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Abstract 

 

Long-run income convergence is investigated in the context of US regional data. We employ a novel 

pair-wise econometric procedure based on a probabilistic definition of convergence. The idea behind 

this is that the time-series properties of all the possible regional income pairs are examined by means 

of unit root and non-cointegration tests where inference is based on the fraction of rejections. We 

distinguish between the cases of strong convergence, where the implied cointegrating vector is 

[1,-1], and weak convergence, where long-run homogeneity is relaxed. In order to address 

cross-sectional dependence, we employ a bootstrap methodology to derive the empirical distribution 

of the fraction of rejections. Overall, the evidence in favour of convergence at state-level is weak 

insofar as it is only based on cointegration without homogeneity. We find that the strength of 

convergence between states decreases with distance and initial income disparity. Using MSA-level 

data, the evidence for convergence is stronger. 
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1. Introduction 

In recent years, economists have keenly debated the neoclassical growth model prediction of per 

capita income convergence. A wide range of studies that includes early work by Barro (1991), Barro 

and Sala-i-Martin (1991,1992), Baumol (1986), Bernard and Durlauf (1996), Carlino and Mills 

(1993), Mankiw et al. (1992) and Sala-i-Martin (1996) has considered convergence across countries, 

US states and European regions and provided mixed evidence in favour of convergence. The 

empirical tests of the convergence hypothesis have been based on both cross-sectional and 

time-series approaches. The cross-sectional approach is often encapsulated in the notion of 

β-convergence, which requires that ‘poor’ regions grow faster than ‘rich’ ones. However, several 

criticisms have been raised against the conclusions reached in many of these studies on account of 

Galton’s fallacy or ‘regression towards the mean’ (Quah, 1993). In contrast, the time series approach 

is built on a stochastic definition of convergence where the per-capita disparities are expected to be 

stationary. This is exemplified by studies such as Bernard and Durlauf (1996) who examine the 

number of common stochastic long-run trends in real per capita personal income. They find little 

evidence of long-run convergence among OECD countries.  

Using per capita income data across many decades, a number of studies have examined 

stochastic convergence in the case of the US states. As pointed out by Choi (2004) and others, due to 

the almost homogeneous institutional environments and the highly integrated markets for products 

and factors, the US states satisfy the underlying conditions of the convergence hypothesis in the 

standard neoclassical growth model. The existing evidence, however, is mixed. For example, Carlino 

and Mills (1993) find in favour of stochastic convergence insofar as shocks to relative regional per 

capita income are temporary, but only after allowing for a structural break in 1946.  Evans and Karras 

(1996) employ a panel unit root test based on Levin et al. (2002).  While this approach only allows 

for fixed effects and common slopes, they reject the null hypothesis of joint non-stationarity of 
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relative per capita incomes. Tsionas (2001) employs vector error correction modelling and finds that 

multiple common trends are driving the income series thereby concluding against the convergence of 

real per capita incomes. Choi (2004) applies multiple panel data techniques to state per capita output 

and finds that output convergence in the United States has proceeded among geographically 

neighbouring states rather than among distant states, notwithstanding the nearly complete integration 

of product and factor markets. More recently, Mello (2011) examines relative incomes and considers 

whether low power of unit root tests as well as high persistence have led researchers to find evidence 

against convergence. Using a methodology based on fractional integration and interval estimation, 

support is found for stochastic convergence. 

In this paper, we contribute to the debate concerning long-run income convergence among 

US states. In doing so, we analyse the interaction between non-stationary state income series and 

draw on the time series approach, but in a way that also utilises cross-sectional information. The 

novelty of our approach is the adoption and development of an econometric procedure advocated by 

Pesaran (2007). Within this framework, a probabilistic definition of regional convergence is 

proposed and forms the basis of our empirical testing strategy. This is an important deviation from 

the stochastic definition of convergence that the literature has focused on so far. The idea behind this 

is that for a sample of N states, unit root and non-cointegration tests are conducted on all   21NN  

real per-capita income differentials and pairs. Under the null hypothesis of non-stationarity or 

non-convergence, one would normally expect the fraction of real per capita income differentials or 

pairs for which the unit-root or non-cointegration hypothesis is rejected to be close to the size of the 

underlying unit-root or non-cointegration tests, which we denote as  . However, we can argue that 

the null of non-stationarity or non-cointegration for all state pairs could be rejected if the fraction of 

rejections exceeds the chosen nominal size  . The presence of cross-sectional dependence can make 
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inference based on the fraction of rejections difficult, so we employ a bootstrap methodology to 

derive the empirical distribution of the fraction of rejections. 

There already exist a very limited number of studies that investigate stochastic convergence 

using a pair-wise approach. Pesaran (2007) considers data for 101 countries and geographical 

sub-groups within. Relying on the use of pair-wise unit root tests provides little evidence of 

convergence at a global level, though there is some evidence of club convergence (Quah, 1997). 

Mello (2011) considers the case of income convergence across 48 contiguous US states. The 

pair-wise unit root testing procedure indicates that the non-stationary null is rejected in 8.6% of the 

cases where   is set equal to 5%. Le Pen (2011) offers a pair-wise study of output convergence 

between 195 European regions. While this particular study integrates structural breaks into the 

analysis, the evidence is not supportive of stochastic convergence. However, in the examination of 

income convergence, none of these studies consider an empirical distribution of the fraction of 

rejections, nor do they conduct an analysis of pair-wise cointegration (relaxing the [1, -1] assumption 

for the cointegrating vector). In our investigation of regional income convergence in the US, we 

address both of these important issues.  

The paper is organised as follows. The following section describes the pair-wise approach for 

convergence. The initial paper by Pesaran (2007) only considers pair-wise unit root tests.  In this 

paper, we introduce and develop a pair-wise cointegration test based on the application of the 

Johansen maximum likelihood test on all regional income pairs. It is argued that a pair-wise 

approach towards convergence testing offers important advantages over existing panel data unit root 

and cointegration methods in terms of addressing the proportion of the sample that is stationary or 

cointegrated, the presence of cross-sectional dependence across states, and the selection of a base or 

reference state.  The third section discusses the data and the results of the empirical analysis. While 

the pair-wise unit root testing is not supportive of long-run convergence among 48 US states, our 
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pair-wise cointegration approach provides some weaker evidence. We find that the strength of 

convergence, as measured by the long-run slope coefficient, is negatively related to both distance 

and initial income disparity. When we consider a more disaggregated dataset for 346 Metropolitan 

Statistical Areas (MSAs), then stronger evidence of convergence is also found. The final section 

offers some concluding remarks. 

 

2. A pair-wise approach to testing for convergence 

The unit root and cointegration tests employed in the past to assess stochastic convergence have 

typically applied to regional income benchmarked against national income. However this approach 

could be sensitive to the choice of base region or state. For example, real per capita income in states 

i and j might be found as non-stationary when measured against a third numeraire state k, but 

stationary when measured against one another. This would be the case when there is a highly 

persistent factor that is common to states i and j, but that is not shared by state k. The pair-wise 

methodology considers all possible bivariate relationships and does not involve what can be a 

problematic choice of a single reference state across the sample.  

For the purposes of our empirical analysis we employ the Pesaran (2007) pair-wise testing 

procedure to analyse probabilistic convergence across a large number of cross section units. 

Following Pesaran (2007), let 
it

y  be real per capita income data in US state i  at time t , where  

1, ...,i N  and 1, ... ,t T . Pesaran’s pair-wise approach is based on the examination of the time 

series properties of all  1 / 2N N   possible real per capita income gaps (or differentials) between 

states i  and j , which we denote as 
i j t i t j t

g y y  , where 1, ..., 1i N   and 1, ...,j i N  . Consider 

next the application of the augmented Dickey and Fuller (ADF) (1979) or the Elliott, Rothenberg and 

Stock (ERS) (1996) unit root tests of order p  to 
i j t i t j t

g y y  , and let 
,i j T

Z  be an indicator function 
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equal to one if the corresponding unit-root test statistic is rejected at significance level  . More 

formally, in the case of the ADF test, 
,

1
i j T

Z   if   , ,
A D F

T p
p K


 , where  A D F p  is the calculated 

test statistic of order p , 
, ,T p

K


 is the critical value for the  A D F p  of size  , using T  

observations. Similarly, when applying the ERS test, we would have 
,

1
i j T

Z   if   , ,
E R S

T p
p K


 . 

 Pesaran (2007) considers the fraction of the  1 / 2N N   gaps for which the unit-root 

hypothesis is rejected, which is given by: 

 
 

1

,

1 1

2

1

N N

N T ij T

i j i

Z Z
N N



  




  , (1) 

and shows that under the null hypothesis of non-stationarity, the expected value of 
N T

Z  is equal to 

the nominal size of the unit root test statistic, more formally:  

  lim
T N T o

E Z H 
 

 . (2) 

In the case of a unit-root test (such as ADF or ERS), under the null hypothesis of convergence, one 

would expect the proportion of rejections to be high and tending towards 100% as T   ; 

analogously, under the divergence alternative the proportion of rejections ought to be low and around 

the nominal size of the test  . The pair-wise approach is applicable when N is large relative to T and 

it can be shown that under the null of non-convergence, the fraction of the rejections converges to  , 

as TN , . Pesaran (2007) indicates that there are some difficulties involved in developing a 

formal procedure to test whether the proportion of rejections 
N T

Z  is statistically different from  , 

because the derivation of the variance of  
N T

Z  is complicated due to the fact that 
,i j T

Z  and 
,ik T

Z  are 

not independent from each other. Thus, in order to overcome this difficulty inference on 
N T

Z  can be 

based on the derivation of the empirical distribution of the fraction of rejections using the bootstrap 

methodology. 
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 The implementation of the bootstrap is not an issue considered in Pesaran (2007), but in a 

subsequent paper by Pesaran, Smith, Yamagata and Hvozdyk (PSYH) (2009) when applying the 

pair-wise approach to test for purchasing power parity. More specifically, the model setup 

considered by these authors is based on the following set of equations: 

 ' '

i t i t i t i t
y   α d γ f  (3) 

 
, 1 ,

1

i
p

it i i i t i l i t l i t

l

      
 



       (4) 

 '

, 1 ,

1

s
p

s t s t s t s l s t l s t

l

f f f e 
 



     μ d  (5) 

where 1, 2 , ... ,s m  is the number of common factors,  
'

1,
t

td  denotes a vector of deterministic 

components that includes intercept, and intercept and trend, 
t

f is a 1m   vector of unobserved 

common factors, with elements denoted 
s t

f , and 
i t

  denotes the corresponding idiosyncratic 

elements. The unobserved common factors 
s t

f  and/or the idiosyncratic elements 
i t

  may be  0I  or 

 1I . 

 Following PSYH, we use the cross-sectional average of
it

y , denoted 
1

1

N

t iti
y N y




  , as an 

estimate of the common factor that may induce cross-section dependence across state incomes. To 

account for cross-section dependence, real per capita income in each state is then regressed on the 

estimated common factor, that is: 

 ˆˆ ˆ ˆ ,
i t i i i t i t

y t y        (6) 

where the trend term is included if the corresponding estimated coefficient, ˆ
i

 , is statistically 

significant. Appendix 1, at the end of the document, reports the results of estimating the factor 

equations for the dataset used in the paper (details of which are provided in the next section). It 
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should be noted that in these factor equations the linear trend term is included if it turns out to be 

statistically significant at the 5% level. 

 The next step is to examine the time series properties of the estimate of the common factor 

t
y , which may be  0I  or  1I . This involves estimating the following  A D F p  regression for 

t
y : 

 
1

1

ˆˆˆ ˆ ,

p

t t l t l t

l

y y b y e 
 



       (7) 

which may also include a trend term if it is statistically significant, and where the optimal number of 

lags of the dependent variable p  may be determined e.g. using the Akaike information criterion 

(AIC). To illustrate the implementation of the bootstrap, let us consider for instance the case in which 

t
y  has a unit root with a drift and no deterministic trend. Imposing a unit root on (7) and allowing for 

a drift, which is equivalent to setting ˆ 0  , implies the following restricted version of (7): 

 
1

ˆ ˆ ˆ

p

t l t l t

l

y c y u




     . (8) 

 Thus, when a unit root and a drift term are imposed on the factor 
t

y , the bootstrap samples of 

t
y , denoted 

 b

t
y , can be computed using the following generating mechanism: 

 
       

1

1

ˆ ˆ ˆ

p

b b b b

t t l t l t

l

y y c y u
 



     , (9) 

where bootstrap residuals 
 

ˆ
b

t
u  are generated by randomly drawing with replacement from the set of 

estimated and centred residuals ˆ
t

u  in (8), and where the first  1p   values of 
t

y are used to 

initialise the process 
 b

t
y . 

 In turn, the bootstrap samples of 
it

y , denoted as 
 b

i t
y , are generated as: 
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     ˆˆ ˆ ˆ ,

b b b

it i i i i t i t
y t y        (10) 

where ˆ
i

 , ˆ
i

  and ˆ
i

  are the OLS estimates of 
i

 , 
i

  and 
i

  in (6), respectively, and 

 
 

 
     

, 1 , 1

1

ˆˆ ˆ1

i
p

b b b b

it i i i t i l i t i t

l

      
 



      , (11) 

where bootstrap residuals 
 b

i t
  are generated by randomly drawing with replacement from the set of 

estimated residuals 
i t

  in equation (4), and the first  1p   values of ˆ
i t

  are used to initialise the 

process 
 b

it
 . The AIC is used to select the optimal lag order 

i
p . 

 Having obtained 
 b

i t
y , it is possible to compute all possible bootstrap income gaps (or 

differentials) between states i  and j , that is 
     b b b

ijt it jt
g y y  , so that one can then calculate the 

fraction of these income gaps for which the unit root hypothesis can be rejected using either the 

 A D F p  or  E R S p  test. The procedure already described is repeated 1, ...,b B  times to derive 

the empirical distribution of the bootstrapped fraction of rejections. 

The pair-wise approach outlined above implicitly assumes that all income pairs are 

cointegrated with a known cointegrating vector equal to  
'

1, 1 . In practice, this might be regarded 

as a somewhat strong assumption. For this reason, we extend Pesaran’s pair-wise approach by 

considering a test for a weaker form of convergence, according to which income pairs are 

cointegrated with an unknown cointegrating vector. In other words, instead of testing whether 

i j t i t j t
g y y   is stationary, one could alternatively test whether 

it
y  and 

j t
y  are cointegrated. There 

are several cointegration tests available in the literature, including single equation methods such as 

two-step OLS (Engle and Granger, 1987), fully modified OLS (Phillips and Hansen, 1990), and 

dynamic OLS (Saikkonen, 1992; Stock and Watson, 1993), and system methods such as the 

maximum likelihood estimator of cointegrated vector autoregressive (VAR) models (Johansen, 
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1988). In this paper we opt for the Johansen procedure, which offers the advantage that normalisation 

on a particular state within each bivariate relationship is not an issue.
1
 Thus, the pair-wise Johansen 

approach that we propose here is very much in the spirit of the Pesaran’s pair-wise approach, in the 

sense that it does not matter whether one looks at cointegration between 
it

y  and 
j t

y , or between 
j t

y  

and 
it

y . Therefore, following Johansen (1988) we write a k-dimensional Vector Error Correction 

model (VEC) as (abstracting from deterministic components): 

 
1

1

1

,

p

t i t i t t

i

Y Y Y 



 



        (12) 

where 
t

Y  is a vector containing k endogenous variables, and   ,0~ iid
t

. In the VEC model (12), 

  is a  k k  matrix of long-run coefficients, which in the presence of cointegration can be 

factorised according to the number r of linearly independent cointegrating vectors as /
  , 

where  and  are both  k r  matrices of full rank, with  containing the r cointegrating vectors 

and  carrying the corresponding loadings in each of the r vectors. In the Johansen procedure a test 

for the null hypothesis of r cointegrating relations is equivalent to a test of the hypothesis that   has 

less than full rank. For our specific purposes, 
t

Y  is a two-dimensional vector containing two state 

income series, let us say
it

y  and 
j t

y , and our main interest is to determine if these maintain a long-run 

equilibrium relationship, that is if they are cointegrated. Note that when incorporating the Johansen 

reduced-rank regression approach within the Pesaran pair-wise procedure, our main focus is on 

whether there is evidence of cointegration between the variables, rather than on estimating the 

elements of the cointegrating vector themselves. 

                                                 
1
 Indeed, it should be recalled that in single equation methods one could find evidence of cointegration in one direction 

(e.g. when regressing 
it

y  on 
j t

y ) but not in the other (i.e. when regressing 
j t

y  on 
it

y ). 
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Attempting to estimate a single VEC that incorporates the per capita income series for all the 

US states would be highly problematic.  The pair-wise Johansen approach provides the opportunity 

to incorporate all bivariate state income relationships that exist. Of course, there already exist panel 

unit root and non-cointegration tests such as Maddala and Wu (1999), Levin et al. (2002), Pedroni 

(2001) and Im et al. (2003) as potential ways of overcoming the low test power attached to univariate 

methods. However, following Pesaran et al. (2009), it can be argued that the pair-wise methodology 

provides two key advantages over existing panel techniques. First, the joint null hypothesis of these 

panel tests is the existence of a unit root across all series, or non-cointegration across all 

relationships. This hypothesis can be rejected even when the proportion of the cases for which the 

unit root or non-cointegration null is rejected is small. The pair-wise approach directly addresses the 

question of what proportion of cases are stationary or cointegrated. Second, the presence of 

unobserved common factors complicates the application of these tests where the presence of 

cross-section dependence can lead to size distortion. The so-called second generation panel unit root 

tests (following the terminology proposed in the survey by Breitung and Pesaran (2008)) have 

attempted to allow for possible cross-section dependence through unobserved common factors, but 

their applications are complicated by the uncertainties surrounding the number of unobserved 

factors, the nature of the unit root process (whether it is common or country specific), and the fact 

that longer data spans are required for modelling the cross-section dependence. The pair-wise 

method is robust to cross-sectional dependence since it operates on the time series dimension. 
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3. Data and empirical analysis 

We employ Per Capita Personal Income (PCPI) data for 48 US states in dollars.
2
 The data, expressed 

in natural logarithm form, are annual, cover the study period 1929 to 2009 for a total of 81 

observations, and were downloaded from the Federal Reserve Economic Dataset (FRED) assembled 

by the Federal Reserve Bank of St. Louis. In the dataset, each income series is coded as the state 

abbreviation plus the suffix PCPI; thus, for instance, ARPCPI is Per Capita Personal Income in 

Arkansas, and so on. Because reliable data on state price levels are not available, the PCPI series for 

each state is then deflated by the overall consumer price index; see for example Sala-i-Martin (1996) 

and Barro and Sala-i-Martin (1999, ch.10). We also analyse per capita personal income data obtained 

from the FRED dataset for 346 MSAs over the study period 1969-2009. In the original pair-wise 

approach advocated by Pesaran (2007), which examines differentials between pairs of series, the 

results are not affected by the choice of data in nominal or real terms (as long as all series are deflated 

by the same deflator, as in this paper). However, when one considers cointegration between pairs of 

series, whether or not the series are nominal or real turns out to be important. 

 To begin with, we consider a more standard approach where unit root tests are applied to state 

differentials calculated with respect to national real per capita income. This involves performing 48 

ADF unit root tests. Table 1 presents the results where we can reject the non-stationarity null at the 

5% significance level in only 13 out of 48 cases, i.e. approximately 27.08% (the corresponding 

percentage of rejections at the 10% significance level is 35.42%). As argued above, this finding says 

little about bivariate convergence involving individual states. Table 2 reports the percentage of 

rejections of the ADF tests based on all 1128 bivariate income differentials. These tests are 

                                                 
2
 We exclude Alaska and Hawaii from our analysis on the grounds that these states are not geographically contiguous 

with any other state in the US, so the mechanisms that may underpin long-run constancy of income ratios across states 

within the US may not operate in these cases. 
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conducted at the 5 and 10% significance levels, and the order of augmentation of the test regression 

is determined using the AIC with 
m ax

4p  . As can be seen, the percentage of rejections exceeds the 

size of the unit root test statistics, being equal to 33.78% (46.72%) at the 5% (10%) significance 

level; qualitatively similar results are obtained when employing the more powerful ERS unit root test 

(these results are not reported here, though). The results just described, however, only focus on the 

point estimate of the proportion of the pair-wise tests that reject the null hypothesis of no 

convergence. It is important to consider the precision of these estimates because potential 

cross-section dependence between the test outcomes is likely to increase the uncertainty 

considerably. We therefore employ the factor augmented sieve bootstrap approach outlined in the 

previous section. In doing so, the cross-sectional dependence is interpreted in terms of a factor 

model. As explained, the parameters of an underlying factor model are estimated directly, and we 

subsequently use these estimates to bootstrap the pair-wise rejection rates, treating this factor model 

as an approximation to the true data generation process (the bootstrap results are based on 5,000 

replications).  

We start off by considering the time series properties of the cross-sectional mean of all 

income series in real terms, denoted 
t

y  in the previous section, as an estimate of the common factor.
3
 

The results indicate that the ADF and ERS tests (including constant and trend) provide mixed 

evidence regarding the order of integration of 
t

y ; that is, while  A D F 1 3 .0 7 5   suggests that the 

null hypothesis of a unit root is not rejected at the 10% significance level,  E R S 1 3 .2 6 3   provides 

evidence in favour of stationarity. Thus, for the purposes of the implementation of the bootstrap we 

consider two cases, one in which a unit root is imposed on 
t

y , and another one in which a unit root is 

not imposed.  

                                                 
3
 An application of the Bai and Ng (2002) test confirmed the presence of a single common factor driving US state 

incomes. 
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Table 3 reports the respective distributions of the bootstrapped fraction of rejections for the 

income gaps in real terms. Focusing on the case where a unit root is imposed on the common factor, 

the results of the ADF test reveal that the mean of the bootstrap distribution is 16.03% for 1 0 %  , 

a value that is much lower than the corresponding point estimate of 46.72% reported in Table 2. The 

lower bound of the 90% bootstrap confidence interval is 7.27%, which includes 10%. It should be 

recalled that for convergence one would expect a fraction of rejections larger than 10%, which is the 

significance level at which the tests are conducted. If a unit root is not imposed on the common 

factor, the lower bound of the bootstrap distribution is in the boundary of 1 0 %   for the ADF test 

(i.e. 10.81%). Similar results are observed when using 5 %   as significance level, or when instead 

of the ADF unit root test the ERS test is employed in the analysis. It is therefore clear that 

cross-section dependence introduces a large degree of uncertainty into the point estimate of the 

proportion of rejections. 

 Our findings so far do not provide strong support for the view of long-run convergence 

between US state incomes in real terms. The possibility we have considered so far is one of strong 

convergence where the implied cointegrating vector is restricted to [1,-1]. In the spirit of Bernard and 

Durlauf (1996), it is conceivable that a weaker form of convergence is more relevant whereby state 

income pairs are cointegrated, but with an unknown cointegrating vector not necessarily equal to [1, 

-1].
4
 In order to explore this possibility, we employ and develop the Johansen (1988) maximum 

likelihood estimator of cointegrated VAR models within the Pesaran pair-wise setting. The starting 

point of the analysis is to estimate for each possible state income pairs a VAR model with an 

unrestricted constant term (since the variables exhibit a positive drift). The optimal lag length of the 

VAR models is determined using the AIC with 
m ax

4p  . Then, we use the trace and the maximum 

                                                 
4
 See also the early work by Quintos (1995) and others in the context of the relationship between government revenue and 

expenditure and the sustainability of the budget deficit, 
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eigenvalue tests to determine the number of cointegrating vectors, which is denoted r . The former 

involves testing the null hypothesis that there are 0r   cointegrating vectors against the alternative 

that 1r  . The latter involves testing the null hypothesis that there are 0r   cointegrating vectors 

against the alternative that 1r  . In both cases, if the null hypothesis is rejected, then this would 

provide support for the view that the two real income series share the same stochastic trend.
5
  

 The results in Table 4 indicate that the number of rejections of H o : 0r   (against H a : 1r  ) 

is 809 out of 1128 possible real income gaps, i.e. 71.72% when setting 1 0 %   while the 

corresponding number of rejections for 5 %   is 707, i.e. 62.68%. Once again, these initial point 

estimates of the percentage of rejections of non-cointegration fail to account for the presence of 

potential cross section dependence so we implement the bootstrap procedure. These results offer 

support for the presence of a weaker form of convergence; see Table 5.  Indeed, let us again consider 

the results obtained for the trace test when a unit root is imposed on 
t

y . When looking at 1 0 %  , 

the mean proportion of rejections is 37.31%, and the 90% bootstrap confidence interval around this 

mean estimate ranges from 12.94% to 69.59%.  Therefore, this 90% confidence interval does not 

cover values below 10%. Qualitatively similar results are obtained when using the maximum 

eigenvalue test, or when setting 5 %  , or when a unit root is imposed on the common factor 
t

y  

(irrespective of the significance level). 

These results are more favourable towards the presence of cointegration between bivariate 

state pairs. It can be argued that strong or weak convergence is reflected in the long-run slope 

coefficient that depicts each long-run relationship.  Conditioning on the cases for which the trace test 

provides evidence in favour of cointegration, that is 809 when 1 0 %   and 707 when 5 %  , the 

null hypothesis that the cointegrating vector can be set equal to [1, -1] cannot be rejected in less than 

                                                 
5
 It is worth mentioning that a test of the null hypothesis that 1r   against the alternative that 2r   is not undertaken as 

it opens up the possibility of obtaining counterintuitive results. Indeed, this second test rejection of the null would 

indicate the presence of two cointegrating vectors or, in other words, that each real income series is stationary in levels. 
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half of the possible cases, or more precisely 3 0 3
8 0 9 0 .3 7  when 1 0 %   and 3 1 0

7 0 7 0 .4 4  when 

5 %  . Given the presence of weak as opposed to strong convergence across state pairs and 

heterogeneity in the estimated long-run slopes, it is of interest to consider what factors might drive 

the estimated values of the slopes themselves and whether it is possible to define a basis for (weak) 

convergence clusters. Denoting 
 

2

i j

  as the cointegrating slope, we measure the strength of 

convergence between real per capita personal incomes in states i and j as the absolute value of the 

difference between 
 

2

i j

  and one, that is  

2
1

ij

  , and consider the roles played by two potential 

drivers. The first is the absolute value of the difference between (the logs of) initial per capita income 

in states i and j, denoted by 
0 0

lo g lo g
i j

y y . If -convergence predicts that poorer states should 

grow faster than richer states, then 
0 0

lo g lo g
i j

y y  should be characterised by a negative and 

significant coefficient. The second driver is (the log of) distance between states i and j, which we 

denote lo g
i j

D . For this, we employ the Euclidian distance between the population centres of any two 

states, based on the geographic coordinates (latitude and longitude) obtained from the Census 

Bureau for the year 2000.
6
  

Estimation by OLS for the 809 cases where the Trace test rejected the null hypothesis of no 

cointegration at the 10% significance level provides the following results: 

 

2 0 0
( 0 .0 7 6 ) ( 0 .0 2 8 ) ( 0 .0 1 1 )

1 0 .0 3 2 0 .1 1 0 lo g lo g 0 .0 2 4 lo g

ˆ 0 .2 5 1

i j

i j i j
y y D



     



 

where White’s heteroscedasticity-consistent standard errors are reported in parentheses.
7
 The 

                                                 
6
 We are most grateful to Gary Wagner who kindly provided these data, which were used in Garrett, Wagner and 

Wheelock (2007).  
7
 It should also be noted that when the null of homogeneity is not rejected at the 10% significance level (i.e. 303 

instances), the corresponding value of the dependent variable is set equal to zero. 
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estimated positive coefficient on 
0 0

lo g lo g
i j

y y is not consistent with -convergence insofar as 

poorer states do not necessarily catch-up with richer states. Instead, we find that the likelihood of 

strong convergence or  

2
1 0

ij

    is enhanced if two pair-wise states are characterised by a similar 

initial per capita incomes. The estimated coefficient on (the log of) distance is positive and 

statistically significant, supporting the view that convergence between any two states is strongest, the 

closest they are in terms of distance. Thus, although our findings are supportive of cointegrating 

relationships across state pairs, it is on this basis that convergence clubs or groupings may arise. In 

this respect, our findings are consistent with Choi (2004) who finds that convergence is strongest 

among geographically neighbouring states that share certain common regional features such as 

climate and industrial structures.  

In the final part of our investigation, we consider convergence using MSA-level data which 

provides 346 annual income series over the study period 1969-2009. As with the case of State-level 

data, we are using the maximum study period dictated by data availability. Once again, we begin our 

analysis by applying the ADF unit root test to MSA income differentials calculated with respect to 

national real per capita income. Results, not reported here, indicate that the null hypothesis of 

non-stationarity can be rejected only in 26 instances (49) when using a 5% (10%) significance level. 

Table 6 reports the percentage of rejections of the ADF unit root tests based on all 59585 bivariate 

MSA-level income differentials.
8
 The percentage of rejections exceeds the size of the unit root test 

statistics, being equal to 15.48% (25.38%) at the 5% (10%) significance level. Table 7 reports the 

respective distributions of the bootstrapped fraction of rejections. These results are supportive of 

strong convergence when MSA-level data are analysed. Focusing on the case where a unit root is 

                                                 
8
 The significant increase in the number of income differentials that accompanies an analysis at MSA-level poses no 

additional difficulties for the pair-wise convergence approach, other than the requirement for substantially more 

computing time.  
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imposed on the common factor for example, the lower bound of the 90% bootstrap confidence 

interval is 16.26%. In contrast to the earlier results based on state-level data, this is greater than 10%. 

This finding is qualitatively unchanged when using 5 %   as the significance level, or when a unit 

root is not imposed on the common factor. Further results based on the application of the pair-wise 

Johansen test are reported in Tables 8 and 9. Focussing on the Trace test, the fraction of rejections of 

H o : 0r   (against H a : 1r  ) is 24.64% when setting 1 0 %  , while the corresponding fraction of 

rejections for 5 %   is 15.32%. If a unit root is imposed on 
t

y , when looking at 1 0 %  the mean 

proportion of rejections is 27.40%, and the 90% bootstrap confidence interval around this mean 

estimate ranges from 17.98% to 42.66%.  This 90% confidence interval does not cover values below 

10%, and so offers further support for income convergence. Qualitatively similar results are obtained 

when using the maximum eigenvalue test, or when setting 5 %  , or when a unit root is imposed 

on the common factor 
t

y  (irrespective of the significance level). 

 

4. Concluding remarks 

This paper uses time series annual information for US states to assess one of the key predictions of 

the neoclassical growth model, namely that of real per-capita income convergence. Our empirical 

modelling exercise uses a pair-wise probabilistic approach to examine stochastic convergence. This 

approach is based on the fraction of rejections of non-stationarity or non-cointegration across all 

bivariate state per capita income pairs. According to our results, we confirm convergence over a long 

time period as well as convergence with highly disaggregated data. While we reject strong 

convergence at state-level insofar as testing the non-stationarity of pair-wise state income 

differentials, these tests are characterised by implied cointegrating vectors of the form [1,-1] under 

the alternative hypothesis. Further results based on the development and application of a pair-wise 
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Johansen cointegration test offer more empirical support. In this respect, there is a weak form of 

convergence characterised by cointegration between state incomes where the elements of the 

cointegrating vector are unrestricted. However, we find that convergence between any two states is 

strongest for those states that have similar per capita incomes and are closest in terms of distance. 

Additional analysis at a more disaggregated level using metropolitan statistical area data provides 

stronger evidence of long-run convergence characterised by stationary income differentials.  
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Table 1. ADF unit root tests on state income relative to national real per capita income  

State Obs Lags t-Stat p-value 

AL 76 4 -2.432 [0.136] 

AR 77 3 -3.364 [0.015] 

AZ 77 3 -3.365 [0.015] 

CA 79 1 -1.376 [0.590] 

CO 79 1 -2.101 [0.245] 

CT 79 1 -2.081 [0.253] 

DE 77 3 -1.256 [0.646] 

FL 77 3 -2.193 [0.211] 

GA 78 2 -3.624 [0.007] 

IA 79 1 -2.341 [0.162] 

ID 77 3 -3.368 [0.015] 

IL 80 0 -2.606 [0.096] 

IN 78 2 -2.473 [0.126] 

KS 76 4 -3.262 [0.020] 

KY 80 0 -1.628 [0.464] 

LA 77 3 -1.717 [0.419] 

MA 79 1 -2.468 [0.127] 

MD 79 1 -2.463 [0.128] 

ME 80 0 -2.028 [0.274] 

MI 80 0 -1.258 [0.646] 

MN 76 4 -1.942 [0.312] 

MO 80 0 -2.621 [0.093] 

MS 76 4 -2.665 [0.085] 

MT 77 3 -1.842 [0.358] 

NC 78 2 -3.644 [0.007] 

ND 79 1 -2.057 [0.262] 

NE 78 2 -1.891 [0.335] 

NH 79 1 -1.539 [0.509] 

NJ 79 1 -2.328 [0.166] 

NM 80 0 -2.186 [0.213] 

NV 76 4 -0.858 [0.796] 

NY 77 3 -4.083 [0.002] 

OH 80 0 -0.982 [0.756] 

OK 80 0 -1.570 [0.493] 

OR 80 0 -1.515 [0.521] 

PA 78 2 -3.299 [0.018] 

RI 78 2 -2.376 [0.152] 

SC 80 0 -3.597 [0.008] 

SD 78 2 -2.250 [0.191] 

TN 77 3 -3.805 [0.004] 

TX 77 3 -3.265 [0.020] 

UT 77 3 -2.466 [0.128] 

VA 78 2 -1.497 [0.530] 

VT 80 0 -1.033 [0.738] 

WA 79 1 -3.068 [0.033] 

WI 76 4 -2.809 [0.062] 

WV 78 2 -2.398 [0.146] 

WY 78 2 -3.204 [0.023] 

Note: The number of lags is selected using the AIC with 
m a x

4p  .  
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Table 2. Fraction of rejections assuming state income pairs are cointegrated with known 

cointegrating vector  
'

1, 1 . Sample period 1929 – 2009. 

 

 Fraction of rejections  

  

  

5% 33.78 

10% 46.72 

  

 

Notes: The ADF unit-root test regressions include a linear trend if it is 

statistically significant at the 5% level. The number of lags of the dependent 

variable is determined using the AIC with 
m ax

4p  . Critical values for the 

ADF test are based on response surfaces estimated by Cheung and Lai 

(1995). 
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Table 3. Distribution of the bootstrapped fraction of rejections assuming state income pairs are 

cointegrated with known cointegrating vector  
'

1, 1 . Sample period 1929 – 2009. 

 

 

Imposing a unit root on common factor 

 

 Mean Median SD 2.5% 5% 10% 90% 95% 97.5% 

          

5% 8.79 7.80 4.57 2.75 3.28 3.98 14.98 17.73 20.57 

10% 16.03 14.89 6.63 6.38 7.27 8.59 25.09 28.82 31.74 

          

 

 

Not imposing a unit root on common factor 

 

 Mean Median SD 2.5% 5% 10% 90% 95% 97.5% 

          

5% 11.46 10.73 4.78 4.43 5.14 6.12 17.73 20.39 23.05 

10% 20.10 19.33 6.41 9.66 10.81 12.50 28.81 31.65 34.93 

          

 

Notes: Pair-wise ADF unit root tests. The bounds of the confidence intervals are given by the 

underlined figures. The number of bootstrap replications used to derive the empirical distribution of 

the fraction of rejections is 5000. 
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Table 4. Fraction of rejections assuming state income pairs are cointegrated with unknown 

cointegrating vector. Sample period 1929 – 2009. 

 

Johansen trace test 

 

  

Ho Ha  Fraction of rejections 

    

    

0r   1r   5% 62.68 

0r   1r   10% 71.72 

    

 

 

Johansen maximum eigenvalue test 

 

  

Ho Ha  Fraction of rejections 

    

    

0r   1r   5% 53.55 

0r   1r   10% 65.60 

    

 

Notes: The Johansen cointegration test results are based on the estimation of bivariate 

VAR models with a constant term that enters unrestrictedly. The number of lags of the 

VAR models is determined using the AIC with 
m ax

4p  .  r denotes the number of 

cointegrating vectors. Critical values are based on response surfaces estimated by 

MacKinnon, Haug and Michelis (1999). 
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Table 5. Distribution of the bootstrapped fraction of rejections assuming state income pairs are 

cointegrated with unknown cointegrating vector. Sample period 1929 – 2009. 

 

Imposing a unit root on common factor 

 

Johansen test Mean Median SD 2.5% 5% 10% 90% 95% 97.5% 

            

           

Trace:          

Ho Ha           

0r   1r   5% 25.87 22.52 14.80 6.20 7.71 9.93 47.08 55.33 62.41 

0r   1r   10% 37.31 34.62 17.31 10.90 12.94 16.58 62.59 69.59 74.91 

            

Max. Eigenvalue:          

Ho Ha           

0r   1r   5% 21.54 17.64 13.66 5.41 6.56 8.07 40.78 50.36 56.83 

0r   1r   10% 31.65 28.10 16.22 9.66 11.44 13.74 55.50 64.27 69.42 

            

 

 

Not imposing a unit root on common factor 

 

Johansen test Mean Median SD 2.5% 5% 10% 90% 95% 97.5% 

            

           

Trace:          

Ho Ha           

0r   1r   5% 27.80 25.53 12.77 9.22 11.26 13.56 45.48 52.75 58.95 

0r   1r   10% 36.10 34.31 13.57 14.71 17.29 20.21 55.14 61.53 67.11 

            

Max. Eigenvalue:          

Ho Ha           

0r   1r   5% 20.90 18.44 11.22 6.56 7.80 9.49 35.90 43.71 50.44 

0r   1r   10% 27.92 25.44 12.22 11.26 12.86 14.89 44.60 52.58 59.22 

            

 

Notes: r denotes the number of cointegrating vectors. The bounds of the confidence intervals are 

given by the underlined figures. The number of bootstrap replications used to derive the empirical 

distribution of the fraction of rejections is 5000. 
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Table 6. Fraction of rejections assuming MSA income pairs are cointegrated with known 

cointegrating vector  
'

1, 1  

 

 

 Fraction of rejections  

  

  

5% 15.48 

  

10% 25.38 

  

 

Notes: The ADF unit-root test regressions include a linear trend if it is 

statistically significant at the 5% level. The number of lags of the dependent 

variable is determined using the AIC with 
m ax

4p  . Critical values for the 

ADF test are based on response surfaces estimated by Cheung and Lai 

(1995). 
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Table 7. Distribution of the bootstrapped fraction of rejections assuming MSA income pairs are 

cointegrated with known cointegrating vector  
'

1, 1  

 

 

Imposing a unit root on common factor 

 

 

 Mean Median SD 2.5% 5% 10% 90% 95% 97.5% 

          

5% 12.65 12.46 2.29 8.65 9.19 9.88 15.64 16.72 17.84 

          

10% 21.16 20.99 3.12 15.39 16.26 17.32 25.21 26.59 27.93 

          

 

 

Not imposing a unit root on common factor 

 

 

 Mean Median SD 2.5% 5% 10% 90% 95% 97.5% 

          

5% 12.68 12.49 2.25 8.80 9.30 9.98 15.62 16.68 17.74 

          

10% 21.20 21.01 3.07 15.71 16.44 17.42 25.24 26.57 27.78 

          

 

Notes: Pair-wise ADF unit root tests. The bounds of the confidence intervals are given by the 

underlined figures. The number of bootstrap replications used to derive the empirical distribution of 

the fraction of rejections is 5000. 
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Table 8. Fraction of rejections assuming MSA income pairs are cointegrated with unknown 

cointegrating vector 

 

Johansen trace test 

 

  

Ho Ha  Fraction of rejections 

    

    

0r   1r   5% 15.32 

0r   1r   10% 24.64 

    

 

 

Johansen maximum eigenvalue test 

 

  

Ho Ha  Fraction of rejections 

    

    

0r   1r   5% 12.57 

0r   1r   10% 20.39 

    

 

Notes: The Johansen cointegration test results are based on the estimation of bivariate 

VAR models with a constant term that enters unrestrictedly. The number of lags of the 

VAR models is determined using the AIC with 
m ax

4p  .  r denotes the number of 

cointegrating vectors. Critical values are based on response surfaces estimated by 

MacKinnon, Haug and Michelis (1999). 
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Table 9. Distribution of the bootstrapped fraction of rejections assuming MSA income pairs are 

cointegrated with unknown cointegrating vector 

 

Imposing a unit root on common factor 

 

Johansen 

cointegration test 

Mean Median SD 2.5% 5% 10% 90% 95% 97.5% 

            

           

Trace:          

Ho Ha           

0r   1r   5% 19.57 18.23 6.32 11.37 12.33 13.33 27.38 31.34 36.22 

0r   1r   10% 27.40 25.74 7.95 16.73 17.98 19.36 37.45 42.66 48.17 

            

Max. Eigenvalue:          

Ho Ha           

0r   1r   5% 17.72 16.79 4.65 11.45 12.15 13.01 23.12 26.31 29.34 

0r   1r   10% 25.15 24.04 6.01 16.96 17.91 18.95 32.40 36.21 40.26 

            

 

 

Not imposing a unit root on common factor 

 

Johansen 

cointegration test 

Mean Median SD 2.5% 5% 10% 90% 95% 97.5% 

            

           

Trace:          

Ho Ha           

0r   1r   5% 20.14 19.68 3.85 13.97 14.71 15.61 25.23 27.24 28.91 

0r   1r   10% 28.28 27.78 4.83 20.25 21.29 22.55 34.58 37.14 38.99 

            

Max. Eigenvalue:          

Ho Ha           

0r   1r   5% 18.46 18.09 3.36 13.06 13.70 14.51 22.89 24.66 26.16 

0r   1r   10% 25.96 25.59 4.23 19.00 19.88 20.97 31.56 33.57 35.39 

            

 

Notes: r denotes the number of cointegrating vectors. The bounds of the confidence intervals are 

given by the underlined figures. The number of bootstrap replications used to derive the empirical 

distribution of the fraction of rejections is 5000. 
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Appendix 1. Factor estimate equations 

State Intercept (s.e.) Trend (s.e.) t
y  (s.e.) 2

R  

AL -1.840 0.100 -0.002 0.001 1.369 0.029 0.998 

AR -2.005 0.121 -0.003 0.001 1.396 0.035 0.997 

AZ -0.095 0.083 -0.003 0.001 1.039 0.024 0.997 

CA 1.317 0.028   0.766 0.006 0.995 

CO 0.480 0.085 0.003 0.001 0.884 0.024 0.997 

CT 2.472 0.174 0.011 0.001 0.423 0.050 0.985 

DE 2.028 0.136 0.003 0.001 0.574 0.039 0.986 

FL -0.221 0.034   1.051 0.008 0.996 

GA -1.276 0.038   1.248 0.009 0.996 

IA -0.903 0.147 -0.006 0.001 1.263 0.042 0.992 

ID -0.731 0.141 -0.006 0.001 1.204 0.041 0.992 

IL 0.965 0.025   0.833 0.006 0.996 

IN -0.546 0.083 -0.007 0.001 1.188 0.024 0.997 

KS -1.389 0.107 -0.008 0.001 1.386 0.031 0.996 

KY -0.969 0.037   1.165 0.008 0.996 

LA -0.681 0.037   1.110 0.008 0.996 

MA 2.875 0.156 0.015 0.001 0.264 0.045 0.988 

MD 1.686 0.125 0.009 0.001 0.588 0.036 0.993 

ME 1.334 0.144 0.007 0.001 0.618 0.042 0.991 

MI 0.003 0.110 -0.006 0.001 1.087 0.032 0.994 

MN 0.514 0.079 0.005 0.001 0.855 0.023 0.998 

MO 0.259 0.025   0.945 0.006 0.997 

MS -2.297 0.123 -0.002 0.001 1.435 0.035 0.997 

MT -0.361 0.166 -0.007 0.001 1.141 0.048 0.986 

NC -1.293 0.038   1.247 0.009 0.996 

ND -3.389 0.293 -0.017 0.002 1.886 0.084 0.979 

NE -0.898 0.148 -0.005 0.001 1.250 0.043 0.992 

NH 1.924 0.129 0.013 0.001 0.469 0.037 0.993 

NJ 1.958 0.131 0.008 0.001 0.548 0.038 0.992 

NM -1.357 0.153 -0.006 0.001 1.319 0.044 0.992 

NV 1.029 0.135 -0.003 0.001 0.854 0.039 0.988 

NY 2.549 0.156 0.009 0.001 0.413 0.045 0.984 

OH 0.488 0.065 -0.003 0.001 0.936 0.019 0.998 

OK -1.459 0.154 -0.006 0.001 1.351 0.044 0.993 

OR -0.041 0.106 -0.005 0.001 1.076 0.031 0.994 

PA 1.278 0.079 0.004 0.001 0.697 0.023 0.997 

RI 2.670 0.152 0.011 0.001 0.326 0.044 0.986 

SC -1.546 0.043   1.281 0.010 0.996 

SD -2.618 0.242 -0.012 0.002 1.665 0.070 0.985 

TN -1.147 0.026   1.213 0.006 0.998 

TX -0.855 0.106 -0.003 0.001 1.211 0.031 0.996 

UT -0.414 0.102 -0.005 0.001 1.121 0.030 0.995 

VA 0.080 0.100 0.006 0.001 0.922 0.029 0.997 

VT 1.190 0.130 0.008 0.001 0.645 0.038 0.993 

WA 0.233 0.117 -0.003 0.001 1.009 0.034 0.994 

WI 0.316 0.019   0.941 0.004 0.998 

WV 0.067 0.103 0.002 0.001 0.920 0.030 0.996 

WY 0.422 0.063   0.929 0.014 0.982 

 


