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ABSTRACT 

This study investigates the mean and volatility spillover effects of World oil prices on food 

prices for selected Asia and Pacific countries including Australia, New Zealand, South Korea, 

Singapore, Hong Kong, Taiwan, India and Thailand. The research employs vector 

autoregression (VAR) and GARCH-family models using daily observations for the 2 

January1995 to 30 April 2010 period, splitting the data into two subsamples 1995-2001 and 

2002-2010. The major empirical findings of the study are as follows. World oil prices 

positively influence food prices of the selected countries both in mean and in volatility, 

though the magnitudes of effects differ from country to country for different time periods.  

The effects are found mostly in the short run but not in the long run. Stronger mean and 

volatility spillover effects are found for the more recent subsample period suggesting 

increasing interdependence between World oil and Asia Pacific food markets in recent times. 

In terms of mean spillover effects net food importer countries’ food price show stronger 

effects to the shocks, whereas in terms of volatility spillover effects no distinction in 

absorbing the World oil shocks can be made between exporters and importers. The findings 

suggest that oil prices should be taken into consideration in policy preparation and 

forecasting purposes for food prices. 
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1. Introduction 

The skyrocketing trend of world oil and food prices in recent years has attracted the 

attention of concerned observers. The nexus between these two prices is now well 

documented in both media and academic literature for different reasons and recent surging of 

these prices also added additional attention to the analysts of governments, international and 

private research organizations(Abott et al., 2009). Hence, the impact of oil prices on food 

prices has been studied from different viewpoints. It is believed that food prices are 

immensely influenced by world oil prices because agriculture is traditionally energy intensive 

and thus oil prices have direct linkage with agricultural commodity prices. When oil price 

increases agricultural input prices also increase,  ultimately triggering the agricultural 

commodity price hikes (Hanson et al., 1993; Nazlioglu and Soytas, 2010). 

One of the many reasons for the rise in food prices is the increase in petroleum prices. A 

number of studies have focused on the causes of food price hike emphasising the factors 

related to petroleum usage and price; for example, increased demand for bio-fuel as an 

alternative of conventional fossil fuel has been identified as one of the factors of the food 

price surge (Headey and Fan, 2008; Mitchell, 2008; Rosegrant et al., 2008). Few other 

studies also show that increases in oil and metal prices lead the jump  in food prices 

(Radetzki, 2006; Headey and Fan, 2008; Du et al., 2010).  

A few studies have dealt with the analysis of spillover effects of oil price on food prices. 

Baffes (2007) examined the effect of oil prices on 35 internationally traded primary 

commodity prices including food and found that the fertilizer price index has shown highest 

pass through  of any agricultural commodity. Alghalith (2010)  pointed out that in an oil 

exporting country like Trinidad and Tobago the food price is largely influenced by higher oil 

prices. Du et al. (2010) applying a Bayesian econometric analysis documented  evidence of 

volatility spillovers among crude oil, corn and wheat markets. In the same line Esmaeili and 

Shokoohi (2011), using principal component analysis, argued that the oil price index has an 

influence on the food price index . Relationships between oil and food prices  were also 

modelled by Chen et al. (2010),  documenting that global grain prices for corn, soybean and 

wheat are significantly influenced by the changes in  crude oil prices. The impact of crude oil 

prices on vegetable oil price is found to be positive as discussed in Abdel and Arshad (2008). 

Despite having extensive evidence of positive relationships between oil and agricultural 

commodity prices some studies concluded that there is no significant influence of oil prices 
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on food prices.For example,  Nazlioglu and Soytas (2010) revealed in the case of Turkey that 

oil prices do not have any direct or indirect impact on agricultural commodity prices.  Yu et 

al. (2006) by applying cointegration approach to World crude oil prices and a set of edible oil 

prices concluded that World oil price does not exert any influence  on  edible oil prices. 

Kaltalioglu and Soytas (2009) also reports similar results that World oil prices do not have 

any significant influence on World food prices and agricultural raw materials prices. In a 

study in the context of China’s corn, soybean, and pork prices for the period of January 2000 

to October 2007 Zhang and Reed (2008)  maintained that  World crude oil prices are not the 

factors  predominately contributing  to the recent surging of  selected agricultural commodity 

prices. 

However, to the best of our knowledge, there is a dearth of studies of the impact of World 

oil prices on food prices using a daily data set in the style of financial asset modelling with 

regard to    mean and volatility spillover effects.  This seems to be particularly true in the 

context of Asia and Pacific countries. This topic, however, warrants the attention of 

researchers now, not only due to its importance for social well being, but also  because of the 

fact that  food prices, particularly food commodity future prices, are  gaining popular 

positions in the portfolios of fund managers  much as crude oil prices have (Robles et al., 

2009; Gilbert, 2010). Hence, the objective of the current study is to explore the mean and 

volatility spillover effects of World oil prices on food prices in the context of a set of Asia 

and Pacific countries namely Australia, New Zealand, Korea, Singapore, Hong Kong, 

Taiwan, India and Thailand. The study area is a combination of both net food exporters and 

importers with a common feature of their net oil importer status. Australia, New Zealand, 

India and Thailand are regarded as net food exporter countries. Hence the empirical findings 

w permit inferences about similarities and differences in terms of the effects of oil price 

shocks. 

The remainder of the paper is structured as follows. The next section outlines the sources 

of data obtained and the statistical properties of both oil and food price data. Section 3 

delineates the methodology used along with the model framework for both univariate and 

multivariate analysis. Section 4 reports results and discusses the main empirical findings 

while the last section concludes the paper. 
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2. Data and their properties 

This study uses daily oil and food producer price indices for January 1995 to April 2010 

provided by DataStream. The sample period is chosen based on the availability of data for all 

required series. For oil world integrated series (OP) and for food prices integrated food 

producer price indices for Australia (AFP), New Zealand (NFP), Korea (KFP), Singapore 

(SFP), Hong Kong (HFP), Taiwan (TFP), India (IFP) and Thailand (THFP) are chosen. Food 

price increases  experienced sharp growth after 2001 and so we examine the effects of oil 

prices on food prices in three different time periods,  by estimating models  in distinct time 

periods, namely full sample January 1995 to April 2010, early subsample from January 1995 

to December 2001 and latest subsample from January 2002 to April 2010. As a consequence 

4,000 observations for full sample, 1,824 observations for the early subsample and 2,087 

observations for the latest subsample are utilized.  

Table 1 depicts summary statistics of food and oil prices over the full sample period. The 

measure of volatility, standard deviation, is high for all of the price series which basically 

tells about the high volatility of food and oil prices. All price series are positively skewed 

except the New Zealand food price index. That means all other series have long right tail and 

New Zealand food price index has long left tail. The values of kurtosis are close to three in all 

cases except New Zealand implying distributions are more peaked than normal. None of the 

series shows any evidence of a normal distribution because the Jarque-Bera statistics reject 

the null hypothesis of normality at any level of significance for every series of data. The LB 

Q-stat indicates high evidence of autocorrelation and non-constant variances. The lower panel 

of Table 1 displays the properties of returns series. Returns series are calculated by using 

standard logarithmic technique Rt = ln(Pt/Pt-1) where Pt is the price for current day while Pt-1 

represents price for the previous day. Returns series seem to have the typical characteristics 

of financial variables which can be seen in Figure 1. Figure 1 shows that returns for both oil 

and food price follow volatility clustering. The evidence of long left tails can be seen for the 

food price returns of Australia and Korea along with international oil prices. Excess kurtosis 

is greater than 3 in all cases. The existence of standard deviations greater than mean returns, 

non normality, and evidence of autocorrelation clearly suggest the data o be analyzed by 

GARCH type models. Returns series are used for estimation purposes within the framework 

of univariate and multivariate GARCH models. From the summary statistics it seems evident 

that oil and food prices display features associated with financial characteristics such as 

volatility clustering, long tails and leptokurtosis. 



4 
 

Table 1 Statistical properties of data 

Prices 
 AFP NFP KFP SFP HFP TFP IFP THFP OP 

Mean  976.71 451.26  385.75  474.17  168.94 284.35 1078.30 550.57 1387.06 

Median 895.33 483.45 333.69 418.97 116.65 234.69 899.30 561.64 1100.81 

Maximum 1905.49 744.57 871.13 1007.11 625.34 695.64 2989.23 1190.86 3336.58 

Minimum 477.21 206.46 124.31 117.19 33.39 116.25 254.14 176.56 501.41 

Std. Dev. 363.04 129.65 180.13 218.31 132.94 135.55 630.13 171.32 658.94 

Skewness 0.636 -0.244 0.595 0.526 1.460 0.866 0.833 0.370 0.844 

Kurtosis 2.31 1.86 2.09 1.98 4.45 2.67 2.95 3.35 2.66 

J-B 348.54 254.97 373.57 355.22 1776.97 518.42 463.56 112.01 493.92 

Prob. 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

LBQ(15) 59377 58556 58548 58996 58363 58330 58470 57112 59157 

Obs. 4000 4000 4000 4000 4000 4000 4000 4000 4000 

Returns 
 RAFP RNFP RKFP RSFP RHFP RTFP RIFP RTHFP ROP 

Mean (%) 0.0001 -6.78E-06 0.0002 0.0001 0.0004 0.0002 0.0004 0.0001 0.0003 

Median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008 

Maximum 0.0105 0.2138 0.1251 0.1576 0.1556 0.1583 0.1391 0.1687 0.0975 

Minimum -0.1138 -0.1967 -0.1481 -0.1352 -0.1505 -0.0898 -0.0862 -0.1580 -0.1123 

Std. Dev. (%) 0.0123 0.0160 0.0232 0.0193 0.0209 0.0225 0.0156 0.0186 0.0130 

Skewness -0.0455 0.0782 -0.0691 0.2547 0.1131 0.1113 0.3936 0.0234 -0.4214 

Kurtosis 11.071 23.414 7.710 9.486 9.265 5.002 8.148 11.871 11.9545 

J-B 10856 69445 3699 7053 6550 676 4520 1311 11.954 

Prob. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

LBQ(15) 44.60 14.89 70.17 34.15 21.77 36.57 44.85 62.23 111.83 

Obs. 3999 3999 39999 3999 3999 3999 3999 3999 3999 

 

 

Figure 1 Oil and food price returns for the period 1995 to 2010 

 

3. Methodology 

3.1 Methods for modelling mean spillover effects of oil prices on food prices 

With a view to check mean spillover effects of World oil prices to food prices this study 

employs bi-variate vector autoregression (VAR) method of  analysis originally developed by 

Sims (1980). In the VAR approach to analysing interrelationships among variables the two 

main procedures are Granger causality tests and innovation accounting such as impulse 
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response analyses and forecast error variance decompositions. Estimated VAR results are 

analyzed with the help of Granger causality tests, variance decomposition and impulse 

response analysis.  A typical VAR model having p lags can be expressed succinctly in matrix 

notation as follows:  

.........X A A X A X A Xt 0 1 t 1 2 t 2 p t p t           (1) 

Where Xt  is a n x 1 vector of endogenous variables, A0  is a n x 1 vector of constants, Ai  

are n x n matrices of parameters and 
t  is a zero mean white noise vector of n x n variance-

covariance matrices.  

Granger causality shows whether lagged values of one variable help to predict another 

variable. “A variable yt is said to Granger-cause xt, if xt can be predicted with greater accuracy 

by using past values of the yt variable rather than not using such past values, all other terms 

remaining unchanged (Granger, 1969)”. Letting yt and xt, be two stationary variables with 

zero means, a simple causal model can be written in the following VAR form:  

m m

t j1 j j tt t j
j 1 j 1

y ya bx  
 

               (2) 

m m

t t j2 j j tt j
j 1 j 1

yc dx x 
 

              (3) 

Where t and t are assumed as uncorrelated white noise series, i.e. E) =0=E 

), s ≠ t. If aj is statistically different from zero and bj is not statistically different from 

zero then we say xt   Granger-causes yt. Similarly, yt is Granger-causing xt  if some cj  is 

statistically different from zero. If both parameters are statistically different from zero there 

will have bidirectional causality or it is said to have feedback relationship between them, and 

if neither of them is statistically different from zero we infer that xt and yt  are independent of 

each other.   

Assuming that invertability conditions hold we can consider the VMA (Vector moving 

average) representation of the bivariate VAR model for the impulse response functions. 

1,t it 10 11 12

i 21 22t 20 2,t i

eFP a (i) (i)

(i) (i)OP a e






       
       

       
         (4) 

The parameters in the jk(i) may be used to generate the numerical effects of errors’ shocks 
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on the time path of endogenous variables. In the proposed case, there would be two possible 

shocks to the system and therefore, there will be four impulse response functions (IRFs), 

which will be presented in graphical form.  

In the bivariate setting the m step forecast error for xt series can be expressed as  

t m t t m 11 xt m 11 xt m 1 11 xt 1

12 yt m 12 yt m 1 12 yt 1

( ) (0) (1) ............... (m 1)

(0) (1) ............ (m 1)

a e a e a ex E x

a e a e a e
     

   

     

    
    (5) 

where xt is a column vector of variables. 

Taking the variance xm)2 of this m step forecast error  gives: 

2 2 2 2

xx 11 11

2 2 2

y 12 12

(m) (0) .................... (m 1)

(0) .................. (m 1)

a a

a a

      

     


      (6) 

The first part of the right hand side of the above equation shows the variance due to the 

shocks to xt and second part measures the effect to the yt series. 

3.2 Methods for volatility spillover effects of oil prices on food prices 

In order to examine the volatility spillover effects of international oil prices on the food 

prices of selected Asian and Pacific countries we use univariate GARCH models. The 

estimation procedure involves several stages. First of all we estimate different GARCH 

models of oil price volatility for different time periods. Models are estimated under the set of 

different linear and nonlinear GARCH models and the best fit model is selected based on the 

information criteria and forecasting capabilities. Over the full sample period the Exponential 

GARCH (EGARCH) model developed by Nelson (1991) fits data  better than other models. 

For the early subsample the Component GARCH (CGARCH) model developed by Engle and 

Lee (1993) better captures volatility characteristics than other models, and over the latest 

subsample the Power ARCH (PARCH) model provided by Ding et al. (1993) outperforms 

other models. 

In the second stage we obtain conditional variances (CV) out of these models to 

incorporate them into the variance equations of food price returns models. In the final stage 

we estimate several ARMA (p,q)-GARCH(1,1) models for all food price series incorporating 

CVs in variance equations in line with Liu and Pan (1997) Lin and Tamvakis (2001) Engle et 

al. (2002) Hammoudeh et al.(2003)  and chose best models based on the information criteria 
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and forecasting ability. In this stage simple GARCH models provided by Bollerslev (1986),  

Threshold GARCH (TGARCH) developed by Glosten et al. (1993), EGARCH, PARCH and 

CGARCH models are found to be good fit for different food price series in different time 

periods. 

The models we estimated for the purpose of volatility spillover effects are discussed 

briefly in the following two sections. 

3.2.1 Volatility models for oil price 

As stated earlier for oil price volatility, EGARCH, CGARCH and PARCH models are 

found to be good fit for three different time periods. For full sample, oil price is estimated by 

ARMA (p,q)-EGARCH (1, 1) model. The model can be specified as follows: 

Mean equation: 

1 2 4t t i t i tROIL ROIL e       
                             (7)

 

),0(~ tt hiid
 

Variance equation: 
 

1 1
0 1 2 3 1

1 1

log logt t
t t

t t

e e
h h

h h
    



 

   

                        (8) 

Where the parametercaptures the magnitude of conditional shocks on the conditional 

variance, measures leverage effects (if then negative shocks give rise to higher 

volatility than positive shocks and vice versa), measures persistency of any shocks to 

volatility and should be less than 1 to  reflect the stationarity of the returns series.  

 For the 1995 to 2001 sample period the symmetric ARMA (p,q)-CGARCH (1, 1) model  

seems be suited to capture the financial characteristics. The model can be written as follows:  

Mean equation: 

1 2 4t t i t i tROIL ROIL e       
                        (9)

 

),0(~ tt hiid
 

Variance equations:
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Where tq  is the permanent component, (
2

1 1t te h  ) serves as the driving force for the time 

dependent movement of the permanent component and ( 1 1t th q  ) represents the transitory 

component of the conditional variance. The parameter measures asymmetry of leverage 

effects and the sum of parameters 3  and 5  measures the transitory shock persistence, while 

1 measures the long run persistency derived from the shock to a permanent component given 

by 2 .  

For the period January 2002 to April 2010 PGARCH (1, 1) model is selected  as follows: 

1 2 3t t i tt i
ROIL ROIL e    

     

),0(~ tt hiid  

444 )()()( 1312110

    tttt heeh
                (11) 

where th is conditional standard deviation and  is power term which is determined 

within the model,  and  are ARCH and GARCH parameters, while  parameter captures 

leverage effects or asymmetry. Based on the value of the power term this model can take the 

form of various ARCH/GARCH models. If it becomes TGARCH model and when 

and it becomes GARCHmodel

3.2.2 Volatility spillover models for food prices 

As stated earlier different volatility models qualify to be estimated for different food price 

models across time periods. Conditional variance equations of the ARMA (p,q)-GARCH 

models for GARCH, TGARCH, EGARCH, PARCH and symmetric and asymmetric 

CGARCH models estimated are presented below. ARMA orders are set by Box-Jenkins 

methodology (Box and Jenkins, 1976). Conditional mean equations are not shown because 

the interest is on conditional variance equations only. The parameters (s) associated with 

roilht-1 in each case measures the volatility spillover effects from World oil prices to food 

prices of the selected countries. 

Conditional variance equation of GARCH (1, 1) model: 
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2

0 1 1 3 1 4 1t t t th e h roilh        
                   (12) 

Conditional variance equation of TGARCH (1, 1) model: 

2 2

0 1 1 2 1 1 3 1 4 1t t t t t th e e d h oilh            
                                                                      (13) 

Conditional variance equation of EGARCH (1, 1) model: 
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                                                          (14)
 

Conditional variance equation of PGARCH (1, 1) model: 
 

5 5 5

0 1 1 2 1 3 1 4 1( ) ( ) ( )t t t t th e e h Oilh
             

                                                  (15)
 

Conditional variance equations of symmetric CGARCH model with spillover parameter in 

permanent equation: 
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                                                               (16)

 

Conditional variance equations of symmetric CGARCH model with spillover parameter in 

transitory equation: 
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Conditional variance equations of asymmetric CGARCH (1, 1) with spillover parameter in 

permanent equation: 
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              (18) 

Conditional variance equations of asymmetric CGARCH (1, 1) with spillover parameter in 

transitory equation: 

2
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In each case to avoid the possible violation of normality models are estimated by using 

generalized error distribution (GED). 

3.3 Methods for robustness analysis 

 In order to check robustness of the results to be obtained for mean and volatility spillover 

effects from World oil prices to food prices of the concerned countries we use multivariate 

GARCH (MGARCH) models, in particular, bivariate BEEK (Baba, Engle, Kroner and Kraft) 

type model proposed by Engle and Kroner (1995) is employed. To be specific, we develop 

model in line with Higgs and Worthington (2004) and Lee (2009). The model consists of 

conditional mean and variance equations. The conditional mean returns equation we develop 

for each of the food price model can be written as:  

                                                           1t t tR AR                                                           (20) 

N(0, )I Ht 1 tt   

where Rt is an n x 1 vector of daily food/oil price returns at time t for each market, is an n x 

1 vector of constants, t is a n x 1 vector of innovation for each market at time t with its 

corresponding n x n conditional variance and covariance matrix, Ht and the elements of aij of 

the matrix A are the measures of the degree of mean return spillover effects across food and 

oil markets, specifically, the estimates of the elements of the matrix A offer measures for own 

lagged and cross mean spillovers. 

The variance equation in the BEKK representation for MGARCH model can be written as: 

                                   11 1C C G GH Ht tt t                                               (21)                                            

where ci,j are elements of n x n symmetric C matrix of constants; bi,j, the elements of  n x n 

symmetric B matrix, measure the degree of lagged and cross innovation from market i to 
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market j and the elements gi,j of the n x n symmetric G matrix signifies the persistence of 

conditional volatility between market i and j. 

The equation in (21) can be written in its simple form for the bi-variate BEKK model as: 

2 1, 1 2, 11, 1
11 12 11 12

2
2, 1 1, 121 22 21 222, 1

11 12 11 12
1

21 22 21 22

t tb b b bt
C CH t

b b b b
t t t

g g g g

H t
g g g g

 

 

       
         

      
   

      
   

       (22) 

In equation (22) b21 measures the volatility spillover from oil market  to food market and 

b12 represents the volatility spillover from food market to oil market, g21 indicates volatility 

persistence effects from oil market to food market and g12 shows the volatility persistence 

effects from food market to oil market. For possible violation of normality we estimate 

models  using Bollerslev and Wooldridge (1992) robust standard errors. 

4. Empirical Results 

4.1 Mean spillover effects from oil prices to food prices 

In order to examine the effects of shocks to oil prices on food prices at mean level, 

bivariate VAR models  pairing oil price to each country’s food prices are estimated for each 

of the series  covered  in the study. Augmented Dickey Fuller (ADF) tests results in Table 2 

show that all price series are nonstationary  levels while they are stationary  in first 

differences,  hence  integrated of order 1 (Dickey and Fuller, 1979). 

Table 2 Results Unit root test 
 1995-2010 1995-2001 2002-2010 

 Level First diff. Level First diff. Level First diff. 

OP -1.2181 -45.1538a -1.7616 -32.8788a -1.3622 -41.0669a 

AFP -1.4532 -68.2317a -1.5527 -43.5495a -1.3927 -50.7298a 

NFP -1.6695 -62.1734a -0.5725 -32.4212a -1.1077 -45.3704a 

KFP -1.4040 -60.4630a -1.9086 -26.6785a -1.5674 -47.0544a 

SFP -0.6752 -62.0449a -0.8843 -42.1481a -0.6603 -45.6006a 

HFP 1.8033 -58.4303a -1.2995 -42.98297a 0.7765 -42.6141a 

TFP -1.3745 -45.8658a -1.2781 -39.9285a -1.1804 -34.7303a 

IFP 0.4328 -58.7985a -0.7288 -39.9593a -0.2242 -43.3031a 

THFP 0.1118 -62.5226a -1.6312 -39.79405a 0.5766 -48.2952a 

            Notes: The values are t statistics and a, b, c indicate 1%, 5% and 10% significance level respectively 

 However, according to the Johansen (1988) cointegration testing procedure, in no instance is 

the food price series cointegrated with world oil prices at any level of significance. These  

results are not produced here for brevity purpose but are available from the author. Although 
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oil and food price indices do not show any long run linear combination (consistent with 

Zhang et al.(2010)p), the Pearsonian correlation coefficients amongst the series are 

significant, being greater than 0.5 .  about or  greater than 0.50 in each case for full sample 

period (see Table 3). For the early and recent subsamples the correlation coefficients differ  

from full sample results. Based on the positive correlations in all cases except two exceptions 

in the early subsample, it can be concluded that though oil and food prices do not exhibit any 

long run relationship there might have short run relationship between them. The significant 

lagging and leading relationship along with nonstationary properties suggest using bivariate 

VAR regression models with first differenced series. With a view to  estimating the VAR 

models, optimal lag lengths are selected based on the lowest values of information criteria 

e.g. LR, FPE, AIC, SC and HQ supported by at least 3 criteria values which are used for 

Granger causality tests. For each model we select the lag length indicated by three of the five 

criteria employed. As can be seen in Table 4 for most models optimal lag length is 8 with the 

exception of New Zealand and Thai models. For these two models optimal lag lengths are 3 

and 5 respectively.  

Table 3 Correlation between oil and food prices 
1995-2010 AFP NFP KFP SFP HFP TFP IFP THFP OP 

OP 0.801 0.543 0.904 0.489 0.794 0.674 0.887 0.497 1.000 

1995-2001 

OP 0.6463 0.7255 0.3838 -0.7928 -0.7199 0.1337 0.8501 0.1306 1.00 

2002-2010 

OP 0.5942 0.2062 0.9446 0.9046 0.8067 0.8393 0.8363 0.0925 1.000 

 

Table 4 Optimal lag length 
 Models LR FPE AIC SC HQ 

AFP   OP 8 8 8 2 3 

NFP   OP 5 3 3 2 3 

KFP   OP 8 8 8 2 3 

SFP    OP 8 8 8 2 3 

HFP   OP 8 8 8 3 3 

TFP    OP 8 8 8 2 3 

IFP    OP 8 8 8 2 4 

THFP OP 5 5 5 2 3 

Based on the optimal lag length the models are estimated accordingly in the unrestricted 

VAR form and we do not report the results of VAR models in the paper because associated 

tool kits explain results more than VAR coefficients.  The results of Granger causality tests, 

variance decompositions and impulse response functions are illustrated in the following 

sections. 

 4.1.1 Granger causality test results 

Table 5 reports Granger causality test results. The second, third and fourth column lists 

Chi-square statistics with p-values in parentheses for the period of 1995-2010, 1995-2001 and 



13 
 

2002-2010 respectively. It is clear from estimated chi-square statistics that future food prices 

can be predicted with lagged values of themselves and international oil prices. International 

oil prices and food prices of all countries show unidirectional causal relationship from oil to 

food prices except Australia across all three sample/subsamples. In the case of Australia and 

India a bidirectional causal relationship can be observed for full sample period. Although it 

seems there is bidirectional causal relationship between oil and Indian food prices the Chi 

square statistics from oil to food is statistically significant at 1% level of significance while 

from food to oil it is statistically significant only at 10% level of significance.  For  the two 

subsamples no evidence of bidirectional causal relationship appears for India, or for  

Australia  for the subsample of 1995-2001. These results imply weak causality evidence from 

food prices to oil price. Based on the analysis above, it can be inferred that there is significant 

evidence of unidirectional mean spillover from oil prices to food prices in the Asia-pacific 

region. 

        Table 5 Results of Granger causality test for food and oil prices 
Null hypotheses 1995-2010 1995-2001 2002-2010 

OP does not Granger cause AFP 
125.7587a 

(0.0000) 

55.09729a 

(0.0000) 

77.54047a 

(0.0000) 

AFP does not Granger cause OP 
57.45922a 

(0.0000) 

9.544899 

(0.2159) 

30.15450a 

(0.0000) 

OP does not Granger cause NFP 
60.70656a 

(0.0000) 

9.313342b 

(0.0254) 

54.87965a 

(0.0000) 

NFP does not Granger cause OP 
3.33546 

(0.3427) 

2.857248 

(0.4142) 

5.667793 

(0.1289) 

OP does not Granger cause KFP 
87.53245a 

(0.0000) 

9.373401 

(0.1536) 

78.61508a 

(0.0000) 

KFP does not Granger cause OP 
8.888258 

(0.3518) 

20.77351a 

(0.0020) 

8.617526 

(0.1253) 

OP does not Granger cause SFP 
197.3285a 

(0.0000) 

10.92196b 

(0.0122) 

171.2682a 

(0.0000) 

SFP does not Granger cause OP 
10.14783 

(0.2548) 

1.241693 

(0.7430) 

19.51118b 

(0.0124) 

OP does not Granger cause HFP 
282.2730a 

(0.0000) 

12.60525b 

(0.0274) 

169.1262a 

(0.0000) 

HFP does not Granger cause OP 
12.55834 

(0.1280) 

8.680473 

(0.1225) 

2.266800 

(0.5189) 

OP does not Granger cause TFP 
93.83193a 

(0.0000) 

17.07319a 

(0.0007) 

60.68194a 

(0.0000) 

TFP does not Granger cause  OP 
12.99043 

(0.1122) 

2.244068 

(0.5233) 

10.42649 

(0.2364) 

OP does not Granger cause IFP 
45.10794a 

(0.0000) 

28.33284a 

(0.0002) 

29.40450a 

(0.0000) 

IFP does not Granger cause OP 
16.86679c 

(0.0315) 

8.301984 

(0.3067) 

3.365326 

(0.4986) 

OP does not Granger cause THFP 
22.58338a 

(0.0004) 

8.103010c 

(0.0879) 

15.58669a 

(0.0004) 

THFP does not Granger cause OP 
4.268140 

(0.5115) 

2.613111 

(0.6245) 

3.927047 

(0.1404) 

Notes: The values are chi-square statistics and values in parentheses are p-values and a, b, c indicate 1%, 5% 

and 10% significance level respectively 
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4.1.2 Analysis of forecast error variance decomposition  

The generated variance decomposition functions for 10, 20 and 30 day horizon are 

displayed in Table 6 over the full and two subsample periods. Over the full sample period all 

the price series receive considerable innovation effects from oil price changes. Shocks to oil 

prices contribute 5.5 percent to the variation of Australian food price chnages for 10 day 

horizon while the effects decrease gradually over the horizons. The contribution of oil price 

shocks to New Zealand food price change is 2.8 percent and the effects for Korea, Singapore, 

Hong Kong, Taiwan, India and Thailand are 8.52, 20.11, 18.21, 7.31, 7.16 and 3.49 percent 

respectively over 10 day period and the effects persist over 30 day horizon. Food importer 

countries show more volatility in prices than food exporter countries. Estimated values for the 

early subsample period shows negligible variation in food prices of each country due to the 

shocks in oil price changes while latest period data shows relatively high responsiveness of 

food price changes than the early subsample. This implies that oil and food markets are more 

interdependent in the recent periods than any other times in the past. Although the 

magnitudes of the sources of variation due to the oil price shocks are low there is a significant 

variation in food price in the recent time and the trend remains the same. 

Table 6 Variance decomposition (%) of food prices for horizon 10, 20 and 30 days 
 Periods 1995-2010(OP) 1995-2001(OP) 2002-2010(OP) 

AUSFP 10 5.5199 0.6599 1.8454 

20 1.8625 0.3609 1.5906 

30 1.6721 0.2503 1.3528 

NZFP 10 2.8164 0.4663 2.2728 

20 1.5599 0.7652 2.4586 

30 1.6195 1.1233 2.5836 

KORFP 10 8.5244 1.0450 5.9672 

20 4.5631 1.2185 7.4944 

30 5.2781 1.2805 8.4889 

SINFP 10 20.1125 0.1925 7.9498 

20 6.6162 0.1099 8.4112 

30 6.9563 0.1650 8.0272 

HKFP 10 18.2119 0.3391 2.7374 

20 7.5751 0.2399 2.3556 

30 7.9745 0.1718 2.0402 

TWNFP 10 7.3127 0.7893 2.1691 

20 2.0419 0.7510 2.9954 

30 2.3279 0.6934 3.4838 

INFP 10 7.1694 0.2611 2.4671 

20 3.0392 0.5742 2.8066 

30 3.1728 1.2641 2.8729 

THFP 10 3.4928 0.1496 0.7087 

20 1.4455 0.2458 0.6884 

30 1.5534 1.2641 0.6383 

Overall analysis of variance decomposition shows that oil prices contribute to the sources 

of food price volatility but the magnitude differs for food importing and food exporting 

countries. In food importing countries of Korea, Singapore, Hong Kong and Taiwan the 

contribution of oil prices to sources of volatility is higher than in food exporting countries of 
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Australia and New Zealand. Moreover, the magnitudes differ across time periods and in 

recent time period food and oil markets found to be more interdependent. This is because 

food production is getting more technology intensive, depending more on oil. The results of 

variance decomposition support the results of Granger causality tests that oil prices help 

prediction of food prices. 

4.1.3 Impulse response analysis 

The impulse response functions of food prices to oil price shocks are exhibited in Figures 

2-4 over three time periods for a horizon of 30 days. Figure 2 depicts the responses over the 

full sample period. The impulse response of the Australian food price changes to international 

oil shows that oil price shock positively affects Australian food prices in day 1 and persists 

for a long time though the magnitude diminishes over time. The magnitude is around 3 

percent. It can also be seen in Figure 3 that in thirty days the effect of shock does not 

disappear. New Zealand food prices also positively respond to the oil price shock and the 

effects of shocks stay stable for 30 days and longer with a magnitude of more than 1 percent. 

The Korean, Singapore, Hong Kong and Taiwan food prices also positively respond to the oil 

price shocks and the effects of shocks increases over time although the size of the effects are 

different. Consistent with New Zealand the effects of shocks to the Indian and Thai food 

prices are positive and keep stable over the period. Similar patterns can be seen in the net 

food exporter countries except Australia and this is also applicable among net importer 

countries.  

Figure 2 Impulse response functions of food prices to a Cholesky one standard deviation to 

oil price shock over the period 1995-2010.  
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Figure 3 displays responsiveness of food prices to international oil prices over the period 

of 1995-2001. Similar to variance decomposition results positive short-lived responses of 

food prices to oil price shocks can be viewed. Excepting New Zealand, Korea and Thailand 

in all other cases the effects of shocks die out quickly. In the Australian and Indian food 

market prices respond positively at around 2 percent at day 1 while it dies out rapidly in a 

week. In Singapore market the effects remain about 2 weeks and in Hong Kong it remains 

about four weeks. In the case of New Zealand and Thailand the effects increases gradually 

and decreases after a long period while it remains stable for 30 days and then dies out in 

Korean case. 

Figure 3 Impulse response functions of food prices to a Cholesky one standard deviation to 

oil price shock over the period 1995-2001 
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Figure 4 exhibits impulse response functions of food prices to the World oil price shock 

over the period 2002-2010. Similar to the above two periods, food prices positively respond 

to the oil prices. In Australia  food prices increase immediately with the oil price shock at 

about 4 percent and then die out gradually with more than 30 days. Although the magnitude 

for New Zealand food market is about 1.5 percent the effects of shocks persists over time and 

die out even after a longer period. The Korean and Singapore markets show similar patterns 

with the oil price shocks. Responding immediately with the shock food prices rise about 2 

percent and then they take another jump at period 4 which lift prices up to about 4 percent. 

The effects remain persistent over the 30 days and then die out slowly. For the Hong Kong 
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food market the oil prices contribute to 1 percent increase in the price at day 1 while the 

effects of shocks disappear gradually after 30 days. Taiwan food market also reacts positively 

at about 2 percent at the beginning and then cool down a bit at day 5 and then takes another 

pick up which remains stable for a long time. A similar pattern can be observed in the Indian 

food market though the magnitude is about 5 percent. Thai food prices shows relatively lower 

positive responses to the oil price shocks than all other markets. The magnitude of increase of 

the food price is less than 1 percent.  

Figure 4 Impulse response functions of food prices to a Cholesky one standard deviation to 

oil price shock over the period 2002-2010 
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In summary, impulse response analysis supports Granger causality results. Significant 

positive contribution of oil prices to the sources of food price changes can be observed across 

different time periods. Consistent with the variance decomposition analysis impulse response 

functions also reaffirms that food market and oil market are more interdependent in the recent 

period than the past. The magnitude of the responses due to food price shocks are higher in 

the recent period than the early subsample and also effects of shocks are persistent than 

previous period. 

4. 2 Volatility spillover effects from oil to food price returns 

Table 7 presents estimation output of different GARCH models for spillover effects over 

the full sample period 1995-2010. In each returns series, CGARCH models provide better fits 

to the data than the other models either in symmetric or asymmetric form. For Australia, 

Singapore, Hong Kong and India the symmetric CGARCH fits better while for the other four 

countries   the asymmetric CGARCH model better captures the volatility characteristics of 

food price returns. For symmetric CGARCH models is the measure for volatility spillover 

effects and for asymmetric models measures it. Both  and   measure  transitory or short 

run volatility spillover effects. Spillover parameters were initially incorporated in permanent 

components, but none of the relevant parameters were found statistically significant and 

hence variance spillover effects are restricted  to the transitory components. Almost all 

parameters including constants, ARCH, GARCH and leverage effects (where applicable) are 

significant mostly at 1% or 5% level of significance in each model. In all cases oil price 

posits positive volatility spillover effects to food price returns. For 1% increase of oil price 

returns Taiwan (0.396), Australia (0.283), Korea (0.269), Thailand (0.126) and Hong Kong 

(0.117) food prices show more volatility spillover effects while India (0.0520), Singapore 

(0.084) and New Zealand (0.114) food prices show relatively low volatility spillover effects 

during the period 1995-2010. Diagnostic  test statistics (LB-Q and ARCH-LM)  do not 

indicate model specification  errors. No or little evidence of further autocorrelation can be 

observed. GED parameters are all less than 2 and significant at 1% level of significance 

implying the justification of using the generalized error distribution instead of normal. 

Table 7 Estimated volatility model over the period 1995-2010  

Parameter

s 

RAUSFP 

CGARCH 

RNZFP 

CGARCH 

RKORFP 

CGARCH 

RSINFP 

CGARCH 

RHKFP 

CGARCH 

RTWNFP 

CGARCH 

RINFP 

CGARCH 

RTHFP 

CGARCH 

 8.98E-05a 

(1.25E-05) 
0.000215a 

(5.15E-05) 
0.000470a 

(0.000148) 
0.00038c 

(0.000181) 
0.000347a 
(6.64E-05) 

0.000437a 
(9.26E-05) 

0.001781a 
(0.004161) 

0.000806c 
(0.000493) 



20 
 

 0.992829a 

(0.002207) 

0.996477a 

(0.001615) 

0.985141a 

(0.005568) 

0.997307a 

(0.001854) 

0.988714a 

(0.004794) 

0.979262a 

(0.008189) 

0.999623a 

(0.000925) 

0.9888396a 

(0.007307) 

 0.019456a 

(0.002132) 

0.008753a 

(0.003127) 

0.083153a 

(0.013621) 

0.028348a 

(0.007645) 

0.023865a 

(0.008436) 

0.055999a 

(0.014502) 

0.041820a 

(0.007909) 

0.079598a 

(0.025150) 

 0.046410a 

(0.015616) 
0.082820a 

(0.024807) 
0.011048 

(0.029456) 
0.101908a 
(0.020779) 

0.138537a 
(0.024214) 

0.055765 
(0.036180) 

0.152485a 
(0.026619) 

0.128490a 
(0.048503) 

 -0.517645b 

(0.213108) 

0.064307 

(0.044050) 

0.120711b 

(0.047567) 

0.741272a 

(0.060482) 

0.638104a 

(0.062497) 

0.130157b 

(0.054766) 

0.606702a 

(0.069626) 

0.100317c 

(0.059209) 

 0.283881a 

(0.094862) 

0.584940a 

(0.084910) 

0.562814a 

(0.153289) 

0.084336c 

(0.045546) 

0.117693b 

(0.058793) 

0.447855a 

(0.139472) 

0.052099a 

(0.019524) 

0.556703a 

(0.107299) 

  0.114976b 

(0.053218) 
0.269618b 
(0.137220) 

  0.396927b 
(0.163514) 

 0.126942a 
(0.054599) 

GED 1.238 

(0.030443) 

0.753820 

(0.021156) 

1.169156 

(0.031192) 

1.108865 

(0.025874) 

0.978270 

(0.058793) 

1.108342 

(0.032255) 

1.044324 

(0.025333) 

0.751777 

(0.022570) 
LB(Q) 12.401c 5.8325 26.604b 20.894c 15.664 13.684 25.537b 32.029a 

LB(Q)2 3.2918 5.8537 4.7433 3.3551 3.6708 9.6166 11.148 3.9813 
ARCH-

LM 
-0.005490 
(0.015880) 

-0.003932 
(0.015865) 

0.004520 
(0.015863) 

0.009855 
(0.015864) 

-0.015268 
(0.015850) 

-0.010877 
(0.015881) 

-0.019594 
(0.015908) 

-0.002489 
(0.015685) 

Notes: The values are coefficients of variance equation and values in parentheses are standard errors and a, b, c indicates 1%, 

5% and 10% significance level respectively 

 

Table 8 reports variance coefficients of estimated GARCH models over the period 1995-

2001. GARCH, TGARCH and CGARCH models are found to be good fit for food price 

returns over this sample period. In the case of Australia, Korea and India GARCH models fit 

well while for New Zealand and Taiwan the TGARCH better captures volatility. For the 

remaining countries (Singapore, Hong Kong and Thailand), CGARCH models outperform 

other models, and  except Hong Kong,  the asymmetric CGARCH model  outperforms the 

symmetric  version. For the GARCH set of models measures volatility spillover effects; for 

TGARCH models and symmetric CGARCH models  while for asymmetric CGARCH 

measure volatility spillover effects. Almost all parameters are significant at 99% and 95% 

confidence levels. Parameters measuring volatility spillover effects are all significant except 

RSINFP and RINF. Significant parameters are all positive showing positive spillover from oil 

price to price returns. Over this sample period,  a 1% increase in volatility of oil price poses a 

rise of volatility 0.668% for Hong Kong, 0.593% for Thailand, 0.196% for New Zealand, 

0.195 for Taiwan and 0.170% for Korea while Australian food price returns show lowest 

volatility spillover effects, 0.069%. Similar to the full sample period, there is no or little 

evidence of misspecification of models along with the support of using GED distribution. 

Table 8 Estimated volatility model over the period 1995-2001 

Parameter

s 

RAUSFP 

GARCH 

RNZFP 

TGARCH 

RKORFP 

GARCH 

RSINFP 

CGARCH 

RHKFP 

CGARCH 

RTWNFP 

TGARCH 

RINFP 

GARCH 

RTHFP 

CGARCH 

 1.35E-05b 

(5.43E-06) 
8.88E-05a 

(2.12E-05) 
1.27E-05b 

(5.17E-06) 
0.000500b 
(0.000231) 

0.000141a 
(5.15E-05) 

2.14E-05b 
(8.64E-05) 

2.84E-05a 

(8.84E-06) 
0.002814 

(0.005877) 

 0.079151a 

(0.019023) 

0.231205a 

(0.068615) 

0.134575a 

(0.024983) 

0.987637a 

(0.007798) 

0.962035a 

(0.016435) 

0.038539c 

(0.021482) 

0.192313a 

(0.041093) 

0.994564a 

(0.011097) 

 0.695122a 

(0.039484) 

-0.175145b 

(0.069402) 

0.832832a 

(0.025198) 

0.057567a 

(0.017971) 

0.031584c 

(0.016275) 

0.097023a 

(0.046177) 

0.729171a 

(0.049582) 

0.129747b 

(0.052613) 

 0.069573b 
(0.034082) 

0.474884a 

(0.099460) 
0.170713b 
(0.072275) 

0.197526a 
(0.071598) 

0.097657a 
(0.029170) 

0.826096a 
(0.046177) 

-0.011553 
(0.040790) 

0.102879 
(0.079991) 

  0.196520c 

(0.121795) 

 -0.143172c 

(0.086870) 

0.617553a 

(0.115736) 

0.195812b 

(0.089532) 

 0.230425a 

(0.088942) 
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    0.172110 

(0.264376) 

0.668274b 

(0.302537) 

  0.534509a 

(0.115162) 

    0.204388 

(0.528765) 

   0.593351b 

(0.287011) 

GED 1.311894 
(0.057462) 

0.823698 
(0.027520) 

1.124373 
(0.047425) 

0.967125 
(0.033366) 

0.926462 
(0.031478) 

1.146655 
(0.048857) 

0.883660 
(0.034408) 

0.645190 
(0.026958) 

LB(Q) 20.475b 4.6586 13.205 19.146c 10.096 13.290 32.382a 24.713a 

LB(Q)2 8.9510 2.2599 7.5181 2.1667 5.4189 14.652 9.9043 4.0983 
ARCHLM 0.013983 

(0.023584) 

-0.011050 

(0.023576) 

0.006662 

(0.023566) 

8.32E-06 

(0.023585) 

-0.035387 

(0.023552) 

-0.020561 

(0.023584) 

-0.040192 

(0.023549) 

-0.005806 

(0.023007) 

Notes: The values are coefficients of variance equation and values in parentheses are standard errors and a, b, c indicates 1%, 

5% and 10% significance level respectively 

 

Table 9 displays variance coefficients of estimated GARCH models for the latest sample 

period. Like for the full sample period, in this case also CGARCH models dominate other 

models in terms of capturing volatility characteristics of food price volatility returns. 

GARCH model fits the data extremely well for RKORFP series whereas TGARCH better 

captures this effect for RNZFP and RSINFP. For rest of the series the CGARCH models 

perform best. Among CAGRCH models asymmetric versions are best fitting for RHKFP and 

RTHFP, while in all other cases symmetric CGARCH models were found to be the best 

performers according to the information criteria. Almost all parameters have the right signs 

and are statistically significant for each model. For GARCH model  and for TGARCH 

model  is the measure for volatility spillover effects. For CGARCH models  measures 

permanent volatility effects and  (for symmetric) and  (for asymmetric) measure 

transitory volatility spillover effects from oil price returns. Parameters measuring volatility 

spillover effects are all found to be positive and statistically significant. There is evidence of 

permanent volatility spillover effects from oil to food price returns for the Australia and 

Taiwan market. Hong Kong (0.262%) and Thai (0.229%) food price returns show highest 

volatility spillover effects for 1% volatility in oil price while all other food prices show 

positive volatility spillover effects ranges from 0.02 to 0.03% and Australia shows the lowest 

volatility among all countries.  As in the case of the other two sample periods, there is no 

evidence of remaining serial correlation along with the justification of using GED distribution 

for estimation purpose. 

Table 9 Estimated volatility model over the period 2002-2010 

Parameter

s 

RAUSFP 

CGARCH 

RNZFP 

TGARCH 

RKORFP 

GARCH 

RSINFP 

TGARCH 

RHKFP 

CGARCH 

RTWNFP 

CGARCH 

RINFP 

CGARCH 

RTHFP 

CGARCH 

 1.11EE-05 

(3.71E-05) 

1.40E-05a 

(3.88E-05) 

1.61E-05a 

(5.01E-06) 

2.14E-06c 

(1.33E-06) 

0.000170a 

(3.72E-05) 

0.000525b 

(0.000213) 

0.001079 

(0.003889) 

0.000189a 

(5.12E-05) 

 0.993857a 
(0.002596) 

0.054158a 

(0.014005) 
0.104652a 
(0.019544) 

0.078318a 
(0.018986) 

0.984032a 
(0.006620) 

0.969810a 
(0.017245) 

0.999319a 
(0.002579) 

0.978575a 
(0.008372) 

 0.019310a 

(0.006368) 

0.062366b 

(0.030687) 

0.820282a 

(0.02761) 

0.040101c 

(0.023290) 

0.025408a 

(0.009705) 

0.127845a 

(0.033711) 

0.040636a 

(0.011160) 

0.068656a 

(0.016086) 

 0.005761a 

(0.002087) 

0.778462a 

(0.041646) 

0.036936b 

(0.016797) 

0.875953a 

(0.018428) 

0.030365 

(0.031555) 

0.039886c 

(0.021055) 

0.163056a 

(0.037629) 

-0.015831 

(0.047327) 

 0.067664a 0.030908b  0.029831c 0.15750a 0.141829a 0.612686a 0.150626b 



22 
 

(0.025930) (0.013334) (0.015464) (0.055156) (0.053675) (0.090643) (0.076978) 

 0.681023a 
(0.158245) 

   0.565659a 
(0.104908) 

0.120579 
(0.252150) 

0.030574c 
(0.016317) 

0.101348 
(0.348666) 

     0.268427a 

(0.083385) 

  0.229151b 

(0.107225) 

GED 1.223210 

(0.041661) 

1.057477 

(0.035489) 

1.244413 

(0.046454) 

1.326057 

(0.058790) 

1.255012 

(0.047718) 

1.126272 

(0.046230) 

1.097570 

(0.039972) 

1.060483 

(0.036751) 

LB(Q) 13.047 5.3655 8.7654 16.518 18.256b 15.890 15.274 21.071c 
LB(Q)2 3.2459 13.625 4.6349 9.4149 3.6939 8.0117 4.0215 3.1687 

ARCHLM -0.004360 

(0.021598) 

0.009164 

(0.021586) 

-0.004702 

(0.021349) 

0.008917 

(0.021430) 

0.011208 

(0.021580) 
(0.023552) 

-0.004223 

(0.021571) 

0.010913 

(0.021742) 

-0.001522 

(0.021694) 

Notes: The values are coefficients of variance equation and values in parentheses are standard errors and a, b, c indicates 1%, 

5% and 10% significance level respectively 

 

To sum up, based on the above analysis it can be inferred that the oil and food markets are 

interdependent in terms of volatility spillover effects. There is a significant positive volatility 

spillover effect from oil price returns to food price returns irrespective of the market status, 

whether it is net food exporter or net food importer, and across different time periods. For 

long horizon periods the magnitudes of volatility spillover effects are higher than for shorter 

time periods and the most recent data shows even lower magnitudes. The Australian market 

shows high volatility spillover effects for the full sample period while for remote past and 

recent past sample periods the volatility spillover effects are lower, athough a permanent 

volatility spillover has been observed with low magnitude for the recent subsample. Korean 

and Taiwan food markets follow the pattern of Australia. The New Zealand market shows 

relatively lower volatility effects for the longer sample while a bit higher volatility effects can 

be seen for remote past period and very low significant effects are observed for recent 

subsample. Hong Kong and Thai markets are similar to the New Zealand market. However, 

Singapore and Indian markets show similar patterns in terms of volatility spillover from the 

oil market. For the full sample period they both show low magnitudes of spillover effects, for 

the 1995-2001 period no spillovers and for the recent subsample again low magnitude can be 

observed. Interestingly, it can be noted that in recent periods all food markets are more 

efficient or competitive than for earlier periods because the magnitudes of volatility spillover 

is lower during this period. Since with few exceptions no evidence of permanent volatility 

spillover effects can be found it can be documented that volatility spillover from oil price to 

food price is short run consistent with mean spillover effects.  

4.3 Robustness analysis 

In order to gauge the robustness of the previous results regarding mean and volatility 

spillover effects, we also estimated multivariate GARCH models in bivarate BEEK 

formulation. The results are shown in Table 10-11. Table 10 reports the results for mean 
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return spillover effects across the three time periods considered. The upper panel of the Table 

shows the coefficients for the entire period 1995-2010. The element a12 measures the mean 

spillover effect from oil price returns to food price returns and a21 measures mean return 

spillover from food prices to oil prices for every model. It can be seen that all of the mean 

spillover parameters from oil price to food price are statistically significant at 1% level except 

for the Indian food price parameter which is significant at 5% level . On the other hand, it can 

also be noticed that none of the parameters measuring mean spillover from food market to oil 

market are statistically significant, except  for Korean. These results imply that there is a 

unidirectional mean spillover effect from oil price to food prices and not vice versa.  

The middle panel of the Table displays the conditional mean coefficient matrix over the 

early subsample period 1995-2001. Here it can also be viewed that there is strong evidence of 

unidirectional mean spillover effects from oil market to food markets except for Korea and 

India. No single evidence of mean spillover from food market to oil market can be 

documented over this subsample.  

The lower panel of the Table 10 reports results for the latest subsample period 2002-2010. 

The spillover results are very much consistent with the previous two cases. All the elements 

measuring mean spillover from oil price to food prices are statistically significant at least at 

95 percent level of confidence and there is no significant evidence of mean spillover from 

food markets to oil market. 

The significant parameters in all cases with negligible exceptions show that  a 1% increase 

in oil price returns enhances food price mean returns more than 0.10 percent across time 

periods and the transmission rate is higher for net food exporter countries. Over the full 

sample period the Hong Kong market receives the highest mean spillover (0.238) from a 1% 

increase of oil prices followed by Taiwan (0.195), Singapore (0.172) and Korea (0.153). Over 

the early subsample Taiwan food price returns receive higher mean spillover form oil prices 

followed by Hong Kong. During the recent period again Hong Kong market receives higher 

mean spillovers from oil prices followed by Singapore, Taiwan and Korea. In this period the 

magnitudes of spillover effects are greater than 0.19 meaning more interdependence between 

food and oil market. 

These results once again affirm the findings of the VAR approach where it was also 

documented that there is unidirectional mean spillover effects from oil prices to food prices 

and not vice versa. 
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Table 10 Estimated return coefficients for MGARCH conditional mean equations 

1995-2010 
 AFP(i=

1) 

OP(i=

2) 

NFP(i=

1) 

OP(i=

2) 

KFP(i=

1) 

OP(i=

2) 

SFP(i=

1) 

OP(i=

2) 

HFP(i=

1) 

OP(i=

2) 

TFP(i=

1) 

OP(i=

2) 

IFP(i=

1) 

OP(i=

2) 

TFP(i=

1) 

OP(i=

2) 

 0.0002c 

(0.000

1) 

0.000

6a 

(0.00

0) 

-3.97E-

05 

(0.000) 

0.000

5a 

(0.00

0) 

 

0.0002 

(0.000) 

0.000

5 

(0.00

0) 

0.0005
c 

(0.000) 

0.000

5a 

(0.00

0) 

0.0007
b 

(0.000

3) 

0.000

6a 

(0.00

0) 

0.0002 

(0.000) 

0.000

5a 

(0.00

0) 

0.000

1b 

(0.000

) 

0.000

5a 

(0.00

0) 

0.0001 

(0.000) 

0.000

5a 

(0.00

0) 

ai

1 

-0.035c 

(0.019) 

-

0.014 

(0.01

5) 

0.0247 

(0.022) 

0.008 

(0.00

8) 

0.048b 

(0.019) 

0.015
a 

(0.00

7) 

0.012 

(0.018) 

-

0.009 

(0.00

8) 

0.028 

(0.020) 

-

0.008 

(0.00

6) 

0.003 

(0.018) 

-

0.011 

(0.00

0) 

0.058a 

(0.019

) 

0.014 

(0.01

0) 

-

0.0009 

(0.021

8) 

0.008 

(0.00

8) 

ai

2 

0.114a 

(0.019) 

0.141
a 

(0.01

7) 

0.128a 

(0.023) 

0.142
a 

(0.01

7) 

0.153a 

(0.027) 

0.137
a 

(0.01

7) 

0.172a 

(0.023) 

0.136
a 

(0.01

8) 

0.238a 

(0.029) 

0.144
a 

(0.01

8) 

 

0.195a 

(0.028) 

0.142
a 

(0.01

7) 

0.033b 

(0.016

) 

0.145 

(0.01

7) 

0.102a 

(0.020) 

0.144
a 

(0.01

7) 

1995-2001 

 0.0001 

(0.000) 

0.000

5b 

(0.00

0) 

0.0004 

(0.000) 

0.000

4b 

(0.00

0) 

-

0.0003 

(0.000) 

0.000

5b 

(0.00

0) 

-

0.0002 

(0.000) 

0.000

4b 

(0.00

0) 

7.30E-

05 

(0.000) 

0.000

5a 

(0.00

0) 

3.66E-

05 

(0.000) 

0.000

5a 

(0.00

0) 

0.000

3 

(0.000

) 

0.000

4b 

(0.00

0) 

-

0.0002 

(0.000) 

0.000

5a 

(0.00

0) 

ai

1 

-0.007 

(0.027) 

-

0.017 

(0.02

3) 

0.061b 

(0.029) 

0.007 

(0.01

0) 

 

0.111a 

(0.027) 

0.012 

(0.00

8) 

0.021 

(0.028) 

-

0.014 

(0.00

9) 

-0.008 

(0.030) 

-

0.002 

(0.00

7) 

0.024 

(0.026) 

-

0.011 

(0.01

0) 

0.116a 

(0.028

) 

0.005 

(0.01

4) 

0.021 

(0.029) 

0.007 

(0.00

9) 

ai

2 

0.111a 

(0.024) 

0.155
a 

(0.02

7) 

0.120b 

(0.051) 

0.167
a 

(0.02

6) 

0.033 

(0.059) 

0.154
a 

(0.02

6) 

0.092b 

(0.044) 

0.164
a 

(0.00

2) 

0.181a 

(0.055) 

0.166
a 

(0.02

6) 

0.196a 

(0.052) 

0.159
a 

(0.02

6) 

0.010 

(0.032

) 

0.165
a 

(0.02

6) 

 

0.076c 

(0.044) 

0.158
a 

(0.02

6) 

2002-2010 

 0.0004
b 

(0.000) 

0.000

8a 

(0.00

0) 

-

0.0002 

(0.000) 

0.000

8a 

(0.00

0) 

0.0004 

(0.000) 

0.000

7a 

(0.00

0) 

0.0008
a 

(0.000) 

0.000

6a 

(0.00

0) 

0.0009
b 

(0.000) 

 

0.000

8a 

(0.00

0) 

0.0005 

(0.000) 

0.000

7a 

(0.00

0) 

0.000

5b 

(0.000

) 

0.000

8a 

(0.00

0) 

0.0001 

(0.000) 

0.000

7a 

(0.00

0) 

ai

1 

-0.064b 

(0.025) 

-

0.013 

(0.02

1) 

-0.013 

(0.029) 

0.018 

(0.01

7) 

-0.015 

(0.027) 

0.012 

(0.01

5) 

0.006 

(0.023) 

-

0.004 

(0.01

8) 

0.062b 

(0.026) 

-

0.022 

(0.01

3) 

-0.014 

(0.025) 

-

0.012 

(0.01

1) 

0.031 

(0.025

) 

0.018 

(0.01

6) 

-0.019 

(0.023) 

-

0.002 

(0.01

5) 

ai

2 

0.114a 

(0.027) 

0.129
a 

(0.02

3) 

0.122a 

(0.021) 

0118a 

(0.02

3) 

0.193a 

(0.030) 

0.127
a 

(0.02

3) 

0.196a 

(0.028) 

0.110
a 

(0.02

5) 

0.253a 

(0.040) 

0.124
a 

(0.02

5) 

0.195a 

(0.035) 

0.126
a 

(0.02

4) 

0.040b 

(0.019

) 

0.124
a 

(0.02

3) 

0.107a 

(0.021) 

0.132
a 

(0.02

3) 

Notes: The values are coefficients of conditional mean equation and values in parentheses are standard errors and a, b, c 

indicates 1%, 5% and 10% significance level respectively 

Table 11 displays coefficients measuring volatility spillover effects from World oil to food 

prices across the three sample periods.  The complete variance covariance matrices are not 

reported in order to preserve space but can be supplied upon request. All parameters 

measuring volatility spillover effects from oil prices to food prices for all countries’ food 

price returns are statistically significant at 1% level of significance for all three  periods 

though the magnitudes differ across time.  As for the previous analysis the latest data exhibits 

higher volatility spillover than  the early and whole sample periods,  impliying that food  and 

oil markets are more interdependent in recent time periods than in the past. For Australia the 

volatility spillovers from oil prices are in the range of 0.03 to 0.04 percent due to 1 percent 

volatility in oil market across all three time periods. In the case of New Zealand the effects 

varies between 0.07 to 0.11 percent and for Korea the effects are in between 0.03 to 0.08 

percent. In Singapore the effects range from 0.03 to 0.08 percent while for Hong Kong it is in 

between 0.04 to 0.06 percent. For Taiwan the magnitudes lies  between 0.03 to 0.09 percent 

while for India it is just in the range of 0.009 to 0.05. The Thai market shows the lowest 
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effect for the early period (0.06) and highest effects for the recent period (0.07). In terms of 

volatility spillover effects from oil to food market, no clear distinction can be made between 

net food exporter and net food importer countries. New Zealand is found to have high 

volatility responsives to oil prices while Australia is found to be the lowest respondent. 

Table 11 Estimated variance coefficients indicating volatility spillover effects in  

BEEK-type bivariate GARCH model 

    1995-2010     

 AFP NFP KFP SFP HFP TFP IFP TFP 

OP 0.035a 

(0.004) 

0.077a 

(0.012) 

0.061a 

(0.006) 

0.055a 

(0.005) 

0.063a 

(0.007) 

0.053a 

(0.005) 

0.046a 

(0.004) 

0.060a 

(0.008) 

1995-2001 

OP 0.041a 

(0.008) 
0.074a 

(0.015) 
0.036a 

(0.005) 
0.036a 

(0.006) 
0.046a 

(0.008) 
0.032a 

(0.005) 
0.047a 

(0.009) 
0.056a 

(0.009) 

    2002-2010     

OP 0.040a 

(0.005) 

0.114a 

(0.028) 

0.085a 

(0.014) 

0.0067a 

(0.008) 

0.064a 

(0.007) 

 

0.091a 

(0.014) 

0.056a 

(0.007) 

0.074a 

(0.011) 

Notes: The values are volatility spillover coefficients of variance equations and values  

in parentheses are standard errors and a, b, c indicates 1%, 5% and 10% significance level respectively 

The mean and volatility spillover effects analyzed in this section within the bivariate 

BEEK-type GARCH models are consistent with the analysis of section 4.1 and 4.2 within the 

framework of VAR and univarite GARCH models with few exceptions. Although in 

univariate analysis we found that the magnitudes of measuring volatility spillover effects 

from oil to food prices for the recent subsample is lower than earlier subsample, we prefer to 

accept multivariate results over univarite one where we found that spillover effects are higher 

in recent period consistent with mean spillover effects. The reason could be more 

interdependencies between agricultural sector and energy sectors in the recent period.   

5. Conclusions 
 

 This study attempted to examine the mean and volatility spillover effects of World oil 

prices on food prices in the context of Australia, New Zealand, South Korea, Singapore, 

Hong Kong, Taiwan, India and Thailand over the period 1995-2010. The major conclusions 

we draw are as follows. There are significant positive mean and volatility spillover effects 

from World oil prices to food prices of the selected Asia Pacific countries and not vice versa, 

though the magnitudes of effects differ from country to country for different time horizons. 

Higher mean and volatility spillover effects are revealed for the recent past than the remote 

past implying that the oil and food markets are more interdependent in recent time than in the 

past. Particularly after 2001, food prices are found to be more affected by World oil prices 
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and the effects of shocks also persist for a longer period while before 2001 the effects are 

short-lived. Little evidence of long run positive relationships in terms of both mean and 

volatility spillover effects between World oil prices and food prices selected Asia Pacific 

countries can be documented which is consistent with Zhang et al.(2010). However, there is 

substantial evidence of short run relationships between them though Australian and Taiwan 

food prices exhibit permanent volatility spillover from oil to food price during recent time 

period. Similar with mean spillover effects it was found that low evidence of permanent 

volatility spillover effects can be reported in most of the cases as the volatility spillover 

effects are transitory. The recent time period shows higher volatility spillovers than early 

period. In terms of mean spillover effects net food importer countries’ food prices show 

higher effects than net food exporter countries, however, no distinction can be made between 

exporters and importers in terms of volatility spillover effects. The results of this study are 

robust because consistent results are found through cross check by both univariate and 

multivariate time series analysis. Empirical findings of this study suggest that the world crude 

oil prices should be considered for the purpose of policy analysis and forecasting of food 

prices. 

References 

Abdel, H.A., Arshad, F.M., 2008. The impact of petroleum prices on vegetable oils prices: evidence 

from cointegration tests. Paper presented at the International Borneo Business Conference on 

Global changes, Malaysia, December, 2008. 

Abott, P.C., Hurt, C., Tyner, W.E., 2009. What's driving food prices? Farm foundation issue report. 

Alghalith, M., 2010. The interaction between food prices and oil prices. Energy Economics In Press, 

Corrected Proof. 

Baffes, J., 2007. Oil spills on other commodities. Resources Policy 32, 126-134. 

Bollerslev, T., 1986. Generalized autoregressive conditional heteroscedasticity. Journal of 

Econometrics 31, 327-327. 

Bollerslev, T., Wooldridge, J.M., 1992. Quasi-maximum Likelihood Estimation and Inference in 

Dynamic Models with Time-Varying Covariances. Econometric Reviews 11, 143-172. 

Box, G.E.P., Jenkins, G.M., 1976. Time Series Analysis:forecasting and control. Holden-Day 

San Fransisco, CA. 

Chen, S.-T., Kuo, H.-I., Chen, C.-C., 2010. Modeling the relationship between the oil price and global 

food prices. Applied Energy 87, 2517-2525. 

Dickey, D.A., Fuller, W.A., 1979. Distribution of the estimates for autoregressive time series with a 

unit root. Journal of the American Statistical Association 74, 427-431. 

Ding, Z., Granger, C.W.J., Engle, R.F., 1993. A long memory property of stock market returns and a 

new model. Journal of Empirical Finance 1, 83-106. 

Du, X., Yu, C.L., Hayes, D.J., 2010. Speculation and volatility spillover in the crude oil and 

agricultural commodity markets: A Bayesian analysis. Energy Economics In Press, Accepted 

Manuscript. 

Engle, R.F., Ito, T., Lin, W.-L., Sarno, L., Taylor, M.P., 2002. Meteor Showers or Heat Waves? 

Heteroskedastic Intra-daily Volatility in the Foreign Exchange Market. New developments in 



27 
 

exchange rate economics. Volume 2. Elgar Reference Collection. International Library of Critical 

Writings in Economics, vol. 148. 

Cheltenham, U.K. and Northampton, Mass.: 

Elgar; distributed by American International Distribution Corporation, Williston, Vt., pp. 410-427. 

Engle, R.F., Kroner, K.F., 1995. Multivariate Simultaneous Generalized ARCH. Econometric Theory 

11, 122-150. 

Engle, R.F., Lee, G.G.J., 1993. A Permanent and Transitory Component Model of Stock Return 

Volatility. Department of Economics, UC San Diego, University of California at San Diego, 

Economics Working Paper Series. 

Esmaeili, A., Shokoohi, Z., 2011. Assessing the effect of oil price on world food prices: Application 

of principal component analysis. Energy Policy 39, 1022-1025. 

Gilbert, C.L., 2010. How to understand high food prices. Journal of Agricultural Economics 61, 398-

425. 

Glosten, L.R., Jagannathan, R., Runkle, D.E., 1993. On the relation between the expected value and 

the volatility of the nominal excess return on stocks. Journal of Finance 48, 1779-1801. 

Granger, C.W.J., 1969. Investigating causal relations by econometric models and cross spectra 

methods. Econometrica 91, 228-224. 

Hammoudeh, S., Li, H., Jeon, B., 2003. Causality and volatility spillovers among petroleum prices of 

WTI, gasoline and heating Oil in different locations. North American Journal of Economics and 

Finance 14, 89-114. 

Hanson, K., Robinson, S., Schluter, G., 1993. Sectoral effects of a World oil price shock: 

economywide linkages to the agricultural sector. Journal of Agricultural and Resource Economics 

18, 96-116. 

Headey, D., Fan, S., 2008. Anatomy of a Crisis: The Causes and Consequences of Surging Food 

Prices. Agricultural Economics 39, 375-391. 

Higgs, H., Worthington, A.C., 2004. Transmission of Returns and Volatility in Art Markets: A 

Multivariate GARCH Analysis. Applied Economics Letters 11, 217-222. 

Johansen, S., 1988. Statistical analysis of cointegration vectors. Journal of Economic Dynamics and 

Control 12, 231-254. 

Kaltalioglu, M., Soytas, U., 2009. Price transmission between world food, agricultural raw material, 

and oil prices. GBATA International Conference Proceedings, 596-603. Prague, 2009. 

. 

Lee, S.J., 2009. Volatility Spillover Effects among Six Asian Countries. Applied Economics Letters 

16, 501-508. 

Lin, S.X., Tamvakis, M.N., 2001. Spillover Effects in Energy Futures Markets. Energy Economics 23, 

43-56. 

Liu, Y.A., Pan, M.-S., 1997. Mean and Volatility Spillover Effects in the U.S. and Pacific-Basin 

Stock Markets. Multinational Finance Journal 1, 47-62. 

Mitchell, D., 2008. A note on rising food prices. The World Bank, Policy Research Working Paper 

Series: 4682. 

Nazlioglu, S., Soytas, U., 2010. World oil prices and agricultural commodity prices: Evidence from an 

emerging market. Energy Economics In Press, Corrected Proof. 

Nelson, D.B., 1991. Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59, 

347-370. 

Radetzki, M., 2006. The Anatomy of Three Commodity Booms. Resources Policy 31, 56-64. 

Robles, M., Torero, M., von Braun, 2009. When speculation matters. International Food Policy 

Institute  Issue Brief 57. 

Rosegrant, M.W., Zhu, T., Msangi, S., Sulser, T., 2008. Global Scenarios for Biofuels: Impacts and 

Implications. Review of Agricultural Economics 30, 495-505. 

Sims, C.A., 1980. Macroeconomics and reality. Econometrica 48, 1-48. 

Yu, T.E., Bessler, D.A., Fuller, S., 2006. Cointegration and causality analysis of World vegetable oil 

and crude oil prices. The American Agricultural Economics Association Annual Meeting, Long 

Beach, California, July 23-26, 2006. 



28 
 

Zhang, Q., Reed, M., 2008. Examining the impact of the World crude oil prices on China's 

Agricultural commodity prices: The case of corn, soybean and pork The Southern Agricultural 

Economics Association Annual Meetings, Dallas, TX, February 2-5, 2008. 

Zhang, Z., Lohr, L., Escalante, C., Wetzstein, M., 2010. Food versus fuel: What do prices tell us? 

Energy Policy 38, 445-451. 

 

 


