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ONE FOR ALL OR ALL FOR ONE?  USING MULTIPLE-LISTING 

INFORMATION IN EVENT STUDIES 

 
 

Abstract 
 
In an event study where at least some of the sample firms have their equity securities listed in 
more than one market, the question arises as to which is the most appropriate market (or 
markets) to use for the purpose of estimating average abnormal returns.  When arbitrage 
activity across these markets is restricted in some way, estimating abnormal returns from just 
one of the listings potentially throws away valuable information.  On the other hand, 
indiscriminate pooling is likely to result in the same information being counted more than 
once.  We propose a simple solution to this problem that (i) uses all the information available 
from multiple listings, (ii) ‘downweights’ listing observations that provide little new 
information, and (iii) yields consistent and efficient abnormal return estimates.  Finally, we 
apply this generalized approach to a unique sample of Chinese foreign mergers and 
acquisitions and compare the results with those from other approaches that have appeared in 
the literature.  
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1. INTRODUCTION 

The event study has proven to be an indispensable tool for empirical researchers in a 

wide range of disciplines, particularly corporate finance.  Initially applied to single-country, 

advanced-economy settings, more recently it has extended its domain to studies of multiple 

and emerging markets.1  While doing so opens up valuable opportunities for researchers, it 

also raises a number of questions about the applicability of the original methods to these 

wider settings. 

The particular question we address in this paper concerns the treatment of firms 

whose securities are listed in multiple countries.  The standard event study estimates the 

average abnormal stock price reaction of a sample of firms subject to the event of interest.  

However, this procedure is no longer uniquely defined when at least some of the sample 

firms have their equity securities listed in more than one market.   The question then arises as 

to which is the most appropriate market (or markets) for the estimation of average abnormal 

returns.  This question is potentially important.  As of May 2010, approximately a third of the 

firms appearing in Datastream were listed in at least two markets.2 

A variety of approaches to this issue have appeared in the literature.  The most 

common is to use returns from each firm’s home market, e.g., Aktas, de Bodt and Roll 

(2004), Bailey, Karolyi and Salva (2006), Beitel, Schiereck and Wahrenburg (2004), Doidge 

(2004), Ekkayokkaya, Holmes and Paudyal (2009), Faccio, McConnell and Stolin (2006), 

Keloharju, Knüpfer and Torstila (2008), Kim (2003), and Wang and Boateng (2007).  Others, 

such as Aybar and Ficici (2009) and Campbell, Cowan and Salotti (2009) use returns from 

                                                      
1 See, for example, Table 1 of Campbell, Cowan and Salotti (2009). 
2 See also Karolyi (2006) for detailed evidence on the increasing importance of multiple listings, and the reasons 
for why this occurs. 
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the firm’s ‘primary’ (highest volume) market.3  Chan, Cheung and Wong (2002) employ the 

firm’s United States market returns.4 

One feature common to all these studies is that none explicitly discusses, or even 

mentions, choice of which market listing to use in the estimation of abnormal returns.  

Presumably this reflects an implicit assumption that arbitrage across markets is unrestricted, 

so that inter-market price deviations are small and transitory, hence rendering the choice of 

listing irrelevant to abnormal returns estimation.  Put another way, unrestricted arbitrage 

activity ensures that all listings of a firm’s securities quickly reveal the same information, and 

hence the event study researcher can safely use any one (and only one) of these listings when 

estimating the firm’s event-period abnormal returns.   

However, although several studies support the price parity view for developed 

markets (e.g., Kato, Linn and Schallheim, 1991; Eun and Sabherwal, 2003; Grammig, Melvin 

and Schlag, 2005), more recent work, which typically includes data from emerging markets, 

often uncovers significant deviations from parity.  For example, Gagnon and Karolyi (2009) 

report that while most deviations between American Depository Receipt prices and home 

country prices are significantly less than 100 basis points, the discrepancy can in some cases 

exceed 50 percent.  In the same vein, Blouin, Hail and Yetman (2009) find that cross-country 

price deviations are low if and only if arbitrage costs are low.  Finally, in single-country 

studies, Melvin (2003), Rabinovitch, Silva and Susmel (2003), and Chen, Li and Wu (2010) 

all report significant deviations from parity for stocks from Argentina, Chile and China 

respectively.5 

                                                      
3 Campbell, Cowan and Salotti (2009) utilize data from all listings in their simulation work, but only ‘primary’ 
market data in their actual event study.  We are grateful to Valentina Salotti for clarifying this point. 
4 Still other studies, such as Amihud, DeLong and Saunders (2002), Anand, Capron and Mitchell (2005), and 
Ma, Pagán and Chu (2009), provide little indication of how they proceed in this area, although it seems likely 
that they use home market returns. 
5 See the discussion in Gagnon and Karolyi (2009) for possible causes of incomplete arbitrage across markets, 
and Chan, Menkveld and Yang (2008) for a specific demonstration. 
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Together, these results cast some doubt on the usual event study practice of using 

returns from a single listing for each firm.  In general, investors in different markets possess 

different information sets and hence, left to their own devices, are likely to respond 

differently to a given event.  If arbitrage is unable to aggregate these multiple responses, then 

the use of a single listing (for a firm that is multi-listed) yields abnormal return estimates that 

are incomplete in the sense that they ignore important information embedded in the price 

responses observed in other markets.  In such circumstances, using returns from all markets 

in which each firm’s securities are listed not only increases the sample size (often an 

important consideration when undertaking event studies in emerging markets), but also 

enables ‘full-information’ abnormal return estimates to be obtained.  On the other hand, of 

course, to the extent that price responses in different markets are not independent, simple 

pooling of multi-listing data involves multiple counting of the same information.  What is 

required is a method that extracts the independent information from each listing while 

counting the common information only once. 

In this paper, we outline a simple procedure that achieves this twin objective and 

yields consistent and efficient estimates of abnormal returns.  In the next section, we describe 

this ‘generalized’ approach in detail and then, in Section 3, illustrate its use by applying it to 

a sample of foreign mergers and acquisitions by Chinese firms.  Section 4 provides some 

concluding remarks. 

 
2.   A GENERALIZED METHODOLOGY FOR EXTENDING EVENT STUDY 

ANALYSIS TO THE CASE OF MULTIPLE-LISTINGS 
 
2.1 Benchmark Case: Single-Market Listing of Securities When Errors are 

Homoskedastic and Cross-Sectionally Independent  
 
 Consider initially the benchmark case where all firms in the event data sample are 

listed on a single stock exchange.  This is the situation envisaged in standard event study 



4 
 

analysis.  We briefly outline the mechanics of that analysis in order to facilitate extension to 

the more general cases considered below. 

 Let daily (adjusted) stock prices for each OMA event/firm i at time t be given by Pit , 

and let daily returns  be computed by taking the log of stock prices (Strong 1992): 

(1) 









1ti,

it
it P

P
lnR , i=1,2,…,N; 

where N is the total number of OMA events/firms in the sample, and t is measured relative to 

a given announcement day:  The announcement day is indicated by t=0.  Days preceding 

(following) the announcement day are designated by negative (positive) time values.   

 The following “market model” specification (Brown and Warner, 1985; Strong, 1992) 

is estimated for each event/firm i at some point previous to the announcement over an 

estimation period of length S days: 

(2) itmtiiit errorRβαR  , 

where mtR  is the return of the local market index at time t.    

 A test period is chosen to include the announcement day, plus days on either side of 

t=0 to capture lead and lagged effects.  The regression results for the market model are used 

to calculate predicted returns for the test period:  

(3) mtiiit RβαR ˆˆˆ  ,   

where iα̂  and iβ̂  are the estimated values of iα  and iβ  from Equation (2).  “Abnormal 

returns” are calculated as the difference between actual returns during the test period and 

their predicted values (based on the coefficients estimated during the estimation period),  

(4) ititit RRAR ˆ .  
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 We assume the itAR  are independent and normally distributed with a mean of 0 and a 

standard deviation . Let the DGP associated with individual itAR  observations at time t be 

given by the following equation: 

(5) ttt β εxy  , 

where ty is an N×1  vector of abnormal returns, itAR , N1,2,...,i  ; tx is an N×1  vector of 

ones; β  is a scalar representing the mean of the distribution of abnormal returns; and tε  is an 

N×1  vector of error terms,  NN I0ε 2N ,~ , N0  is an N×1  vector of zeroes, and NI  is the 

N×N  identity matrix. 

  In this case, the OLS estimate of β , ˆ
OLS , is efficient: 

(6)   ttttOLSβ yxxx 1  ˆ .  

It is easily shown that   

(6’) ˆ

N

it
i 1

OLS t

AR
AAR

N
  


, 

where tAAR  is the “average abnormal return” across the N firms at time t. 

If 2  is known, then  

(7.1)   1xx  tt
2

OLSβVar( )ˆ , and 

(7.2)    1xx  tt
2

OLSβs.e.( )ˆ .  

The latter is easily shown to be equivalent to  

(7.2’) 
N

σ
βs.e.( OLS )ˆ .  

To test the null hypothesis that 0β  , one forms the Z statistic,  

(8) 
 

 2

ˆ

ˆ
t t t tOLS

t

OLS t t

β
Z

s.e.(β ) 





 
 



1

1

x x x y

x x
 .  



6 
 

This is easily shown to be equivalent to  

(8’) 
 

N
it

t t t t i 1
t

AR
σ

Z
N





      
1

x x x y
). 

If 2  is unknown, we can estimate it by 
 

2)-N(S

βAR
1

N

1i

2

OLSis
2

 




S

s

ˆ

̂ . Then   is replaced with 

̂ , in (5)/(5’), and critical t-values (instead of Z-values) are used for hypothesis testing.   

The preceding analysis considers the case where abnormal returns are tested on only 

one day.  But suppose there are multiple periods for the testing interval, t=T1, 

T1+1,…,0,…,T2?  The extension is straightforward.  Redefine the above such that 

(9) TTT β εxy  , 

where Ty  is an 2 1N(T -T +1)×1  vector of abnormal returns, itAR , N1,2,...,i  , 

211 T1...,,T,Tt  ; Tx is an 2 1N(T -T +1)×1  vector of ones, β  is a scalar that equals the mean 

of the distribution of abnormal returns, ε  is an 2 1N(T -T +1)×1  vector of error terms, 

 1)TN(T
2

1)TN(T 1212
N  I0ε ,~ , 1)TN(T 12 0  is an 2 1N(T -T +1)×1  vector of zeroes, and 1)TN(T 12 I  

is the identity matrix of order 2 1N(T -T +1) . 

  Once again, the OLS estimate of  , ˆ
OLS , is efficient: 

(10)   TTTTOLSβ yxxx 1  ˆ , 

which is equivalent to 

(10’) ˆ

2

1

TN

it
i 1 t T

OLS
2 1

AR

ACAR
N(T T 1)

   
 


,  

where ACAR is the “average cumulative abnormal returns” over the testing interval (T1,T2) 

and over all N firms. 

If 2  is known, then  
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(11.1)   1xx  TT
2

OLSβVar( )ˆ , and 

(11.2)    1xx  TT
2

OLSβs.e.( )ˆ .  

The latter is easily shown to be equivalent to 

(11.2’) 
1)TN(T

σ
βs.e.(

12

OLS


)ˆ .  

The corresponding test statistic is given by  

(12) 
 

 2

ˆ

ˆ1 2

T T T TOLS
T ,T

OLS T T

β
Z

s.e.(β ) 





 
 



1

1

x x x y

x x
 , 

which is easily shown to be equivalent to  

(12’) 
 

   

2

1

2 1
1 2

T N
it

t T i 1T T T T
T ,T

T T

AR
σ

Z
N T T +1


 



     
 



1

1

x x x y

x x
). 

If 2  is unknown, we again estimate it by 
 

2)-N(S

βAR
1

N

1i

2

OLSis
2

 




S

s

ˆ

̂ and follow the same 

procedure as described above. 

2.2   Generalisation #1:  Single-Market Listing of Securities (Errors are 
Heteroskedastic but Cross-Sectionally Independent) 

 
We now consider the case where (i) error variances are heteroskedastic and (ii) 

abnormal returns for the same security are independent across observations. Let the DGP be 

given by 

(13) ttt β εxy  , 

where ty , tx , and β  are described as above.  Under the assumption that errors are 

heteroskedastic but cross-sectionally independent, tε  is an N×1  vector of error terms, 
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









































2
N

2
2

2
1

t

σ00

0σ0

00σ

N









,~ N0ε ,  where N0  is an N×1  vector of zeroes and   is the 

N×N  variance-covariance matrix. 

In this case, the OLS estimate of β  is inefficient.  The source of this inefficiency lies 

in the fact that OLS gives equal weight to every observation. The solution to this problem is 

to assign different weights to the individual observations. The estimation procedure that 

assigns an “efficient” set of weights is called Generalized Least Squares (GLS).  

Define a “weighting matrix” P , where P is an N×N , symmetric, invertible matrix 

such that 1ΩPP  . Given  above, it is easily confirmed that  

(14) 





























N

2

1

1
00

0
1

0

00
1















PP . 

Assuming the 2
iσ , i=1,2,…,N are known, the GLS estimator of β  given this first 

generalization is given by 

(15)   tttt1-GLSβ yΩxxΩx 111  ˆ , 

and the estimated coefficient variance and standard error are given by 

(16.1)     11 xΩx
 tt1-GLSβVar ˆ , and  

(16.2)     11 xΩx
 tt1-GLSβs ˆ..e .  

Alternatively, define tt Pxx ~  and tt Pyy ~ . Then  

(15’)   tttt1-GLSβ yxxx 1 ~~~~ˆ   ,  
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(16.1’)     1xx  tt1-GLSβVar ~~ˆ , and  

(16.2’)     1xx  tt1-GLSβs ~~ˆ..e .  

In other words, 1-GLSβ̂  is identical to OLS applied to this equation: ttt β εxy ~~~  , where 

tt Pxx ~ , tt Pyy ~ , and tt Pεε ~ . Note that    ~ , ,t N N 
N N Nε 0 PΩP 0 I .  

 To test the null hypothesis that 0β  , one forms the Z statistic, 

(17) 
 

 

ˆ

ˆ
t t t tGLS-1

t

GLS-1 t t

β
Z

s.e.(β )





 
 



1

1

x x x y

x x

   

 
.  

Interestingly, 
 

 

ˆ

ˆ
t t t tGLS-1

t

GLS-1 t t

β
Z

s.e.(β )





 
 



1

1

x x x y

x x

   

 
is NOT equal to 

t

N
it

ii 1
ASAR

AR
σ

Z
N



  
 


, where 

tASARZ is the test statistic associated with average standardized abnormal returns (ASAR). 

We can see this by noting that: 

(18)  
 

 t

N
i

i t t t ti 1
ASAR

t t

AR
σ

Z
N







      


 
1

1

x x x y

x x
 , 

but 

(19) 
 

 
 

 
t t t t t t t t

t t t t

 

 

   


 

    

 

1 1

1 1

x x x y x x x y

x x x x
, 

tASARZ , and its multiple-period analog, 
1, 2T TASCARZ are commonly used for hypothesis testing of 

abnormal returns in the presence of heteroskedastic returns (Patell, 1976; Mikkelson & 

Partch, 1986; Doukas & Travlos, 1988; Aybar & Ficici, 2009).   The fact that 
tASAR tZ Z  

implies that ASAR and ASCAR are not efficient estimators of β .Thus, 
tASAR tZ Z  .   
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 If the i  , i=1,2,…,N , are unknown, we replace them with their estimates 

 
2-S

βAR
1

2

OLSis

i







S

s

ˆ

̂ , ,i = 1,2,…N,  and follow the same procedure as described above, 

except that we still use Z-critical values because the underlying statistics are based on 

asymptotic theory.  Alternatively, i  can be replaced by a time-varying estimate to account 

for the fact that ˆ
itR  in Equation (4) is a prediction made outside the estimation period.6 

2.3 What Hypothesis Corresponds To ASARZ  and ASCARZ ? 

 
Given the widespread usage of 

tASARZ and 
1, 2T TASCARZ , we might ask what hypothesis 

corresponds to the Z statistic, 
t

N
it

ii 1
ASAR

AR
σ

Z
N



  
 


?  Consider the following regression:  

(20) ttt εxy  ~ , 

where ty~ is an N×1  vector of standardized abnormal returns, it

i

AR


 
 
 

, N1,2,...,i  ; tx is an 

N×1  vector of ones;   is a scalar that equals the mean of the distribution of standardized 

abnormal returns; and tε  is an N×1  vector of error terms,  NN I0ε ,~ Nt . 

  It follows that the OLS estimator of   is  

(21)  ˆOLS t t t t   
1

x x x y , 

                                                      

6 A common, time-varying estimator for is  is  
2

2

2

1

( )1
ˆ ˆ 1

( )

mt m
it i S

ms m
s

R R

S
R R

s s

=

æ ö÷ç ÷ç ÷ç - ÷ç ÷= + +ç ÷ç ÷ç ÷÷ç - ÷ç ÷çè øå
 , where 

 
2-S

βAR
1

2

OLSis

i








S

s

ˆ

̂  (Patell, 1976; Mikkelson and Partsch, 1986; Doukas and Travlos, 1988). 
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which is easily shown to be equivalent to 

N
it

ii 1
t

AR
σ

ASAR
N



  
 


.  

 The OLS estimate of   is efficient. Further,  

(22.1)  ˆ )OLS t tVar(  1
x x , and 

(22.2)  ˆ )OLS t ts.e.(  1
x x . 

The latter is easily shown to be  

(22.2’) 
N

1
s.e.( OLS )̂ .    

 To test the null hypothesis that 0 , one forms the Z statistic,  

(23) 
 

 
ˆ

ˆ
t t t tOLS

OLS
t t

Z
s.e.( )








 
 




1

1

x x x y

x x
.   

As was shown above, this is equivalent to 
t

N
it

ii 1
ASAR t

AR
σ

Z N ASAR
N



  
   


. 

Thus, 
ˆ

ˆt

N
it

iOLS i 1
ASAR t

OLS

AR
σ

Z N ASAR
s.e.( ) N






  
    


, corresponds to the null 

hypothesis, 0H : 0  , where   is the mean of the distribution of standardized abnormal 

returns, it

i

AR


.   In contrast, 

ˆ

ˆ
GLS-1

t

GLS-1

β
Z

s.e.(β )
 , corresponds to the null hypothesis, 0H : 0  , 

where   is the mean of the distribution of (unstandardized) abnormal returns, itAR .  As    

and   will generally be different, 
tASARZ and 

1, 2T TASCARZ do not test hypotheses about the mean 

of the distribution of (unstandardized) abnormal returns, which is the usual object of interest. 
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2.4 Generalisation #2:  Listings of Securities in Multiple Markets (Errors Are 
Heteroskedastic And Cross-Sectionally Correlated) 

 
The preceding case applies straightforwardly to securities listed on multiple markets, 

as long as each observation is associated with a unique event/firm.  But in many cases, firms 

list in more than one market.  As each market may have unique information to offer, we do 

not want to throw away relevant information by failing to use all available observations.  On 

the other hand, we also don’t want to pool them and treat them as independent observations.  

Once again, the solution to the problem consists of using GLS to estimate mean abnormal 

returns.  

We start off similarly to the heteroskedasticity case, allowing each of the N event/firm 

observations to be characterized by its own variance.  The only difference is that we 

generalize our notation to allow for multiple-listings.  Define ijtAR  as the abnormal returns 

from security i listed in market j at time t. Note that this allows the same security to be listed 

in more than one market at the same time.  

Let the DGP of abnormal returns, now ijtAR , be represented by 

(24)        t t tβ y x ε . 

It is helpful to visualize this more general problem with a specific example:  

 

11t
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AR

 
 
 
 
 

  
 
 
 
 
 

ty . 

In this example, the first security is multi-listed in three markets: markets 1,2,and 3. The 

second security is listed in two markets: markets 1 and 3. And the last two securities are 

single-listed. Security 3 is listed in market 2. Security 4 is listed in market 3. 
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Define 
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
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

, and P  such that -1P'P = Ω . Pre-multiplying (24) by 

P  gives t t tPy = Px β + Pε , which can be rewritten as  

(25) t t tβ   y x ε . 

Note that t
y  is an N×1  vector of standardized abnormal returns,   
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and that tε  is a vector of standardized error terms.  Note further that with heteroskedasticity 

and no cross-sectional dependence, ~ ( )t N Nε 0 , I  

 We now generalize the error variance-covariance matrix to allow for correlated 

abnormal returns when the same security is listed in more than one market. Let  

(26.1) ~ ( )t N Nε 0 ,Ω , where  

(26.2) 
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and ,ij ik refers to correlations of standardized abnormal returns between multi-listing 

pairs, /ijt ijAR   and /ikt ikAR  . 

Assuming the ijσ and ikij, i=1,2,…,N  are known, the GLS estimator of β  

corresponding to this second generalization is  

(27)    tttt2-GLSβ yΩxxΩx 111 ~~~~~~ˆ   ,  

(28.1)     11 xΩx
 tt2-GLSβVar ~~~ˆ , and  

(28.2)     11 xΩx
 tt2-GLSβs ~~~ˆ..e .  

To test the null hypothesis that 0β  , we form the Z statistic,  

(29)        
 

 
ˆ

ˆ
t t t tGLS-2

t

GLS-2
t t

β
Z

s.e.(β )

 



 
 



11 1

11

x Ω x x Ω y

x Ω x

    

 
. 

If the ij  , i=1,2,…,N , are unknown, we substitute their estimated values, ij̂  , i=1,2,…,N , in 

the usual manner.  As noted above, time-varying estimates of ij̂  may also be employed.  

Somewhat more problematic is the estimation of Ω   and P .   

 Estimation of Ω  involves estimating the individual elements ,ij ik  (see Equation 

26.2).  To achieve this, we follow a three-step process based on the “studentized” residual (as 

in “Student” t statistic).  Similar to out-of-sample prediction errors, in-sample prediction 

errors will also have different standard deviations across observations.  This is true even 

when the error terms from the DGP all have the same variances.  This will cause the standard 

deviation estimates used to calculate the /ijt ijAR   and /ikt ikAR   terms to be time-varying. 

First, we estimate the market model regression for each i and j during the estimation 

period: 

(30)       ijs ij ij js ijsR Rm     , s 1,2,...,S ; 
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where ijsR is observed returns for security i in market j at time s; and jsRm is observed returns 

for the market portfolio corresponding to market j at time s.  We note that 

(31) ˆˆ ˆijs ijs ij ij js ijsAR R Rm      , 

where îjs  is the residual from the estimated market model of Equation (30). 

 Second, we estimate standard deviations so we can standardize the abnormal returns, 

/ijt ijAR   and /ikt ikAR  .  The first step consists of collecting the explanatory variables from 

Equation (30) in the matrix, ijX : 

(32) 

j1

j1
ij

jS

1 Rm

1 Rm

1 Rm

 
 
   
 
  

X
 

. 

We then calculate the “hat” matrix 

(33) '
j ij ij j j

-1 '
i i iH = X (X X ) X . 

The standard deviation of the sth residual in the estimated market model of Equation (30) is 

estimated by 

(33)         ˆ ˆ 1 s
ijs ij ijh    

where s
ijh  is the sth diagonal element of ijH , and ˆij is the standard error of the estimate from 

the market model regressions of Equation (30).   

 Third, we estimate ,ij ik .  To do that, we take the standardized abnormal returns for 

the ith firm in markets j and k --  
ˆ 1

ijs

s
ij ij

AR

h 
 and 

ˆ 1
iks

s
ik ik

AR

h 
, s=1,2,…,S -- and calculate the 

associated sample correlation between the two series.7  These respective estimates of ,ij ik  are 

                                                      
7 We employ “lumped” instead of “trade to trade” returns to calculate daily return correlations because of 
different holiday distribution among nations or areas.  
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substituted into Equation (26.2), and 2-GLSβ̂  and  2-GLSβs ˆ..e  are calculated accordingly (cf. 

Equations 27 and 28.2).  Hypothesis testing proceeds accordingly, with critical values for Zt 

(cf. Equation 29) taken from the standard normal distribution because the underlying theory 

is asymptotic.  

To generalize the preceding analysis to testing on the interval (T1, T2), define 

(34.1) 

1
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2

T

T 1

T



 
 
   
 
  










y

y
Y

y

,  

(34.2) 

1

1

2

T

T 1

T



 
 
   
 
  










x

x
X

x

,  and 

(34.3) 

 
 
 
 
 
  

NN NN

NN NN

NN NN

Ω 0 0

0 Ω 0

0 0 Ω

 
 

   


  ,  

where Y  and X  are each  11)TN(T 12  , NN0  is a zero matrix of size NN  , and   is 

1)TN(T1)TN(T 1212  . 

Then the corresponding GLS estimator of β  -- the mean of the distribution of 

abnormal returns – is 

(35)   YΣXXΣX 111 ~~~~~~ˆ  2-GLSβ ,  

and the estimated standard error of 2-GLSβ̂  is given by 

(36)     11 XΣX
 ~~~ˆ.. 2-GLSβs e .  

To test the null hypothesis that 0β  , we form the Z statistic,  
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(37) 
 

 
ˆ

ˆ
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β
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s.e.(β )
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  
 .   

 We can simplify this notation considerably (and accordingly facilitate practical 

estimation). First note that 

(38) 

1

1
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1
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


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Thus,  

(35’)   YΣXXΣX 111 ~~~~~~ˆ  2-GLSβ = 




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
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T

Tt
2-GLSβs.e. ~~~ˆ .  

This leads to the following statistic for multi-period testing of abnormal returns in the 

presence of both heteroskedasticity and cross-sectional correlation due to multi-listing: 

(37’)  
ˆ

ˆ

2 2

2 2
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2 1 1
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 

 .  

The intuition underlying the above procedure is straightforward. Suppose a researcher 

has, for a given event type, access to data from firms listed in multiple markets (where returns 

are both heteroskedastic and cross-sectionally correlated). As discussed earlier, pooling the 

listings without further adjustment would involve what is essentially double-counting of 

virtually identical observations.  Instead, what is required is an appropriate weighting system 

that incorporates in the abnormal return estimates the different information about wealth 

effects possessed by the different markets – at the same time counting only once the 
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information that is common across markets.  The generalized approach outlined above 

calculates weights using the error variance-covariance matrix, thus achieving an efficient 

weighting of individual observations. Note that ˆ
GLS-2β , and the corresponding tZ and T1,T2Z  

statistics, are designed to estimate and test hypothesis about  , the mean of the population of 

abnormal returns; and not  , the mean of the population of standardized abnormal returns. 

 
3.   APPLICATION:  OVERSEAS MERGERS AND ACQUISITIONS BY 

CHINESE FIRMS 
 
In this section, we apply the approach described above to a sample of overseas 

mergers and acquisitions (OMAs) by non-financial Chinese firms between 1 January 1994 

and 31 December 2009.8 There are two reasons why this should be a useful setting for 

assessing the potential contribution of our generalized methodology. First, the geographical 

dispersion of OMAs means that information relevant to a particular event is also likely to be 

dispersed across markets. For example, while mainland investors might be expected to have 

informational advantages concerning Chinese acquiring firms, foreign investors may be 

better informed about the overseas targets. Estimation of the total wealth effects emanating 

from OMAs requires aggregation of these individual-country information sets. Second, such 

aggregation is unlikely to be revealed by the price reaction in a single market. Prior literature 

(Chen et al., 2010; Gagnon & Karolyi, 2004) suggests that the Chinese mainland markets are 

not well integrated with other markets and that deviations from price parity are both common 

and substantial. 

3.1 Summary Information on Multi-listings 
 

To be included in our sample, the acquiring Chinese firm must (i) have its shares 

listed in at least one of the following exchanges: Shanghai and Shenzhen exchanges (China 

Mainland), SEHK (Hong Kong, China), NYSE, AMEX or NASDAQ (US); (ii) have stock 

                                                      
8 The data on OMAs were obtained from Thomson SDC Platinum M&A Database. 
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price information available from DataStream; and (iii) provide at least 137 days of 

continuous return data before, and 10 days after, the announcement date, of which fewer than 

50% are zero return days. 157 OMA events initiated by a total of 96 Chinese acquirers 

satisfied these criteria. Over a third of these deals involved target firms located in Hong 

Kong, with the remainder spread widely across six continents. With Hong Kong excluded, 

the US is the most frequent location of target firms.9  

TABLE 1 summarizes the listing status of the Chinese acquiring firms involved in the 

157 OMA events.  Of these, 111 events involve firms listed in a single market only – 50 in 

China, 30 in Hong Kong, China and 31 in US.  The remaining 46 events are dual-listed (36) 

or triple-listed (10). In total, there are 213 return reactions in the sample when multi-listings 

are taken into account. This compares with 64 observations if we restricted ourselves to 

events listed on Chinese Mainland markets.   Of course, the extended sample cannot simply 

be thought of as providing independent draws from a distribution – 102 of the 213 

observations are related, in that they consist of double- or triple-listed shares of the same 

event/firm. 

3.2. Summary Information For Correlations of Abnormal Returns 
 
 TABLE 2 summarizes the estimated correlations between standardized abnormal 

returns for the multi-listed events/firms in our sample (see Section 2.4 for a discussion of how 

the respective ij,ik  terms were estimated).  There are 10 pairwise correlations, ij,ik , for the 

China Mainland-US markets, corresponding to 10 events/firms that are jointly listed on the 

China Mainland and US markets.  Likewise, there are 16 pairwise correlations for the China 

Mainland-Hong Kong markets, and 40 for the Hong Kong-US markets.   

 The table reports much lower pairwise correlations for abnormal returns associated 

with shares jointly listed in the China Mainland and overseas markets, than for shares listed 

                                                      
9 We employ the same OMA event data as we used in Chapter Three. Please see Table 1-3 in Chapter Three for 
details. 
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in the Hong Kong and US markets.  The mean value of pairwise correlations for the Hong 

Kong – US markets is 0.609, compared to 0.113 and 0.086 for China Mainland – US and 

China Mainland – Hong Kong.10   

 The low China Mainland – Hong Kong correlation is noteworthy given that the 

markets share the same time zone and language, and similar culture. However, shares listed 

on Chinese Mainland exchanges are not exchangeable with shares of the same firm listed 

overseas.  Further, Chinese citizens are prohibited from investing in Hong Kong or the US.  

These trading obstacles have been cited as an explanation for the well-known discount of 

Hong Kong H shares relative to China A shares.11  

 In contrast, the Hong Kong market is generally regarded as being highly integrated 

with US markets. Hong Kong H-share ADRs in the US, and Pilot program securities in Hong 

Kong, are both exchangeable. Further, there is no citizenship restriction for mutual 

investment.  As a result, the Hong Kong - US dual-listing pairs achieve relatively high 

correlations despite the fact that there are significant differences in the closing times of the 

respective markets, due to the fact that the markets are in different time zones. 

 This is further evidenced by TABLE 3, which reports mean absolute percentage 

deviations in (closing) prices between markets for dual-listed shares over the calendar year 

2008.  The mean, absolute percentage difference iss only 4.8% for Hong Kong – US dual-

listed pairs, compared to 40.9% and 47.3% for China Mainland – US and China Mainland – 

                                                      
10  Empirical studies show that correlation between different markets are pretty low:  0.0071-0.1232 for market 
return pairs (Yun, Abeyratna, & David, 2005); 0.107-0.403 for monthly returns in Cho et al. (1986); 0.24-0.71 
for monthly excess return pairs in Longin & Solnik (1995) and -0.006-0.673 for daily residual returns pairs in 
Eun & Shim (1989). U.S. and Canada markets are found to get highest correlation, approximately 0.69, whereas 
U.S. and less developed markets are far less correlated; U.S. stock markets have significant return and volatility 
spillover effect to other international stock markets, whereas no other markets can significantly explain U.S. 
market movements (Cheol S. Eun & Shim, 1989; Hamao, Masulis, & Ng, 1990; Yun et al., 2005).  
11 However, HK and U.S. citizens are allowed to purchase Chinese B shares in HK Dollar, US Dollar (T+3). 
Only Qualified Chinese Domestic Investment Institutions (QDII) can purchase foreign shares in foreign markets 
with a quota. Of course, there are ways for Chinese citizens to transfer money aboard and invest overseas with 
the help of financial institutions, or brokers, agencies in grey or black markets even under the capital control 
environment. 
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Hong Kong dual-listings.12  The table also reports individual price deviations for selected 

multi-listed shares. 

 Together, TABLES 2 and 3 provide evidence that multi-listed shares are imperfectly 

correlated and contain useful, independent information that can better inform estimates of 

market reactions to OMA announcements. 

3.3.  Comparison of OLS And GLS Estimators 
 

TABLE 4 reports mean abnormal returns for each day of the 21-day test period, (-

10,10).  One problem with identifying differences in estimation procedures is that one must 

be careful not to conflate the effect of different sample sizes.  For example, GLS results that 

use multi-listed observations may differ from OLS results based on one observation per 

event/firm either because of the different estimation procedures, or different datasets, or both.  

TABLE 4 is designed to help differentiate these effects.  We apply OLS and the GLS 

estimators to estimate mean abnormal returns for each of three datasets: (i) China Mainland 

listings (64 observations), (ii) “Highest Volume” listings (157 observations), and (iii) All 

Listings (213) observations.  The “Highest Volume” dataset selects only one observation per 

event/firm, choosing the market where the respective firm’s shares have highest trading 

volume.   

We first look at the OLS and GLS-1 results from the sample of 64 mainland listings. 

The results for the two procedures are very similar. The estimates of the mean value of 

abnormal returns are approximately the same. Further, both procedures find statistical 

significance for Day (-1) and Day (2).  

We next look at the sample of 157 Highest Volume listings. There include Chinese 

acquirers who list on all three markets: (i) China Mainland, (ii) Hong Kong, and (iii) the U.S. 

                                                      
12 We employ US dollar prices and all the time series prices in year 2008 are from DataStream. The formula for 

mean absolute percentage deviation is:  1 2

2
mapd

p p
P

p


 . 
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The two procedures produce much different results for this sample. The major difference is 

that OLS finds significant day effects on Day (-5), Day (2), and Day (3). The GLS-1 

procedure finds no significant abnormal returns for any of the 21 days of the test period.  

For the sample of 213 multi-listings, the three procedures once again produce diverse 

results. OLS produces significant abnormal returns on Day (-5), Day (0), Day (1), Day (2) 

and Day (3).  This contrasts with the GLS-1 procedure, which finds that abnormal returns are 

significant only on Day (1).   The GLS-2 procedure estimates a significant abnormal return 

only for Day (-1). 

TABLE 5 repeats the comparison, this time focussing on key intervals.  Once again, 

the results differ across datasets and estimation procedures.  Interestingly, when it comes to 

statistical significance, the three procedures produce identical results within each sample, but 

different results across samples. For the China Mainland dataset, abnormal returns are 

significant on the (-5,-1) interval. In contrast, for the Highest Volume and All Listings 

datasets, abnormal returns are only significant on the (-1,1) interval. Across all three samples, 

the GLS-1 and GLS-2 results estimate mean abnormal returns that are close to each other. 

The OLS results tend to be substantially larger. 

The preceding results provide a range of estimates depending on the dataset and 

estimation procedure.  That leads to the question, which estimate(s) are best?  We invoke two 

principles in our analysis.  First, more observations are better. More observations provide 

more information. Compared to the 64 mainland listings, the 157 Highest Volume listings 

include some Chinese acquirers who only list on overseas markets.  For firms from emerging 

markets, foreign-listing is a signal of international operations experience, and offers greater 

transparency and protection for investors. Excluding these firms from an analysis of Chinese 

OMAs could result in sample selection that biases estimates of the mean of the population 

distribution of abnormal returns.   
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Further, expanding the data set from the 157 Highest Volume listings to the All 

Listings dataset of 213 observations allows better aggregation of different information sets. 

Because of language, cultural linkages and different geographic distributions, mainland 

investors are likely to be more knowledgeable about Chinese acquirers, while Hong Kong 

and US may be better informed about foreign targets. These alternative information sets will 

be artificially censored if we only allow one market observation for each event/firm.  

Accordingly, the best overall evaluation of an OMA announcement is the one that utilizes all 

available information across different information sets.   

We see evidence of this in both TABLES 4 and 5 by comparing identical procedures 

across different datasets.  For example, OLS estimates significant abnormal returns for Day (-

1) using the China Mainland observations, but not for the Highest Volume and All Listings 

observations.  Alternative, OLS estimates significant abnormal returns on the (-1,1) window 

for the Highest Volume and All Listings samples, but not for the China Mainland sample.  

This is evidence that foreign investors differ from Chinese investors in their evaluations of 

Chinese OMAs.  Of course, OLS’s assumptions of homoskedasticity and cross-sectional 

independence across all observations is untenable as one increases the sample size to include 

multi-listed observations from different markets. 

The choice of best sample size leads to the choice of best estimator.  The use of multi-

listed observations – which is desirable both because it increases sample size and allows a 

greater range of investor evaluations – argues for the GLS-2 procedure. The other two 

procedures treat multi-listed observations as though they are independent. TABLE 2 and 3 

indicate that this assumption is not warranted, particularly for shares that are dual-listed on 

the Hong Kong and US share markets.  

While the GLS-1 and GLS-2 procedures produce similar interval results for the All 

Listings dataset, the daily results present somewhat different pictures of market responses to 
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Chinese OMA announcements.  The GLS-1 procedure finds a single, statistically significant 

daily response on Day (1).  In contrast, the GLS-2 procedure estimates a significant market 

response on Day (-1).  In other words, the GLS-1 procedure finds evidence of a market lag to 

OMA announcements by Chinese acquiring firms.  The GLS-2 procedure finds evidence of 

information leakage.  The latter interpretation is arguably more believable when it comes to 

understanding market reactions to information disclosures.   

 
4. CONCLUSION 
 
This paper extends standard event study analysis to cases where firms list their shares in more 

than one exchange.  These additional listings supply extra information about how investors 

perceive announcements of firms’ policy decisions.  In addition, they enable researchers to 

construct larger samples.  The latter can be important when performing event studies of firms 

from emerging markets where the number of events/firms are often relatively small.  Our 

approach applies generalized least squares (GLS) procedures that explicitly incorporate the 

relationship of share price performance across multiple exchanges.  

Our theoretical development of the GLS procedure allows a direct comparison with 

conventional approaches that develop sample statistics based on standardized abnormal 

returns (cf. Mikkelson and Partch, 1986; Doukas & Travlos, 1988; and Aybar and Ficici, 

2009).  We show that these conventional approaches implicitly test hypotheses about the 

population of standardized abnormal returns. In contrast, our GLS procedure allows  

hypotheses to be directly applied to the distribution of (unadjusted) abnormal returns, which 

is usually the primary subject of interest.   

We demonstrate the applicability of our approach by estimating abnormal returns for 

announcements of overseas mergers and acquisitions (OMAs) by Chinese acquiring firms 

over the period 1994-2009.  Many of the Chinese acquiring firms in our sample list on more 

than one exchange.  Our analysis compares estimates of abnormal returns across three 
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different dataset – China Mainland listings, Highest Volume listings, and All Listings – and 

across three different estimation procedures (OLS, GLS allowing for event/firm 

heteroskedasticity, and GLS allowing for both heteroskedasticity and cross-dependent 

correlation).  We demonstrate that the different results obtained by applying GLS to multiple-

listed observations is partly due to the inclusion of additional data, and partly due to 

differences in the estimation procedure.  We argue that the best approach when studying 

firms from emerging markets is one that utilizes price reactions across multiple exchanges 

and, correspondingly, uses GLS to appropriately address issues of cross-sectional dependence 

associated with multiple listings.  As noted above, approximately a third of the firms 

appearing in Datastream are listed in at least two markets.  The approach developed in this 

paper allows researchers to exploit the additional information available from these multiple-

listed observations. 
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TABLE 1 

SUMMARY INFORMATION ON MULTI-LISTINGS 
 

LISTING 
NUMBER OF  

EVENTS 
NUMBER OF 

OBSERVATIONS 
NUMBER OF 

FIRMS 

China Mainland only 50 50 40 

Hong Kong only 30 30 22 

U.S. only 31 31 17 

China Mainland and Hong Kong 6 12 4 

China Mainland and U.S. 0 0 0 

Hong Kong and U.S. 30 60 9 

China Mainland, Hong Kong and U.S. 10 30 4 

TOTAL 157 213 96 
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TABLE 2 

SUMMARY INFORMATION FOR MULTI-LISTING CORRELATIONS 
 

MARKETS 
NUMBER OF 

CORRELATION 
 TERMS 

MEAN MAX MIN 

ij,ikρ : 

i = China Mainland 
j = US 

10 0.113 0.404 -0.101 

ij,ikρ : 

i = China Mainland 
j = Hong Kong 

16 0.086 0.378 -0.185 

ij,ikρ : 

i = Hong Kong 
j = US 

40 0.609 0.879 0.000 

 
 

NOTE: The numbers in the table summarize the respective ˆ
ij ik  terms used to construct the generalized error variance-

covariance matrix, Ω
~

, as specified in Equation 24.2. 
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TABLE 3 

PRICE DISPARITY BETWEEN INDIVIDUAL PAIRS OF MULTI-LISTED SHARES 
(MEAN ABSOLUTE PERCENTAGE DEVIATION)  

 

CHINA MAINLAND - US CHINA MAINLAND – HONG KONG HONG KONG - US 

China Petrol. & Chem. 0.454 Sinopec 0.455 China Petrol. & Chem. 0.023 

Yanzhou Coal Mining 0.408 Yanzhou Coal mining 0.410 Yanzhou Coal Mining 0.026 

China Life Insurance 0.124 China Life Insurance 0.123 China Life Insurance 0.022 

PetroChina 0.471 PetroChina 0.472 PetroChina 0.022 

Aluminum Corp. of China 0.508 China Netcom GP 0.022 

China Nonferrous Metals 0.985 China Telecom SR 0.023 

Angang Steel 0.193 CNOOC 0.024 

Huaneng Power Intl. 0.399 China Resources Ent. 0.078 

  Yuexiu Property 0.912 

  China Unic 0.025 

  China Mobile 0.021 

  Lenovo GP 0.020 

MEAN = 0.409 MEAN = 0.473 MEAN = 0.048 

MEDIAN = 0.454 MEDIAN = 0.455 MEDIAN = 0.023 

 

NOTE: Mean Absolute Percentage Deviation (MAPD) between prices p1 and p2 is calculated as 1 2

2

p p
MAPD

p


 .  All prices are first converted 

to US dollars.  Price series are taken from year 2008 in DataStream. 
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TABLE 4 

DAILY RESULTS COMPARISON 
 

DAY 
CHINA MAINLAND (64) HIGHEST VOLUME (157) ALL LISTINGS (213) 

ˆ
OLS  ˆ

GLS -1  ˆ
OLS  ˆ

GLS -1  ˆ
OLS  ˆ

GLS -1  2
ˆ

GLS   

-10 
0.0011 
(0.38) 

0.0009 
(0.40) 

0.0026 
(0.94) 

0.0021 
(1.31) 

0.0026 
(1.19) 

0.0018 
(1.35) 

0.0022 
(1.53) 

-9 
0.0037 
(1.35) 

0.0022 
(0.99) 

0.0025 
(0.92) 

0.0018 
(1.16) 

0.0026 
(1.15) 

0.0021 
(1.53) 

0.0023 
(1.59) 

-8 
0.0018 
(0.64) 

0.0020 
(0.91) 

-0.0003 
(-0.10) 

0.0001 
(0.04) 

-0.0004 
(-0.18) 

-0.0003 
(-0.23) 

-0.0005 
(-0.34) 

-7 
0.0001 
(0.02) 

-0.0002 
(-0.11) 

-0.0031 
(-1.15) 

-0.0012 
(-0.76) 

-0.0033 
(-1.47) 

-0.0015 
(-1.07) 

-0.0001 
(-0.08) 

-6 
0.0005 
(0.17) 

-0.0010 
(-0.44) 

-0.0017 
(-0.61) 

-0.0020 
(-1.30) 

-0.0012 
(-0.54) 

-0.0023 
(-1.70) 

-0.0026 
(-1.81) 

-5 
0.0040 
(1.45) 

0.0014 
(0.64) 

0.0061** 
(2.22) 

0.0007 
(0.43) 

0.0051** 
(2.27) 

0.0006 
(0.43) 

0.0009 
(0.66) 

-4 
0.0009 
(0.32) 

0.0030 
(1.37) 

-0.0023 
(-0.85) 

0.0022 
(1.39) 

-0.0015 
(-0.65) 

0.0013 
(0.95) 

0.0016 
(1.12) 

-3 
-0.0003 
(-0.10) 

-0.0001 
(-0.06) 

0.0000 
(0.00) 

0.0011 
(0.68) 

-0.0005 
(-0.24) 

0.0004 
(0.26) 

0.0010 
(0.66) 

-2 
0.0016 
(0.59) 

0.0014 
(0.64) 

-0.0022 
(-0.81) 

-0.0006 
(-0.40) 

-0.0028 
(-1.24) 

-0.0011 
(-0.78) 

-0.0012 
(-0.80) 

-1 
0.0087*** 

(3.18) 
0.0062*** 

(2.82) 
0.0036 
(1.32) 

0.0030 
(1.89) 

0.0033 
(1.49) 

0.0022 
(1.61) 

0.0029** 
(2.01) 

0 
0.0003 
(0.11) 

0.0019 
(0.86) 

0.0044 
(1.61) 

0.0017 
(1.05) 

0.0044** 
(1.98) 

0.0012 
(0.91) 

0.0011 
(0.77) 

1 
-0.0010 
(-0.35) 

-0.0019 
(-0.85) 

0.0040 
(1.48) 

0.0019 
(1.23) 

0.0054** 
(2.43) 

0.0031** 
(2.28) 

0.0025 
(1.72) 

2 
-0.0060** 

(-2.20) 
-0.0050** 

(-2.29) 
-0.0059** 

(-2.17) 
-0.0010 
(-0.64) 

-0.0052** 
(-2.34) 

-0.0013 
(-0.96) 

-0.0012 
(-0.82) 

3 
0.0002 
(0.068) 

0.0005 
(0.22) 

-0.0056** 
(-2.05) 

-0.0021 
(-1.34) 

-0.0047** 
(-2.13) 

-0.0019 
(-1.42) 

-0.0024 
(-1.65) 
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DAY 
CHINA MAINLAND (64) HIGHEST VOLUME (157) ALL LISTINGS (213) 

ˆ
OLS  ˆ

GLS -1  ˆ
OLS  ˆ

GLS -1  ˆ
OLS  ˆ

GLS -1  2
ˆ

GLS   

4 
-0.0045 
(-1.64) 

-0.0031 
(-1.41) 

-0.0024 
(-0.86) 

-0.0016 
(-1.04) 

-0.0010 
(-0.45) 

-0.0008 
(-0.59) 

-0.0011 
(-0.78) 

5 
0.0038 
(1.37) 

0.0020 
(0.94) 

0.0014 
(0.50) 

0.0014 
(0.91) 

0.0018 
(0.83) 

0.0018 
(1.33) 

0.0015 
(1.061) 

6 
-0.0010 
(-0.36) 

0.0006 
(0.27) 

-0.0017 
(-0.63) 

-0.0012 
(-0.77) 

0.0000 
(-0.01) 

-0.0003 
(-0.22) 

-0.0012 
(-0.82) 

7 
0.0029 
(1.06) 

0.0019 
(0.86) 

0.0045 
(1.65) 

0.0008 
(0.48) 

0.0034 
(1.53) 

0.0005 
(0.36) 

0.0010 
(0.69) 

8 
0.0010 
(0.38) 

0.0026 
(1.21) 

0.0005 
(0.18) 

0.0013 
(0.86) 

0.0010 
(0.43) 

0.0012 
(0.86) 

0.0009 
(0.62) 

9 
-0.0023 
(-0.85) 

-0.0034 
(1.56) 

-0.0006 
(-0.23) 

-0.0015 
(-0.98) 

-0.0004 
(-0.19) 

-0.0012 
(-0.91) 

-0.0011 
(-0.80) 

10 
-0.0034 
(-1.24) 

-0.0039 
(-1.77) 

-0.0031 
(-1.13) 

-0.0018 
(-1.15) 

-0.0028 
(-1.25) 

-0.0016 
(-1.19) 

-0.0014 
(-1.00) 

 

NOTE: OLS̂  is the estimate of mean abnormal returns using OLS; ˆ
GLS -1  is the estimate of 

mean abnormal returns using a GLS procedure that corrects for event/firm-specific 

heteroskedasticity; and ˆ
GLS -2  is the estimate of mean abnormal returns using a GLS 

procedure that corrects for both event/firm-specific heteroskedasticity and cross-sectional 
dependence arising from multi-listing.  Figures in parentheses are Z-statistics associated with 
the null hypothesis that mean abnormal returns equal zero. 
 
*, **, *** indicate statistical significance at the 10 percent, 5 percent, and 1 percent level 
(two-tailed test). 
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TABLE 5  

INTERVAL RESULTS COMPARISON 
 

INTERVAL 
CHINA MAINLAND (64) HIGHEST VOLUME (157) ALL LISTINGS (213) 

ˆ
OLS  ˆ

GLS -1  ˆ
OLS  ˆ

GLS -1  ˆ
OLS  ˆ

GLS -1  ˆ
GLS-2  

(-10,-6) 
0.0071 
(1.15) 

0.0008 
(0.78) 

0.0000 
(0.00) 

0.0001 
(0.20) 

0.0003 
(0.06) 

0.0000 
(-0.05) 

0.0003 
(0.40) 

(-5,-1) 
0.0149** 

(2.43) 
0.0024** 

(2.42) 
0.0051 
(0.84) 

0.0012 
(1.79) 

0.0036 
(0.73) 

0.0007 
(1.11) 

0.0011 
(1.64) 

(-1,1) 
0.0081 
(1.70) 

0.0021 
(1.64) 

0.0120** 
(2.54) 

0.0022** 
(2.41) 

0.0131*** 
(3.41) 

0.0022*** 
(2.77) 

0.0022*** 
(2.61) 

(1,5) 
-0.0076 
(-1.23) 

-0.0015 
(-1.52) 

-0.0085 
(-1.39) 

-0.0003 
(-0.40) 

-0.0037 
(-0.75) 

0.0002 
(0.28) 

-0.0001 
(-0.21) 

(6,10) 
-0.0028 
(-0.45) 

-0.0004 
(-0.44) 

-0.0005 
(-0.08) 

-0.0005 
(-0.69) 

0.0012 
(0.23) 

-0.0003 
(-0.49) 

-0.0004 
(-0.59) 

(-2,2) 
0.0037 
(0.59) 

0.0005 
(0.53) 

0.0039 
(0.63) 

0.0010 
(1.40) 

0.0052 
(1.04) 

0.0008 
(1.36) 

0.0008 
(1.29) 

(-3,3) 
0.0035 
(0.49) 

0.0004 
(0.50) 

-0.0017 
(-0.24) 

0.0006 
(0.93) 

-0.0001 
(-0.02) 

0.0004 
(0.71) 

0.0004 
(0.72) 

 
NOTE: OLS̂  is the estimate of mean abnormal returns using OLS; ˆ

GLS -1  is the estimate of mean abnormal returns using a GLS procedure that 

corrects for event/firm-specific heteroskedasticity; and ˆ
GLS-2  is the estimate of mean abnormal returns using a GLS procedure that corrects for 

both event/firm-specific heteroskedasticity and cross-sectional dependence arising from multi-listing.  Figures in parentheses are Z-statistics 
associated with the null hypothesis that mean abnormal returns equal zero. 
 
*, **, *** indicate statistical significance at the 10 percent, 5 percent, and 1 percent level (two-tailed test). 
 


