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Abstract

During periods of market stress, electricity prices can rise dramatically. This paper treats
these abnormal episodes or price spikes as count events and attempts to build a model of
the spiking process. In contrast to the existing literature, which either ignores temporal
dependence in the spiking process or attempts to model the dependence solely in terms of
deterministic variables (like seasonal and day of the week effects), this paper argues that
persistence in the spiking process is an important factor in building an effective model. A
Poisson autoregressive framework is proposed in which price spikes occur as a result of the
latent arrival and survival of system stresses. This formulation captures the salient features
of the process adequately, and yields forecasts of price spikes that are superior to those
obtained from näıve models in which persistence in the spiking process is not accounted for.
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1 Introduction

Electricity retailers generally buy electricity from an electricity grid at a market price, known as
the spot price, but sell electricity to customers at a price that is heavily regulated. Spot prices
cannot, therefore, be passed on to the final consumer directly, and retailers end up bearing
the price risk. Consequently, the accurate forecasting of electricity prices is one of particular
practical importance to risk management in the energy sector. From the perspective of academic
research, modelling electricity prices also provides a compelling challenge because time-series
data on electricity prices display a number of interesting idiosyncracies that stem mainly from
the lack of practical ways to store electricity. It is not surprising, therefore, that there is a large
and growing literature on modelling and forecasting electricity spot prices.

Most models of electricity prices start from the generally accepted view that the price process
is stationary and mean reverting, that it displays predictable fluctuations over daily, weekly
and yearly frequencies and also exhibits sudden and extreme changes in price, often referred
to as price ‘spikes’ (Barlow, 2002; de Jong and Huisman, 2002; Geman and Roncorni, 2006;
Mount et al., 2006). Historically, models fall into three broad categories, namely, traditional
autoregressive time series models, nonlinear time series models with particular emphasis on
Markov-Switching models and continuous-time diffusion models. Each class of model, with few
exceptions, expresses the spot price of electricity or its logarithm as the sum of a mean-reverting
autoregressive component together with a seasonal components. Where the models differ is in
terms of the treatment of spikes.

Traditional autoregressive time-series models treat spikes either in terms of: a latent threshold
(Misiorek et al., 2006); a homogeneous binomial process for jumps (Crespo Cuaresma et al.,
2004); a basic time-varying Poisson process for jumps with autoregressive error structure (Knit-
tel and Roberts, 2005); a switching process and as a process with either Gaussian-mixture errors
or GARCH errors (Swider and Weber, 2007); or a process with autoregressive error structure
with errors drawn from a Gaussian or extreme-value distribution (Contreras et al., 2003; Garcia
et al., 2005; Byström, 2005).

Nonlinear time-series models, in particular Markov-switching models, tackle the problem of
spikes by proposing different regimes, at least one of which is consistent with a state of system
stress in which a spike is more likely to occur (Becker et. al, 2007). De Jong and Huis-
man (2002), Huisman and Mahieu, (2003), Weron et al., (2004), de Jong (2006), Kosater and
Mosler, (2006) and Bierbrauer et al., (2007) found that the performance of models incorpo-
rating Markov-switching is often superior to models that do not incorporate switching. This
improved performance is achieved despite the fact that some of these studies ignore seasonality
in the transition probabilities as observed by, for example, Kanamura and Ōhashi (2007) and
Escribano et al. (2002). In an attempt to overcome this problem, Mount et al. (2006) and
Kanamura and Ōhashi (2007) propose models in which regime-switching probabilities are de-
pendent upon fundamental exogenous variables representative of the interplay between system
load and capacity constraints.

In continuous-time diffusion processes, spikes are normally captured by the addition of a Poisson
process with either a constant intensity parameter (Weron et al., 2004; Cartea and Figueroa,
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2005) or a time-inhomogeneous intensity parameter (Escribano et al., 2002; Knittel and Roberts,
2005) in which seasonality is incorporated by representing the intensity of the process as a sum
of temporal dummy variables. A well-acknowledged problem with these models is that simulta-
neous inclusion of mean-reversion and a jump process is incompatible with the large downward
swings that necessarily follow shortly after price spikes. This empirical reality confounds pa-
rameter estimation algorithms, leading in turn to unreliable and unrealistic results (Barlow,
2002; de Jong and Huisman, 2002; Bunn and Karakatsani, 2003; Burger et al., 2003). The most
common method of circumventing this problem is to propose a more complex (possibly multiple
factor) diffusion process (Barlow, 2002; Burger et al., 2003; Geman and Roncorni, 2006).

Each of these approaches to modelling spot electricity prices has its own particular strengths and
weaknesses, and a comprehensive comparison is beyond the scope of this paper. All the models
considered so far, however, share the common property that they treat price as a continuous
variable and attempt to model its trajectory. This apparently innocuous assumption needs to
be reconsidered. Deregulated electricity markets are segregated in time by market rules making
each unit of time each day a separate market, a concept acknowledged early by Lucia and
Schwartz (2002). Thus, the notion of modelling price as a continuous variable in time appears
to be at odds with the way in which the electricity market functions. Consequently, this paper
adopts and approach in which each price spike is a discrete event, with the time series of events
being regarded as a realisation of a point process. This approach is consistent with the physical
model of electricity generation and dispatch and also interesting in the sense of enabling the
econometric tools relating to point processes to be applied to the problem.

This paper makes two major contributions to the existing state of knowledge in the modelling of
extreme movements in electricity prices. The first concerns the validity of the basic assumptions
made in the literature about the spiking process. It is shown that one of the most common
methods used in the literature to characterize the spiking process, that is a Poisson process
with an intensity parameter that is either constant or driven solely by deterministic seasonal
variables, is in fact a misspecification. In particular, it is found that the intensity of the true
process is significantly related to a historical component, and that this persistence must be
accounted for if the resulting model is to be credible. This finding contradicts a fundamental
assumption made by Poisson process models, namely that events occur independently across
time.

The second, more fundamental contribution of this paper relates to the use of a variant of the
Poisson autoregressive (PAR) model introduced by Al-Osh and Alzaid (1987) and McKenzie
(1988), which has proven useful when dealing with low-count integer-valued time series (Freeland
and McCabe, 2004a). In the current context, the PAR model is used to capture persistence in
the spiking process, and hence provide a better characterisation of the behaviour of electricity
prices. The motivation for using the model lies in the idea that spikes occur as a result of a
number of unobserved stresses acting on the system simultaneously (Geman and Roncorni, 2006;
Mount et al., 2006). The behaviour of these concurrent, but unobserved stresses is described
by a PAR model with Bernoulli-distributed residuals. This novel adaptation allows estimation
of the model parameters despite the underlying process remaining latent.

The institutional framework of the paper is that of the Australian national electricity market
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(NEM), which has been operating since 1998. It comprises six state grids, five of which are
physically linked by inter-connectors. It should be noted, however, that price spikes are a generic
feature of electricity markets worldwide (Escribano, et al., 2002), and so the work reported in
this paper should be of general interest and applicability, despite the Australian focus of the
data underlying the analysis.

The remainder of the paper is structured as follows. Section 2 provides an introduction to
some of the important characteristics of electricity price data, particularly with respect to the
definition and nature of price spikes. An analysis of the deterministic temporal drivers of the
spiking process is performed via count regressions in Section 3, where it is demonstrated that
a spiking process constructed in this way does not display the same characteristics as that
observed in the Australian electricity market. Section 4 provides estimates of the suitably-
adapted Poisson autoregressive model and compares the forecasting performance of this model
against näıve forecasts of price spikes implied by an inhomogeneous Poisson process. Section 5
is a brief conclusion.

2 Data

In the NEM, electricity prices change every five minutes to match demand with the schedule of
bids offered by suppliers (generators) of electricity. Transactions in the market are settled each
half-hour at the spot price, which is calculated as the average of the prices at which electricity
was supplied in the six preceding five-minute intervals. This paper investigates the behaviour
of spot prices for the regions of New South Wales (NSW), Queensland (Qld), South Australia
(SA), the Snowy Mountains (Snowy) and Victoria (Vic) for the period from the opening of
the market on December 13, 1998 to May 1, 2007, a data set spanning 3,061 days or 146,928
half-hours for each region. While the regions are interconnected, physical constraints on the
amount of power transmittable between regions means that each region essentially operates as
a separate market. Table 1 gives the summary statistics of the time series of spot price and its
logarithm for each region. Figures 1 and 2, respectively, illustrate these series.

Table 1 demonstrates that the effect of spikes is to introduce a high level of skewness in the
distribution of electricity prices. This property of extreme skewness has also been observed in
data from other markets (Escribano et al., 2002). Other basic attributes possessed by data of
this type are: mean reversion to a deterministic component with periodic behavior (Huisman
and Mahieu, 2003); seasonal volatility (Lucia and Schwartz, 2002); and GARCH characteristics
in both the price (Garcia et al., 2005) and returns series (Byström, 2005). Electricity prices also
have well-documented diurnal, weekly, monthly, seasonal and annual fluctuations. Attempts
to model these permanent components have included combinations of daily dummy variables
and monthly dummy variables, or trigonometric functions with appropriate period (Lucia and
Schwartz, 2002; Knittel and Roberts, 2005) and wavelet decompositions (Weron et al., 2004).
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NSW Qld SA Snowy Vic

mean 34.57 36.28 41.83 32.07 31.74
median 23.13 20.93 28.71 23.66 23.51
std. dev. 176.83 157.99 150.27 118.09 123.99
skewness 36.29 29.87 26.42 38.28 43.21
kurtosis 1545.67 1143.43 873.22 1773.24 2445.89

mean 3.21 3.19 3.40 3.21 3.18
median 3.14 3.04 3.36 3.16 3.16
std. dev. 0.52 0.59 0.58 0.50 0.55
skewness 2.32 2.53 1.64 1.82 1.22
kurtosis 18.49 15.61 12.57 15.15 11.73

Table 1: Full sample summary statistics for the wholesale electricity price
series (upper panel) and its natural logarithm (lower panel). Observations
that were not strictly positive had to be excluded from the logarithmic data,
but these observations only constituted a tiny proportion of the overall set.
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Figure 1: Full series of half-hourly spot prices by region. The dashed line indicates
the maximum bid price for each five minute interval, increased from $5,000/MWh
to $10,000/MWh during April 2002.
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Figure 2: Series of the natural logarithm of half-hourly spot prices by region. Observa-
tions corresponding to zero and negative raw prices were discarded in the construction
of this series, but these constituted only a tiny fraction of the full data set.

The abrupt price increases so characteristic of electricity markets are clearly evident in Figure
1. Price spikes are not a uniquely Australian phenomenon but are characteristic of deregulated
electricity markets worldwide (Barlow, 2002; de Jong and Huisman, 2002; Lucia and Schwartz,
2002; Burger et al., 2003; Byström, 2005; Cartea and Figueroa, 2005). For the purposes of this
paper, a price spike or exceedence will be formally defined as a situation where spot electricity
price exceeds a particular threshold value that is chosen to lie substantially outside the normal
range of daily fluctuations. Figure 3 plots by region the medial half-hourly price (solid lines) and
the 10th and 90th percentile half-hourly spot prices (dashed lines). If the interval of spot prices
enclosed by these dashed lines is regarded as a ‘natural’ range for that region, then Figure 3
suggests that setting the threshold spot price at $100/MWh will satisfy the conditions required
of a threshold spot price for each region. This choice of threshold price is also in agreement
with that used by Becker et al. (2007) in a recent study of the Australian electricity market.
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Figure 3: Median half-hourly spot price by region. The dashed lines indicate the
10th and 90th percentile half-hourly spot price.

Geman and Roncorni (2006) and Mount et al. (2006) explain the presence of spikes by analysing
the generator bid curve, particularly the transition in bids from low-cost high-supply genera-
tors to high-cost low-supply generators. Systematic fluctuations in demand due to weather or
business demands, systematic reductions in supply due to scheduled infrastructure maintenance
and non-systematic reductions in supply due to generator or network failure are some of the
factors that can shift the demand and supply curves. Given these potential explanations for
abnormal price events, it is not surprising that the empirical literature has found that the oc-
currence of price spikes varies across time. For example, Escribano et al. (2002) and Knittel and
Roberts (2005) show that for a number of electricity markets, the intensity parameter of the
spiking process in electricity prices exhibits seasonal dependence. Kanamura and Ōhashi (2007)
also observe a seasonal dependency in the transition probabilities between spike and non-spike
regimes due to systematic fluctuations in demand.
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Time NSW Qld SA Snowy Vic

00:00 – 02:00 22 12 132 25 38
02:00 – 04:00 7 5 100 10 14
04:00 – 06:00 4 2 27 3 4
06:00 – 08:00 38 61 131 35 38
08:00 – 10:00 65 329 429 44 76
10:00 – 12:00 112 439 387 76 92
12:00 – 14:00 298 556 670 226 249
14:00 – 16:00 466 668 811 357 356
16:00 – 18:00 335 537 630 266 250
18:00 – 20:00 573 903 750 459 445
20:00 – 22:00 48 223 245 41 42
22:00 – 24:00 34 142 178 37 42

Total 2002 3877 4490 1579 1646

Table 2: Count of exceedences above $100/MWh by region, pooled by time of day.

Weekday NSW Qld SA Snowy Vic

Sunday 163 272 327 138 95
Monday 382 722 694 278 326
Tuesday 332 834 782 261 300
Wednesday 310 700 710 238 254
Thursday 378 603 822 300 333
Friday 221 434 625 186 210
Saturday 216 312 530 178 128

Total 2002 3877 4490 1579 1646

Table 3: Count of exceedences above $100/MWh by region, pooled by weekday.
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Month NSW Qld SA Snowy Vic

January 332 697 641 298 281
February 311 418 670 249 269
March 110 651 237 89 94
April 277 363 336 163 144
May 159 198 256 142 151
June 174 284 307 142 166
July 169 311 443 146 162
August 81 218 405 66 103
September 36 45 119 33 42
October 54 222 226 38 35
November 145 151 519 110 102
December 154 319 331 103 97

Total 2002 3877 4490 1579 1646

Table 4: Count of exceedences above $100/MWh by region, pooled by month.

Tables 2, 3 and 4, which display the respective number of exceedences above $100/MWh on an
intra-hour, intra-day and intra-month basis, also provide casual empirical evidence to support
temporal dependency in the Australian market. These tables illustrate, for example, that in
most regions an exceedence is at least twice as likely to occur on a ‘working’ day (Monday–
Thursday) compated to a Sunday, and, in some regions, at least one hundred times more likely
between 16:00–20:00 than between 02:00–06:00.

Section 3 provides a more formal analysis to support the observation that the intensity of excee-
dences in electricity prices exhibits temporal dependence. In order to isolate the deterministic
factors that are thought to drive exceedences, the total number of abnormal price events arising
per day may be regarded as a counting measure, quantifying the stress acting on the system,
thus enabling the formal framework of count regression to be used to determine the statistical
significance of possible factors driving the occurrence of price spikes.

3 Modelling temporal dependence

Count regressions may be used to capture the properties of series of observed counts provided
these are independent draws from an underlying discrete distribution. For example, the primi-
tive Poisson regression assumes that if y1, y2, . . . , yn is a series of counts, then each observation
is an independent draw from a Poisson distribution with constant intensity parameter λ. One
generalisation of the basic Poisson regression incorporating the possibility that the series of ob-
served counts may depend on a set of exogenous variables, say X = (X1, · · · , Xm)′, is to propose
that the intensity parameter of the process at instant i is given by the ansatz λi = exp(X ′

i β)
in which β = (β1, · · · , βm)′ is a parameter vector to be estimated.

In the current research, a series y1, y2, . . . , yn (n = 3061) of counts was constructed for each
region with yi denoting the number of daily exceedences of the spot price above $100/MWh
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on the i-th day of the data. An important property of these constructed series was that the
frequency with which the observation zero occurred was significantly in excess of that which
would be expected from a Poisson or Negative Binomial distribution. To resolve this difficulty,
a zero-inflated Poisson (ZIP) model (see, for example, Greene, 1994) was found to give a good
fit to the distributional properties of the observed series. The ZIP model requires that, if
y1, y2, . . . , yn is a series of counts, then for k ∈ {0, 1, . . . }

Prob (Yi = k) =

{
αi + (1− αi)p 0 k = 0

(1− αi)p k k > 0
(1)

where Yi denotes the i-th observation of the series of counts and p k is the Poisson probability
density function with intensity λi. When there are no excess zeros αi = 0 in equation (1) and
the regression reduces to a primitive Poisson regression. While Greene (1994) suggests some
stochastic formulations for αi, these were found in many cases to give an inferior fit1 to the case
αi = α. When αi = α, the log-likelihood function is

log L =
n∑

i=1

log
(

(1− α)
exp(−λi)λ

yi
i

(yi)!
+ α I{yi=0}

)
(2)

which is maximised with respect to the parameters θ = (α, β).

The literature provides some idea of which variables may influence the inhomogeneity of the
number of observed counts. It is clear from Knittel and Roberts (2005) and Escribano et al.
(2002) that, when modelled as the sum of dummy variables, the intensity of exceedences displays
strong seasonal, weekend and peak/off-peak intra-day effects. It is anticipated that these effects
arise from the interplay of exogenous variables which themselves exhibit seasonal, weekday and
peak/off-peak fluctuations. For example, it has been observed that load has a systematic diurnal
and seasonal behaviour (Ramanathan et al., 1997), and that weather-based variables exert a
strong influence on electricity demand (Taylor and Buizza, 2003). These observations suggest
that temperature and load provide two exogenous variables that potentially characterise the
intensity of exceedences by contrast with the intrinsically less satisfactory approach of simply
introducing dummy variables.

In this work daily temperature effects are modelled by Tmax, denoting the absolute deviation
of the maximum daily temperature from the mean maximum for that day, and Tmin denoting
the absolute deviation of the minimum daily temperature from the mean minimum temperature
for that day. The advantage in using the absolute deviation from the mean is that it corrects
for the positive correlation between temperature and price in summer months and the negative
correlation between temperature and price in winter months.2 The third exogenous variable to
be used here is daily peak load, which in this work was standardized by the previous years’ data
in order to preserve the stationarity of the load series. The exogenous variables Tmax, Tmin and

1For example, in NSW, Qld and SA the value of the log-likelihood function with constant α was −2398.6,
−4010.3 and −4787.8 whereas with αi = Φ(τλi) the respective corresponding values were −2396.0, −4090.9 and
−4808.9 where Φ is the Gaussian cdf.

2This assumed relationship between temperature and price is not unreasonable. On a particularly warm
summers day the demand for air conditioning will increase which in turn increases system stress causing the
wholesale price of electricity to rise. On a particularly cold winters day the demand for electricity will likewise
rise, but in this case to supply the call for heating.
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Load were incorporated into the model by proposing that the daily values of λ in expression (2)
are determined from the daily values of Tmax, Tmin and Load by the formula

log λ = β1 + β2Tmax + β3Tmin + β4Load . (3)

As the results in Table 5 show, the exogenous variables are strongly significant in all regions.
Since these variables are time-varying, this is clear evidence that the occurrence of exceedences
is time-inhomogeneous. In general, when a large deviation from average maximum temperature
or average minimum temperature is experienced, this increases significantly the value of the
intensity parameter which in turn corresponds to a higher probability of experiencing at least
one exceedence. As has been noted previously, unseasonably high temperatures in summer
or unseasonably low temperatures in winter can be expected to create an increased demand
for electricity thereby increasing the stress on the system which in turn translates to a higher
probability of experiencing an exceedence. Moreover, high peak load also has a significant and
positive effect on the intensity parameter in most regions. The intra-day exceedence pattern
observed in Table 3 is explained, in part, by this finding, since load is generally higher on
working days due to commercial demand. When a test for consistency against an alternative
of heterogeneity/overdispersion (Greene, 1994) is applied to this data, the zero-inflated model
performs satisfactorily in all regions.

Variable NSW Qld SA Snowy Vic

α 0.866* 0.781* 0.718* 0.877* 0.867*
(0.006) (0.008) (0.008) (0.006) (0.007)

Constant 1.468* 1.568* 1.328* 1.078* 0.991*
(0.012) (0.009) (0.009) (0.019) (0.019)

Tmax 0.057* 0.053* 0.085* 0.094* 0.081*
(0.002) (0.003) (0.001) (0.003) (0.003)

Tmin -0.019* 0.012* 0.035* 0.033* 0.066*
(0.005) (0.003) (0.002) (0.004) (0.005)

Load -0.009 0.285* 0.156* -0.115* 0.179*
(0.014) (0.008) (0.012) (0.013) (0.022)

log L -2597.3 -4155.9 -4638.1 -2108.3 -2210.2
p-value 0.499 0.497 0.486 0.496 0.493

Table 5: Results from zero-inflated Poisson regressions. Coefficients are listed with
standard errors in parentheses and significance at the 5% level. The p-values from
a consistency test for excess zeros in Greene (1994) are also shown.

To reinforce the claim of inhomogeneity of the occurrence of exceedences, Table 6 gives the
values of the log-likelihood function evaluated at the maximum likelihood estimates for the
zero-inflated model with a full complement of exogenous variables, and for the model with a
constant intensity (primitive Poisson model), that is, the choice λ = exp(β1) in expression (3).
The inappropriateness of capturing the occurrence of exceedences using a primitive Poisson
model is apparent from the likelihood ratio statistic, a result that further calls into doubt
attempts to model exceedences either as a Poisson process (Weron et al., 2004; Cartea and
Figueroa, 2005) or as a Binomial process with constant intensity(Crespo Cuaresma et al., 2004).
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Model NSW Qld SA Snowy Vic

Full model -2597.3 -4155.9 -4638.1 -2108.3 -2210.2
Constant only -2643.7 -4339.7 -5099.1 -2220.8 -2349.9

LR statistic 92.6 367.7 921.8 225.1 279.4

Table 6: Log-likelihood evaluated at MLEs for zero-inflated Poisson regressions for
each state with full dummy variables and with an intercept only. Likelihood ratio
statistics are also listed. The 99.5% quantile for the χ2

3 distribution is 12.84.

The question now arises as to whether or not the intensity of exceedences can be explained
adequately by a model based on exogenous factors alone or if this intensity also depends on the
previous history of exceedences. In other words, do exceedences exhibit any persistence over
and above the influences of load and temperature? Lindsay and Rosenberg (2007) propose the
second order cumulant as an appropriate tool to identify significant correlations between events.
The cumulant compares the distribution of lags between observed events to the distribution that
would be obtained from a process where events occur independently. Further details are provided
in the Appendix.

Consider the point process formed by partitioning time into days and associating an event with
each day if at least one exceedence occurred during that day3. Figure 4 plots the cumulant
for this point process for each region. It is apparent that there is a strong correlation between
events separated by intervals of two months or less, an observation which suggests that the
actual occurrence of exceedences is at odds with both homogenous and inhomogeneous Poisson
processes if these assume independent counts in non-overlapping intervals of time.

At first sight, therefore, it appears that the exceedences occur with a significant degree of
persistence, which suggests that their intensity cannot be modelled adequately using load and
temperature variables alone. A simple consistency check (Breunig et al., 2003) strengthens this
point. A synthetic price series of roughly the same number of observations as the original series
was simulated using the results of the Poisson regressions in Table 5. This allowed for a series
with the same temperature and load effects as the original series to be simulated, with the added
property of independence across time. Following this, exactly the same procedure for calculating
the second-order cumulant was performed as was done for the original series of prices. It is clear
from Figure 5 that the short-term memory exhibited by the true point process is absent from
the synthetic series since nearly all peaks fall between the bounds of the confidence interval.
The inevitable conclusion of this line of research must be that while exogenous variables such as
load and temperature have some power to explain the observed pattern of exceedences, there is
nevertheless a fundamental need to adopt a model of the underlying process which incorporates
its history.

3Of the total number of days on which at least one exceedence occurred, 404 for NSW, 661 for Qld, 830 for
SA, 347 for Snowy and 371 for Vic, the number of times the spot price exceeded $100/MWh from one day into
the next was 6, 0, 14, 6 and 5 respectively.
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Figure 4: Second order cumulant for the point process formed from the actual
data by assigning an event to each day in which at least one exceedence occurred.
The corresponding 95% confidence intervals for the null model, a time-homogeneous
Poisson process, are shown as dashed lines.

These results imply that the occurrence of spikes in Australian wholesale electricity prices is
driven by an intensity parameter which depends on the history of these exceedences, in addition
to obvious exogenous variables such as load and temperature. For the most part, existing
attempts to model price have have failed to recognise this fact and do not incorporate the
history of exceedences as a driving mechanism in the construction of a model. The next section
describes a procedure to construct a model of prices that includes exogenous variables, such as
load and temperature, and also accounts for short-term persistence in exceedences.
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Figure 5: Second order cumulant for the synthetic data calculated in exactly the
same as for the actual data. Confidence intervals are similarly calculated. The
absence of memory in this process is clear since nearly all peaks lie within the
bounds of the confidence interval, except for perhaps the odd random occurrence.

4 Modelling persistence

The analysis presented in the previous section supports the contention that price spikes in the
wholesale electricity market cluster in time and behave as an inhomogeneous process driven in
part by external stress to the system. This view is consistent with the mechanisms proposed
by Mount et al. (2006) and Geman and Roncorni (2006) to explain price spikes alluded to
in Section 2. Realistically, the occurrence of system stresses can be expected to behave as
a time-varying stochastic process. On occasions the drivers of these stresses may persist for
several days suggesting that some price spikes will be indicative of a critical failure within the
generating infrastructure, and that this failure will in the short term increase the likelihood
of fresh exceedences. This mechanistic argument goes some way to explaining why clusters of
price spikes are observed in the wholesale price of electricity. The econometric treatment of a
mechanism of this sort requires a stochastic model, in which the occurrence of a price spike
is dependent both on the history of price spikes and on the usual exogenous factors. With
this motivation in mind, the spiking process is assumed to be the combination of latent arrival
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and survival processes. The arrival process represents the advent of a period of stress and the
survival process models its duration.

Although intuitively appealing, this explanation is complicated by the possibility of multiple
events occurring concurrently. For example, a new stress could arrive prior to the resolution of
an existing stress, and end before or after the original stress. However, the number of concurrent
stresses cannot be observed: the only observable object is their net effect, namely, a price spike.
So, if Xt is the number of stresses acting on the system on day t, the observed variable is Yt,
where

Yt =

[
0 Xt = 0 ,

1 Xt > 0 .
(4)

Thus Yt is a binary random variable taking the value one if there is an exceedence on day t and
zero otherwise. The arrival and resolution of a number of overlapping but separate stresses is
manifest in the observed data as a single prolonged period of days on which exceedences are
observed. This superposition of the arrival and survival processes makes their separation and
direct estimation impossible. A further complication is that the values of Xt remain latent.
However, these complications may be overcome in part by making the simplifying assumption
that a maximum of one new stress can occur each day, independently of other days. Thus if et

counts the number of new stresses to arrive on day t, then et takes the values zero and one, and
the sequence of et is a sequence of independent Bernoulli random variables, with

Prob (et = 1) = λ ,

Prob (et = 0) = 1− λ .

The reason for this restriction will become apparent after the model is fully described.

The survivals component of the process is dealt with by using a Poisson autoregressive (PAR)
model originally introduced by Al-Osh and Alzaid (1987) and McKenzie (1988). Aspects of the
PAR model have received renewed interest in recent years, with developments in its statistical
analysis (Freeland and McCabe, 2004a) and use as a forecasting tool for low-count integer-
valued time series (Freeland and McCabe, 2004b; McCabe and Martin, 2005). Let Xt−1 be
the known value of the series at time (t − 1). The PAR model posits that each count at time
(t− 1) survives to time t with probability α, independently of every other count. Thus if Xt−1

is known, then the value of the survival component at time t is a Binomial(Xt−1, α) random
variable. This operation is called Binomial Thinning and is represented by α ◦Xt−1. Values of
α ◦Xt−1 |Xt−1 are assumed to be independent over time and of the arrivals process. In order
to maintain consistency with the inhomogeneous nature of the problem, the quantities λ and α

modelling respectively the arrival and survival of system stresses are replaced by time-varying
functions λt and αt to obtain the modified PAR model

Xt = αt ◦Xt−1 + et (5)

where et is a Bernoulli random variable with parameter λt. The evolution of the rates λt and
αt are specified by the ansatze

λt = 1− exp
(− exp(z′1tβ1)

)

αt = 1− exp
(− exp(z′2tβ2)

) (6)
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in which z′1t and z′2t are sets of regressors for the arrival and survival processes respectively.4

The traditional form of the PAR model assumes that et is Poisson-distributed. While this is
adequate when Xt is observed, it implies in this scenario that if Yt = 1 is observed then Xt could
have any positive integer value. The motivation for choosing et to be independent Bernoulli
random variables is now apparent. By restricting the support of et to {0, 1}, the realisation
Yt−k = 0, Yt−k+1 = 1, . . . , Yt−1 = 1 implies that Xt can take one of finitely many values
{0, 1, . . . , k}. Thus when conditioning on the history of the process Ψt = {Y0, Y1, . . . , Yt}, the
probabilities Prob (Yt = 1 |Ψt−1) and Prob (Yt = 0 |Ψt−1) can be determined at each time step.

The procedure for calculating these probabilities is as follows. If Yt−1 = 0 then Xt = 0 or
Xt = 1. Therefore

Prob (Yt = 1 |Ψt−1) = Prob (et = 1) = λt

Prob (Yt = 0 |Ψt−1) = Prob (et = 0) = 1− λt

However, if Yt−2 = 0 and Yt−1 = 1 then Xt can conceivably take the values 0, 1 or 2. This
means that Prob (Yt = 0 |Ψt−1) and Prob (Yt = 1 |Ψt−1) must be calculated using

Pr(Xt = m|Xt−1 = n) =





0 m > n + 1

αnλ m = n + 1

B(n, m,α)(1− λ) + B(n,m− 1, α)λ 1 ≤ m ≤ n

(1− α)n(1− λ) m = 0

(7)

where B(n,m, p) is the probability of drawing m from a Binomial(n,p) distribution and the
time dependence of α and λ has been suppressed. If Yt = 0 is observed then Xt+1 = 0 or
Xt+1 = 1. However, if Yt = 1 is observed then Xt+1 can take the values 0, 1, 2 or 3 and
these probabilities are calculated conditionally upon the events {Xt = 1 |Yt = 1} and {Xt =
2 |Yt = 1} using equation (7), and from these Prob (Yt+1 = 0 |Ψt) and Prob (Yt+1 = 1 |Ψt)
can be determined. This conditioning is continued iteratively until the next zero is observed
thereby allowing Prob (Yt = 1 |Ψt−1) to be calculated at each time step of the full sample.
Simulation is less convoluted, since the series X1, X2, . . . , XT is simulated directly and the
sequence Y1, Y2, . . . , YT constructed from this simulation.

Let pt = Prob (Yt = 1 |Ψt−1) and let yt denote the realisation of Yt, then the log-likelihood
function of the process Y is

log L =
T∑

t=1

yt log pt + (1− yt) log(1− pt). (8)

The log-likelihood function is maximised with respect to the parameter vector β = β1 ⊗ β2.
Whilst log L is easy to compute, the advent of clusters of spikes in the data results in some
of the probabilities pt being conditioned upon many possible events. This makes a closed-form
expression for (8) infeasible, and consequently parameter estimates and their standard errors
were calculated numerically. Note also that since both the arrival and survival components of
the latent process are independent over time and independent of each other, then Yt |Ψt−1 is

4The analysis was found to be insensitive to the form of the ansatze for λt and αt in (6). Similar results were

obtained using the formulations 1
2

+ 1
π

tan−1
�
x′tβ

�
and

�
1 + exp(−x′tβ)

�−1
.
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an independent process over time thereby avoiding the complications encountered when using
constructed binary variables as regressands, as highlighted by Harding and Pagan (2006).

This model was estimated using constant intensities, and then again with the same temperature
and load variables used in the Poisson regression analysis reported in Section 3. Use of these
variables was again motivated by the findings of Ramanathan et al. (1997) and Taylor and
Buizza (2003) and also ensured that the same information set is used for estimation and simu-
lation as was used in the Poisson regressions. The three exogenous variables and constant were
included in both z′1t and z′2t for two reasons: it is expected that load and temperature affect
the occurrence and duration of a period of stress; and the rate at which stresses are relieved can
be expected to depend on the type of the stress (weather, system failure, and so on) so these
factors were used to proxy this effect.

Results from the model estimated using constant arrival and survival probabilities are exhibited
in Table 7. In the top panel of Table 7, a higher coefficient value indicates a higher probability
of the arrival of a stress, whereas, in the lower panel of this table, a higher coefficient indicates a
higher probability that existing stresses will persist. The lower arrival parameter estimates for
NSW, Snowy and Vic are consistent with fewer spikes observed in these regions relative to Qld
and SA. Similarly, higher survival parameters for Qld and SA are consistent with these regions
having comparatively longer periods of consecutive spikes. While these results are useful as a
credibility check on the model, they are not themselves particularly insightful.

Variable NSW Qld SA Snowy Vic

Constant -2.669* -2.155* -1.880* -2.797* -2.708*
(0.075) (0.062) (0.057) (0.079) (0.076)

λt 0.067 0.109 0.142 0.059 0.065

Constant -0.305* -0.254* -0.252* -0.360* -0.386*
(0.075) (0.060) (0.055) (0.082) (0.080)

αt 0.522 0.540 0.540 0.502 0.493

log L -925.1 -1264.3 -1445.6 -846.1 -896.7

Table 7: Coefficient estimates and corresponding implied arrival prob-
abilities (upper panel) and survival probabilities (lower panel) using
constants only as drivers for the processes. An asterisk indicates signif-
icance at the 5% level. Standard errors are shown in parentheses.

The model was re-estimated using the full set of explanatory regressors, with results displayed
in Table 8. It is clear from a comparison of the log-likelihoods that the explanatory variables are
jointly very significant. Regarding arrival probabilities, it would be expected that all variables
are significant with positive constants causing the probability of a price spike to increase in the
presence of extreme temperatures or abnormally high load. This is the case for all variables in all
regions, with two notable exceptions. First, extreme minimum temperatures are not significant
in Qld. This observation can be reconciled with its comparatively warmer climate. Second,
load is not significant in explaining arrivals in the Snowy region, a feature which may well be
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explained by its small load compared with other regions.

Survival rates are influenced less by extreme temperature and load events. All constants are
strongly significant in all regions. However, different explanatory variables are significant in
different regions. If no exogenous factors were significant in explaining the daily survival prob-
abilities of a stress, this would suggest that stresses are resolved at the same rate. With the
exception of the Snowy Mountains region, this is not what is observed.

Variable NSW Qld SA Snowy Vic

Constant -3.064* -2.215* -1.965* -3.112* -3.024*
(0.102) (0.066) (0.063) (0.102) (0.100)

Tmax 0.341* 0.216* 0.181* 0.236* 0.173*
(0.025) (0.027) (0.013) (0.017) (0.017)

Tmin 0.199* 0.025 0.116* 0.058* 0.111*
(0.038) (0.024) (0.020) (0.023) (0.033)

Load 0.740* 0.363* 0.531* 0.053 0.770*
(0.110) (0.057) (0.082) (0.084) (0.122)

λt 0.046 0.103 0.131 0.044 0.048

Constant -0.776* -0.423* -0.510* -0.512* -0.816*
(0.113) (0.071) (0.069) (0.101) (0.122)

Tmax 0.073 0.038 0.043* 0.024 0.116*
(0.037) (0.031) (0.018) (0.024) (0.025)

Tmin 0.008 0.053* -0.040 -0.015 -0.037
(0.043) (0.023) (0.024) (0.024) (0.039)

Load 0.344* 0.121 0.351* -0.020 0.431*
(0.131) (0.066) (0.109) (0.072) (0.136)

αt 0.369 0.481 0.451 0.451 0.357

Log-L -790.2 -1205.2 -1279.1 -765.2 -781.3

Table 8: Coefficient estimates and corresponding implied arrival prob-
abilities (upper panel) and survival probabilities (lower panel) at the
sample mean of the exogenous factors using the full set of regressors as
drivers for the processes. An asterisk indicates significance at the 5%
level. Standard errors are shown in parentheses.

While estimation and analysis are important, there are at least two other considerations that
must be satisfied by an accurate model. First, in the spirit of Breunig et al. (2003), series
simulated by the model should have properties that are consistent with those of the observed
data. Second, to be of any use at all the model should be capable of producing one-day-ahead
forecasts of price spikes that are superior to those produced by näıve models.

One tool commonly used to capture the temporal coding residing in a sequence of events is
the correlation histogram5. This is the histogram of all possible lags between pairs of events.
For example, the correlation histogram of a primitive Poisson process is flat (within sample
error) because all lags are equal likely, and therefore deviations from a flat profile conveys
information about how the intensity of an event process depends on its history. Thus the

5The Appendix contains further technical details on the correlation histogram.
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correlation histogram provides a means of assessing how well a simulated process mimics the
temporal coding of events in the observed data. Clearly a comparison of correlation histograms
is sensitive to both the number of events in a sample and to the temporal coding of these events.
The number of events controls the total area under the correlation histogram while the temporal
coding is embedded in the relative size of the bars of the histogram at each lag.

Figure 6 (left panel) illustrates the correlation histogram for exceedences in the NSW data
whereas Figure 6 (right panel) illustrates the correlation histogram of simulated data for the
same region. The results from the electricity markets in the other regions are typical of those
presented in Figure 6 for NSW. The model appears to characterise the process reasonably
well, especially with respect to the differing behaviour at short and long lags. The ability of
the Poisson autoregressive model to capture persistence in the spiking process has therefore
contributed significantly to the efficacy of the model, and provides a marked improvement over
the model presented in Section 3, in which the intensity parameter of the Poisson process is
linked to diurnal and seasonal factors only. Of course, it is to be expected that a more accurate
representation of the process could be developed by incorporating into the model additional
factors such as, for example, reserve margins or scheduled generator outages. This line of
inquiry is an important avenue for future research.
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Figure 6: Correlation histogram for exceedences in the observed data (left
panel) and simulated data (right panel) for NSW. The x-axis plots the lag
between events and the y-axis plots the frequency of that lag.

A näıve model for spike generation is that adopted by Escribano et al. (2002) and Knittel
and Roberts (2005), namely, that exceedences are driven solely by weekday and month effects.
Therefore, the probabilities of an exceedence occurring on a particular weekday-month combi-
nation is just the rate observed for that combination in the sample. These probabilities were
estimated and compared to those from the full model for 10 samples of length 90 days, drawn
randomly from the full series without replacement. Two measures of accuracy were applied to
the set of 10 samples in order to assess the degree to which the day-ahead probabilities differ
from 0 if there is no exceedence on the next day, or 1 if there is an exceedence on the next

19



day. The first criterion used was mean absolute error (MAE) but this metric is a symmetric
one, in that failure to predict a price spike is penalised in exactly the same way as predicting
a price spike that subsequently fails to materialise. From the perspective of electricity market
participants, however, it is reasonable to surmise that the forecasting problem is an asymmetric
one. On the other hand, it is likely to be less costly to hedge unnecessarily against price spikes
that to bear the losses incurred when an unexpected exceedence is encountered. Therefore, a
measure of forecast accuracy reflecting this asymmetry is required. If tS1 , tS2 , . . . , tSn are the
days in the sample on which a price spike occurs, tN1 , tN2 , . . . , tNm are the days in the sample on
which no price spike occurs, and pt is the forecast probability of a spike on day t, then let

PERR =
n∑

i=1

(1− ptSi
)1/2 +

m∑

i=1

ptNi
.

This criterion penalises the under-prediction of a price spike more than the over-prediction of
no price spike. Table 9 contains the measures of forecast error for the autoregressive model both
with the full set of exogenous variables and with constant arrival and survival probabilities, and
the measures of forecast error for the näıve model. It is not surprising, given the ability of the
full model to provide realistic simulations of the spiking series, that it yields estimates of the
probability of a price spike that are superior to those estimates implied under a näıve model
on both symmetric and asymmetric criteria. What is remarkable, however, is that even if the
arrival and survival probabilities are held constant, the autoregressive model still outperforms
the näıve model on both criteria. The forecasting superiority of the model introduced in this
paper, therefore, is taken to be a direct result of its ability to capture the persistence in the
spiking process.

Model Measure NSW Qld SA Snowy Vic

Autoregressive – MAE 0.186 0.249 0.246 0.130 0.125
full model PERR 0.214 0.286 0.288 0.145 0.136

Autoregressive – MAE 0.210 0.261 0.292 0.143 0.140
constant rates PERR 0.235 0.297 0.332 0.156 0.150

Näıve MAE 0.254 0.328 0.366 0.168 0.177
PERR 0.268 0.352 0.400 0.177 0.184

Table 9: Measures of forecast error for the autoregressive model with prob-
abilities determined by deterministic variables (upper panel), for the autore-
gressive model with fixed arrival and survival probabilities (middle panel),
and for a näıve estimate of the probability of a price spike (lower panel). A
lower error value for each criterion indicates superior performance.

5 Conclusion

Time series of electricity prices exhibit a number of idiosyncratic features making the task of
modelling them both fascinating and complex. Of particular interest in the current research
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is the problem of the accurate characterisation of the intensity with which large spikes in elec-
tricity prices are observed. Modelling the spiking process is important, since price spikes are
particularly detrimental to electricity retailers who, because of regulatory constraints, are un-
able to pass the price risk on to consumers. Despite this commercial imperative, the treatment
of the spiking process in the current literature remains simplistic.

This paper has adopted the novel approach of treating price spikes in electricity markets as
discrete events by contrast with the continuous approaches used in previous work on this topic.
One advantage of this approach is that exceedences themselves become the focus of the analysis
rather than the price of electricity from which, of course, the occurrence of exceedences can
be extracted. One important finding of this work is that the intensity of price spikes is driven
by the previous history of price spikes, in the respect that these proxy failures in the supply
infrastructure, in addition to exogenous factors such as temperature and system load.

Modelling the spiking process as the superposition of stresses which arrive and persist at varying
rates has an air of realism and in this work is seen to capture the persistence of price spikes in
the wholesale market price of electricity. A Poisson autoregressive framework for integer-valued
time series was adapted to account for the number of simultaneous stresses remaining latent,
and provided a model that could be estimated by maximum likelihood. The arrival and survival
rates of price spikes were found to be dependent upon extreme temperature events and peak
load. However, it was the model’s ability to capture the intrinsic persistence in price spikes that
enabled it, first, to generate simulated electricity prices that were characteristically similar to
those observed in practice, and second, to forecast the probability of a price spike with better
accuracy than simpler models.
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Appendix

Let N be a stationary point process in which N(t) counts the number of events to have occurred
in the interval [0, t) and ∆N(t) denotes the number of events to have occurred in the interval
[t, t + ∆t), that is, ∆N(t) = N(t + ∆t)−N(t). The process N is said to be orderly if

Prob (N(t + ∆t)−N(t) > 1) = o(∆t)

and is said to satisfy a mixing condition if

Prob (∆N(t + u) > 1 |∆N(t)) = Prob (∆N(t + u) > 1)

as u →∞ where is understood that ∆N(t + u) = N(t + u + ∆t)−N(t + u).

Consider a sample of an orderly point process in which events occur at the strictly increasing
sequence of times t1 < t2 < . . . tn · · · . Under the assumptions of stationarity and orderliness,
the intensity of the process N and its correlation histogram (also known as the second-order
intensity) are defined respectively by

p1 = lim
∆t→0+

Prob (∆N(t) > 0)
∆t

p2(u) = lim
∆t→0+

Prob (∆N(t + u) > 0 and ∆N(t) > 0)
(∆t)2

.

(9)

In particular, the mixing property of the process N means that p2(u) → p2
1 as u → ∞. In the

case of a primitive Poisson process the numbers of events occurring in non-overlapping intervals
are independent and therefore p2(u) = p2

1. However if the rate of the process is conditioned
by its history then the independence assumption is invalid and the correlation histogram p2(u)
now becomes a non-constant function of lag u.

Suppose that t1 < t2 < . . . < tN are the ordered times of events in a sample occupying [0, T ]
and let ui,j = tj − ti for 1 ≤ i ≤ j ≤ N . The correlation histogram is constructed from the lags
ui,j by first choosing a bin width, say β, and then constructing a family of bins with centres
uk = kβ. The N(N + 1)/2 lags are now distributed among the bins such that the lag ui,j falls
within the k-th bin provided ui,j ∈ [uk − β/2, uk + β/2). Let J(um) be the number of lags
falling within bin [um − β/2, um + β/2) then the columns of the correlation histogram take the
values J(u1), J(u2), . . . , J(un). It is natural to take p̂1 = N(T )

T , that is, the sample estimate of
the intensity of the process is the number of events to occur in the interval [0, T ) divided by T ,
the duration of the interval. Cox and Lewis (1972) show that an unbiased estimate of p2(u) is
asymptotically

p̂2(um) =
J(um)

βT
.

Moreover, Brillinger (1975) shows that the sample variance of
√

p̂2(um) is (4βT )−1 independent
of u and J(u).

22



References

Al-Osh, M. A. and Alzaid, A. A. (1987). ‘First-order integer valued autoregressive (INAR(1))
process’, Journal of Time Series Analysis, 8, 261–275.

Barlow, M. T. (2002). ‘A diffusion model for electricity prices’, Mathematical Finance, 12,
287–298.

Becker, R., Hurn, A. S., Pavlov, V. (2007). ‘Modelling spikes in electricity prices’, Economic
Record, 83, 371–382.

Bierbrauer, M., Menn, C., Rachev S. T. and Trück, S. (2007). ‘Spot and derivative pricing in
the EEX power market’, Journal of Banking and Finance, 31, 3462–3485.

Breunig, R., Najarian, S. and Pagan, A. R. (2003). ‘Specification testing of Markov switching
models’, Oxford Bulletin of Economics and Statistics, 65, 703–725.

Brillinger, D. R. (1975). ‘Statistical inference for stationary point processes’, in Stochastic
Processes and Related Topics, Vol.1., Puri, M.I. (Ed), Academic Press, New York, 55–79.

Bunn, D. W. and Karakatsani, N. (2003). ‘Forecasting electricity prices’, Working Paper,
London Business School.

Burger, M., Klar, B., Mueller, A. and Schindlmayr, G. (2003). ‘A spot market model for pricing
derivatives in electricity markets’, Quantitative Finance, 4, 109–122.

Byström, H. N. E. (2005). ‘Extreme value theory and extremely large electricity price changes’,
International Review of Economics & Finance, 14, 41–55.
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Kanamura, T. and Ōhashi, K. (2007). ‘On transition probabilities of regime switching in elec-
tricity prices’, Energy Economics, forthcoming.

Knittel, C. R. and Roberts, M. R. (2005). ‘An empirical examination of restructured electricity
prices’, Energy Economics, 27, 791–817.

Kosater, P. and Mosler, K. (2006). ‘Can Markov regime-switching models improve power-price
forecasts? Evidence from German daily power prices’, Applied Energy, 83, 943—958.

Lindsay, K. A. and Rosenberg, J. R. (2007). ‘Interpretation and application of measures of
association between neuronal signals’, Working Paper, University of Glasgow.

Lucia, J. J. and Schwartz, E. S. (2002). ‘Electricity prices and power derivatives: Evidence
from the Nordic power exchange’, Review of Derivatives Research, 5, 5–50.

McCabe, B. P. M. and Martin, G. M. (2005). ‘Bayesian predictions of low count time series’,
International Journal of Forecasting, 21, 315—330.

McKenzie, E. (1988). ‘Some ARMA models for dependent sequences of Poisson counts’, Ad-
vances in Applied Probability, 20, 822–35.

Misiorek, A., Trück, S. and Weron, R. (2006). ‘Point and interval forecasting of spot elec-
tricity prices: Linear vs. non-linear time series models’, Studies in Nonlinear Dynamics and
Econometrics, 10.

24



Mount, T. D., Ning, Y. and Cai, X. (2006). ‘Predicting price spikes in electricity markets using
a regime-switching model with time-varying parameters’, Energy Economics, 28, 62–80.

Ramanathan, R., Engle, R. F., Granger, C. W. J., Vahid-Araghi, F. and Brace, C. (1997).
‘Short-run forecasts of electricity loads and peaks’, International Journal of Forecasting, 13,
161–174.

Swider, D. J. and Weber, C. (2007). ‘Extended ARMA models for estimating price develop-
ments on day-ahead electricity markets’, Electric Power Systems Research, 77, 583—593.

Taylor, J. W. and Buizza, R. (2003). ‘Using weather ensemble predictions in electricity demand
forecasting’, International Journal of Forecasting, 19, 57–70.

Weron, R., Bierbrauer, M. and Trück, S. (2004). ‘Modelling electricity prices: jump diffusion
and regime switching’, Physica A, 336, 39–48.

25


