings in the EPL as a benchmark for formulating the different predetermined strength 

ratings in our simulations. 

Two variants of the simulation model were considered to alleviate concerns that any 

results may be dependent on a specific simulation model. Simulating a match outcome 

involves adding a generated random error to the right-hand side of equation (2):  

 

 SMijm = (H + Si – Sj) + GEm (4) 

 

where SMijm and GEm are, respectively, the simulated winning margin and the generated 

error for home team i’s match against away team j in match m. 

In the simulations, team strengths are fixed throughout each simulated season.8 In the 

first simulation model (denoted the ‘linear simulation model’), GEm is drawn from a 

normally distributed random variable with a zero mean and standard deviation, σ = 1.5. 

The properties of GE are consistent with those of the actual errors obtained if the model in 

equations (2) and (3) is fitted, by minimizing the sum of squared errors in prediction, to the 

EPL data (2001/2 to 2010/11). Hence, the distribution of generated errors is approximately 

equal to the distribution of observed errors. 

Positive values for simulated winning margins indicate home-team wins and negative 

values indicate away-team wins. The linear simulation model does not explicitly account 

for the possibility of draws, but they can be added to the model by finding the value of d 

(where −d < match outcome < d) such that the proportion of match outcomes classified as 

draws is the same as observed in the EPL data.  

                                                 
8
 Updating of team strengths as the season progresses is possible (e.g., Clarke, 1993; King et al., 2011) but, in 

order to focus on the properties of the competitive balance measures, it makes more sense to work with team 

strengths that remain constant throughout the season. 
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In the second simulation model, we use a framework similar to that of Bradley and 

Terry (1952) in which match outcomes are obtained by generating probabilities of wins, 

draws, or losses occurring for the home team. Simulating match outcomes involves 

generating a random number uniformly distributed on the interval (0, 1); this number will 

fall into one of the three match outcome categories. For example, if the probabilities of a 

home win, a draw and an away win are, respectively, 0.4, 0.35 and 0.25, then a random 

number between 0 and 0.4 would indicate a home team win, between 0.4 and 0.75 a draw, 

and between 0.75 and 1 an away team win. 

The probability of the home team winning in the EPL is approximately 0.6 (assuming 

draws are considered as half a win). This probability was also observed in the simulated 

data whenever home advantage was included in the match outcome generation process, 

whereas a value of approximately 0.5 was observed in the simulated data whenever home 

advantage was not included. This suggests that inclusion of the home advantage parameter 

gives realistic results while exclusion gives location-neutral results.  

 

3.2 Specification of distributions of teams’ strength ratings 

Five strength rating distributions were used in the simulation. All have an average 

strength rating of zero and follow a linear pattern of ratings from the strongest to the 

weakest team. The five distributions have ranges (maximum strength – minimum strength) 

of 0, 1.25, 2.5, 3.75 and 5, i.e., covering a spectrum from teams of equal strength (perfect 

balance) through to very unequally distributed team strengths (a high degree of imbalance). 

Under both the Bradley-Terry-type and linear models, the optimized EPL strength ratings 

sit approximately near the middle of the five distributions specified. Hence, the results of 
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the simulation cover both perfect equality and a high degree of inequality, and centre 

roughly where we would expect to see actual EPL results taking place. 

The benchmark strength ratings generated from the EPL data are for N = 20. To 

construct strength rating distributions for different values of N but with the same level of 

‘strength inequality’, we maintain a constant range of strength ratings but allow the slope 

of the plot of strength ratings against team number to change as we adjust the number of 

teams in the competition. This approach has two advantages. Firstly, maintaining a constant 

range of strength ratings means the probability of the strongest team beating the weakest 

team remains constant with changes in N. Secondly, an ‘average’-strength team will have 

unchanged probabilities of beating both the strongest and weakest teams.9 

 

3.3 Simulation parameters 

Simulations were run for both the linear and Bradley-Terry-type model for the 

following parameters and variations in specification:  

 

Range (maximum strength – minimum strength): 0, 1.25, 2.5, 3.75, 5 

N (number of teams): 10, 15, 20, 25 

K (number of rounds per season): 2, 4, 6, 8, 10 

Draws possible or No draws 

Home advantage: H = 0, H ≠ 0  

Points assignment: (2,1,0), (3,1,0)
10
 

 

                                                 
9
 Although not a specific design feature, the standard deviation of strength ratings is approximately preserved 

as N varies for each range of strength ratings considered. 
10
 The notation (3,1,0), for example, represents three points for a win, one point for a draw, and zero points 

for a loss. 
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A thousand simulations were run for each combination of parameters and specification 

choices for each of the two simulation models. This gives a large number of different 

combinations of model type and parameter selection, so we report representative results 

and indicate any important deviations.  

For each set of simulated end-of-season points proportions, we calculate ASD, RSD = 

ASD/ISD, ASD* = ASD/ASD
ub
, and CV = /ASD p . For the calculation of ASD, we use N as 

the divisor in cases in which p  = 0.5, i.e., if draws are not allowed or if a (2,1,0) points 

allocation is used; otherwise we use (N − 1), as in equation (1).  

ISD is calculated as 0.5/G
0.5
, where G = K(N − 1) is the number of games each team 

plays per season, in cases in which draws are not feasible and H = 0. If draws are feasible, 

then we use the corresponding ISD = (1 ) / 4d G−  for a (2,1,0) points assignment scheme, 

or [(1 )( 9) / 4] / 9d d G− +  for a (3,1,0) points assignment, where d is the simulated 

probability of a draw in that season (Owen, 2012, equations (2′) and (3′) respectively). If H 

≠ 0, we use the ISD expression derived by Trandel and Maxcy (2011, p.10).
11
  

ASD
ub
, the upper bound of ASD, corresponding to the most unequal distribution of 

results possible given the (balanced) schedule of games played, is evaluated as [(N + 

1)/{12(N − 1)}]0.5, if ASD is calculated with N as the divisor, and [N(N + 1)/(12(N − 1)2)]0.5, 

if ASD calculated with (N – 1) as the divisor (Owen, 2010).
12
  

CV is considered only for cases where p  ≠ 0.5. 

 

                                                 
11
 The home-advantage-corrected ISD calculated by Trandel and Maxcy (2011) treats a draw, if feasible, as 

half a win. However, we apply this form of ISD only to the case of home advantage with no draws. 
12
 ASD* is invariant to whether the divisor in ASD is N or (N − 1), as long as ASD and ASDub

 are defined 

consistently; this applies regardless of the details of the points assignment. For the non-symmetric (3,1,0) 

assignment, even though the mean points proportion will, in practice, not equal 0.5, it is 0.5 for the most 

unequal distribution.  
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4.  Simulation results  

To compare the distributions of the various CB measures visually for different 

distributions of strength ratings, model types and competition specifications, we use kernel 

density estimates (using the Epanechnikov kernel function in Stata, version 11). These have 

the advantage of reflecting the continuous nature of the CB measures (unlike discrete 

representations such as histograms or box plots), allowing easily tuned smoothing of minor 

irregularities due to sampling variation (unlike box plots), and providing a clear 

representation of the tails of the distributions (unlike cumulative curves) (Cox, 2007). 

We focus on illustrative results for the Linear model allowing for draws and home 

advantage, with a (3,1,0) points allocation. Figure 1 contains kernel densities for the four 

standard-deviation-based measures for the case of N = 10 and K = 2, for varying degrees of 

imbalance in the strength of the teams (from R = 0 through to R = 5). Each measure 

satisfies a basic minimum requirement for a reasonable indicator of competitive balance in 

the sense that increasing levels of imbalance in the distribution of team strengths are 

represented by rightward shifts in the densities.  

Next, we examine the effects of changing the number of teams or the number of 

rounds for different levels of competitive balance. Figure 2 shows the effects of varying K, 

the number of rounds, keeping the number of teams, N, fixed at 10, for the case of perfect 

balance in team strengths, i.e. Si = 0 for all i. The densities for ASD in panel (a) illustrate 

the concern expressed in section 2 that motivated the development of the RSD. ASD tends 

to decrease if teams play more games (in this case because there are more rounds of games 

against the other nine teams). This is reflected in the leftward shift in the densities as K 

increases; there is also a reduction in the variance of the observed ASD values,. This pattern 
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is observable not just in ASD but also its normalized variant, ASD*, in panel (c) and CV in 

panel (d). Therefore, adjustments to allow for the possible range of values ASD can take (as 

with ASD*) or variations in the league’s mean points ratio (as with CV) do not correct for 

these properties of ASD. In contrast, RSD does, in this case, correct for the shift in the 

density of ASD as K varies, as illustrated by the densities in panel (b). A similar pattern is 

obtained if N is allowed to vary for a constant value of K. In the case of perfect balance, 

RSD does exactly what it was designed to do by controlling for the effects of variations in 

the number of games played, either due to variation in the number of teams or the number 

of games each plays.. 

The next set of comparisons looks at the case of varying K while keeping N fixed at 

10, but this time for the case of moderate imbalance in team strengths (R = 2.5), as 

approximately relevant for the EPL. The densities are shown in Figure 3. Again, the 

leftward shift, and reduced variance of the measures, is observed for ASD, ASD* and CV as 

N increases. However, the striking feature of Figure 3 is the behaviour of the densities for 

RSD in panel (b). As N increases the density shifts rightward. The upward shift in 

simulated RSD values is consistent with the result that the upper bound of RSD is an 

increasing function of N, as discussed in section 2. 

This feature of the density for RSD is even more strikingly displayed in Figure 4. Here 

we keep N = 10 throughout and increase the number of rounds, K (from 2 up to 10). The 

ASD, ASD* and CV measures display similar properties to those in Figure 3, as discussed 

above. The density for RSD shifts even more markedly to the right,, reflecting the more 

dramatic increase in the number of games played as K increases.  



 18

Figure 5 compares the shift in the densities of ASD* and RSD for the highest level of 

imbalance in the simulations (R = 5). For ASD*, the densities are all now centred at higher 

values of ASD* compared to the locations in Figures 3 and 4 (panel (c)), reflecting the 

higher degree of imbalance in team strengths, but still display some leftward drift and 

decreased variance as K increases. The densities for RSD show an even more marked 

rightward shift as K increases; between them these densities span values of RSD in the 

range (2, 6) but with very little overlap between the densities for different values of K.
13
 

This result is consistent with the result on the upper bound of RSD. As noted in section 2, 

RSD’s upper bound is strictly increasing in N and K. What these simulations illustrate is 

that the upward shift in the upper bound as N or K increases is not purely of hypothetical 

interest; the whole density shifts upwards for representative distributions of team strengths.  

The notion that RSD controls for variation in season length and the number of teams 

therefore applies only in the polar case of perfect balance in team strengths, as illustrated in 

a comparison of Figure 2, panel (b) with the corresponding panels in Figures 3, 4 and 5. 

The sensitivity of RSD values to N and K also complicates interpretation of comparisons of 

RSD values from different leagues (with different N and/or K) or from the same league over 

time if there are variations in N and K. Direct comparisons of numerical values for RSD 

implicitly assume that RSD controls for season length so that differences in RSD values are 

supposed to reflect primarily differences in the degree of imbalance in playing strengths. 

However, in Figure 6 we plot densities for four different combinations of N, K and R: R = 

1.25, with N = 10 and K = 8 (72 games for each team); R = 2.5, with N = 20 and K = 2 (38 

games for each team), R = 2.5, with N = 10 and K = 4 (36 games for each team); and R = 5, 

                                                 
13
 This marked rightward shift in Figure 3 is therefore not an artefact of the way in which the strength 

distributions for a given R are adjusted as N is varied, because similar rightward shifts in the RSD densities 

are obtained when N is increased for given R and K, and when K is increased for given R and N.  
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with N = 10 and K = 2 (18 games for each team). The densities for RSD in panel (b) 

overlap considerably, suggesting that RSD is unable to distinguish the variation in 

competitive balance. It is possible that an additional ‘correction’ could be devised to allow 

for the variation in the number of games played for general departures from perfect 

balance. However, it is not immediately obvious what form this would take, as the problem 

appears to become more severe the more marked the departure from perfect balance, and 

such departures can occur in many different ways. In contrast, the densities for ASD* in 

panel (a) do separate out the three different degrees of imbalance in playing strengths, at 

least for the limited comparisons involved. This is consistent with the ASD being less 

dramatically affected by variations in the number of games played by each team. 

Correction for the leftward shift of the ASD and ASD* measures may therefore be a more 

fruitful avenue for further investigation. 

 

5.  Conclusion  

Appropriate measurement of competitive balance is a cornerstone of the economic 

analysis of professional sports leagues, not least because of the importance of arguments 

about the extent of competitive imbalance as a justification for radical restrictive practices 

in sports antitrust cases. The most common measure of within-season competitive balance 

in the sports economics literature is the relative standard deviation (RSD) of points (or win) 

proportions; its popularity is based on the widespread belief that it controls for season 

length when making CB comparisons. Simulation methods are used to examine the effects 

of changes in competition design on the distributional properties of RSD, in comparison 

with other standard-deviation-based CB measures, for different distributions of the 
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strengths of teams in a league. The popular RSD measure performs as expected in cases of 

perfect balance, but if there is imbalance in team strengths its distribution is very sensitive 

to changes in competition design. Without further correction, comparison of RSD for 

different sports leagues with different numbers of teams and/or games played can lead to 

misleading conclusions about the underlying degree of competitive balance. Other 

standard-deviation-based measures, although subject to upward bias if the number of 

games played is not large, are less sensitive to variations in competition design and appear 

to offer a more useful basis for cross-league comparisons in competitive balance. 
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Table 1 

Range of fitted strength ratings from the English Premier League, seasons 2001/02 – 

2010/11  

Model Mean range Maximum range Minimum range 

Bradley-Terry (H ≠ 0)  2.812 3.711 1.989 
Bradley-Terry (H = 0) 2.682 3.633 1.839 

Linear (H ≠ 0) 2.275 3.174 1.700 

Linear (H = 0) 2.275 3.175 1.700 

 

Table 2 

Strength rating distributions used for simulations, N = 10 

Team Distribution 1 Distribution 2 Distribution 3 Distribution 4 Distribution 5 

1 0 0.625 1.25 1.875 2.5 

2 0 0.486111 0.972222 1.458333 1.944444 

3 0 0.347222 0.694444 1.041667 1.388889 

4 0 0.208333 0.416667 0.625 0.833333 

5 0 0.069444 0.138889 0.208333 0.277778 

6 0 −0.06944 −0.13889 −0.20833 −0.27778 
7 0 −0.20833 −0.41667 −0.625 −0.83333 
8 0 −0.34722 −0.69444 −1.04167 −1.38889 
9 0 −0.48611 −0.97222 −1.45833 −1.94444 
10 0 −0.625 −1.25 −1.875 −2.5 
 

Table 3 

Strength rating distributions used for simulations, N = 15 

Team Distribution 1 Distribution 2 Distribution 3 Distribution 4 Distribution 5 

1 0 0.625 1.25 1.875 2.5 

2 0 0.535714 1.071429 1.607143 2.142857 

3 0 0.446429 0.892857 1.339286 1.785714 

4 0 0.357143 0.714286 1.071429 1.428571 

5 0 0.267857 0.535714 0.803571 1.071429 

6 0 0.178571 0.357143 0.535714 0.714286 

7 0 0.089286 0.178571 0.267857 0.357143 

8 0 0 0 0 0 

9 0 −0.08929 −0.17857 −0.26786 −0.35714 
10 0 −0.17857 −0.35714 −0.53571 −0.71429 

11 0 −0.26786 −0.53571 −0.80357 −1.07143 

12 0 −0.35714 −0.71429 −1.07143 −1.42857 

13 0 −0.44643 −0.89286 −1.33929 −1.78571 

14 0 −0.53571 −1.07143 −1.60714 −2.14286 

15 0 −0.625 −1.25 −1.875 −2.5 
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Table 4 

Strength rating distributions used for simulations, N = 20 

Team Distribution 1 Distribution 2 Distribution 3 Distribution 4 Distribution 5 

1 0 0.625 1.25 1.875 2.5 

2 0 0.559211 1.118421 1.677632 2.236842 

3 0 0.493421 0.986842 1.480263 1.973684 

4 0 0.427632 0.855263 1.282895 1.710526 

5 0 0.361842 0.723684 1.085526 1.447368 

6 0 0.296053 0.592105 0.888158 1.184211 

7 0 0.230263 0.460526 0.690789 0.921053 

8 0 0.164474 0.328947 0.493421 0.657895 

9 0 0.098684 0.197368 0.296053 0.394737 

10 0 0.032895 0.065789 0.098684 0.131579 

11 0 −0.03289 −0.06579 −0.09868 −0.13158 

12 0 −0.09868 −0.19737 −0.29605 −0.39474 

13 0 −0.16447 −0.32895 −0.49342 −0.65789 

14 0 −0.23026 −0.46053 −0.69079 −0.92105 

15 0 −0.29605 −0.59211 −0.88816 −1.18421 

16 0 −0.36184 −0.72368 −1.08553 −1.44737 

17 0 −0.42763 −0.85526 −1.28289 −1.71053 

18 0 −0.49342 −0.98684 −1.48026 −1.97368 

19 0 −0.55921 −1.11842 −1.67763 −2.23684 

20 0 −0.625 −1.25 −1.875 −2.5 
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Table 5 

Strength rating distributions used for simulations, N = 25 

Team Distribution 1 Distribution 2 Distribution 3 Distribution 4 Distribution 5 

1 0 0.625 1.25 1.875 2.5 

2 0 0.572917 1.145833 1.71875 2.291667 

3 0 0.520833 1.041667 1.5625 2.083333 

4 0 0.46875 0.9375 1.40625 1.875 

5 0 0.416667 0.833333 1.25 1.666667 

6 0 0.364583 0.729167 1.09375 1.458333 

7 0 0.3125 0.625 0.9375 1.25 

8 0 0.260417 0.520833 0.78125 1.041667 

9 0 0.208333 0.416667 0.625 0.833333 

10 0 0.15625 0.3125 0.46875 0.625 
11 0 0.104167 0.208333 0.3125 0.416667 

12 0 0.052083 0.104167 0.15625 0.208333 

13 0 0 0 0 0 

14 0 −0.05208 −0.10417 −0.15625 −0.20833 

15 0 −0.10417 −0.20833 −0.3125 −0.41667 

16 0 −0.15625 −0.3125 −0.46875 −0.625 

17 0 −0.20833 −0.41667 −0.625 −0.83333 

18 0 −0.26042 −0.52083 −0.78125 −1.04167 

19 0 −0.3125 −0.625 −0.9375 −1.25 

20 0 −0.36458 −0.72917 −1.09375 −1.45833 

21 0 −0.41667 −0.83333 −1.25 −1.66667 

22 0 −0.46875 −0.9375 −1.40625 −1.875 

23 0 −0.52083 −1.04167 −1.5625 −2.08333 

24 0 −0.57292 −1.14583 −1.71875 −2.29167 

25 0 −0.625 −1.25 −1.875 −2.5 
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(a) ASD (b) RSD 
 

   
(c) ASD* (d) CV 
 

Fig. 1. Density functions of CB measures for different distributions of team 

strengths from R = 0 (perfect balance) to R = 5 (high degree of imbalance) 
 

 

   
(a) ASD (b) RSD 
 

   
(c) ASD* (d) CV 
 

Fig. 2. Density functions of CB measures for R = 0 (perfect balance), N = 

10, and different values of K 
 

0
1
0

2
0

3
0

0 .1 .2 .3
x

kdensity sdn10k2r0 kdensity sdn10k2r125

kdensity sdn10k2r25 kdensity sdn10k2r375

kdensity sdn10k2r5

0
1

2
3

0 1 2 3
x

kdensity rsdn10k2r0 kdensity rsdn10k2r125

kdensity rsdn10k2r25 kdensity rsdn10k2r375

kdensity rsdn10k2r5

0
2

4
6

8
1
0

0 .2 .4 .6 .8 1
x

kdensity asdsn10k2r0 kdensity asdsn10k2r125

kdensity asdsn10k2r25 kdensity asdsn10k2r375

kdensity asdsn10k2r5

0
5

1
0

1
5

0 .2 .4 .6 .8
x

kdensity cvn10k2r0 kdensity cvn10k2r125

kdensity cvn10k2r25 kdensity cvn10k2r375

kdensity cvn10k2r5

0
1
0

2
0

3
0

4
0

0 .05 .1 .15 .2
x

kdensity sdn10k2 kdensity sdn10k4

kdensity sdn10k6 kdensity sdn10k8

kdensity sdn10k10

0
.5

1
1
.5

2

0 .5 1 1.5 2
x

kdensity rsdn10k2 kdensity rsdn10k4

kdensity rsdn10k6 kdensity rsdn10k8

kdensity rsdn10k10

0
5

1
0

1
5

0 .2 .4 .6
x

kdensity asdsn10k2 kdensity asdsn10k4

kdensity asdsn10k6 kdensity asdsn10k8

kdensity asdsn10k10

0
5

1
0

1
5

0 .1 .2 .3 .4
x

kdensity cvn10k2 kdensity cvn10k4

kdensity cvn10k6 kdensity cvn10k8

kdensity cvn10k10



 25

   
(a) ASD (b) RSD 
 

   
(c) ASD* (d) CV 
 

Fig. 3. Density functions of CB measures for R = 2.5 (moderate 

imbalance), K = 2, and different values of N 
 

 

   
(a) ASD (b) RSD 
 

   
(c) ASD* (d) CV 
 

Fig. 4. Density functions of CB measures for R = 2.5 (moderate 

imbalance), N = 10, and different values of K 
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(a) ASD (b) RSD 
 

Fig. 5. Density functions of CB measures for R = 5 (severe imbalance), N = 

10, and different values of K 
 

 

   
(a) ASD (b) RSD 
 

Fig. 6. Density functions of CB measures for different combinations of R, 

N and K 
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