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Abstract 

Statistics New Zealand is interested in detection of structural breaks in its time series as 
these may indicate major changes in the data generating process which could affect the 
consistency of its outputs over time. As part of its time series outputs Statistics New 
Zealand produces the original time series but also often produces a seasonally adjusted 
series and trend estimate from the original series. To produce these outputs Statistics 
New Zealand uses the U.S. Bureau of the Census product X-12-ARIMA (X-12) to 
decompose the original series into a set of unobserved components; trend-cycle, 
seasonal, and irregular. Each individual component also provides useful information for 
the interpretation in the behaviour of the series so it is important that each component is 
estimated correctly. 

There is a large literature on the identification of breaks in trends or levels. However a 
component of major interest to Statistics New Zealand is the seasonal pattern, so 
Statistics New Zealand needs to ensure that structural breaks in the seasonal 
component are identified properly and efficiently. For example, the school term changed 
to a four term year from three term year in 1996, thus altering the dates of school 
holidays. This could be reflected as an abrupt change in the seasonal pattern of the 
travel behaviour of New Zealand residents holidaying overseas. At present, Statistics 
New Zealand identifies these breaks by visual inspection of the individual monthly or 
quarterly SI charts. 

We have investigated the use of two methods to identify the structural breaks, that of 
Bai and Perron (BP), and Atheoretical Regression Trees (ART). BP produces optimal 
solutions but at the cost of lengthy computation for long series and is also conservative 
in its identification of a break. ART uses regression trees which involves a non-
parametric method for fitting piece-wise constant functions to a time series. ART, in 
contrast to BP, tends to overidentify the number of possible breaks. For Statistics New 
Zealand this is less of an issue, as not identifying a break is more an issue than 
identifying spurious breaks.  

In our work we applied BP and ART to the SI series for each month produced by X-12 
from the NZ short-term departures series. The SI series consists of a combination of the 
seasonal and irregular components for that particular month. We have found that BP 
and ART produce broadly similar results. Both methods identified a break in the August 
SI series in 1996 that could reflect the change of school holidays. They also showed 
range of possible breaks in the other months. We have found that the minimum allowed 
length of the segment between breaks is crucial to where breaks are identified. 
Statistics New Zealand would prefer to find a break in the seasonal pattern within 3 
years of its occurrence, so we compared the results specifying minimum segment 
lengths of 3 and 10 and find that the results are similar. 

 

Key words: Official statistics; Seasonal adjustment; X-12-ARIMA; Structural break; 
Seasonality; Non-parametric; Parametric; Regression tree; Bai and Perron. 
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1. Introduction 

Statistics New Zealand is interested in detection of structural breaks in its time series as 
these may indicate major changes in the data generating process. This could be caused 
by many factors, such as major changes in the business or social environment, or 
changes in the legal and administrative systems that produce the data. Any structural 
break could affect the consistency of Statistics New Zealand’s time series. If the 
structural breaks can be identified soon after they occur some recognition of their 
effects can be made in Statistics New Zealand outputs. 

As part of its time series outputs Statistics New Zealand provides the original time 
series but often a seasonally adjusted series and trend estimate from the original series. 
To produce these outputs Statistics New Zealand uses the U.S. Bureau of the Census 
product X-12-ARIMA (X-12) to decompose the original series into a set of unobserved 
components: trend-cycle; seasonal; and irregular. Each individual component also 
provides useful information for interpreting the behaviour of the series, so it is important 
that each component is estimated correctly. 

There has been a large amount of research on the identification of breaks in trends or 
levels, and its application to a broad range of time series. However a component of 
major interest to Statistics New Zealand is the seasonal pattern, thus Statistics New 
Zealand needs to ensure that structural breaks in the seasonal component are identified 
properly and efficiently. If the seasonal pattern changes abruptly and this change is not 
modelled properly the seasonally adjusted series, produced by removing this incorrect 
model of the seasonal component from the actual series, will be misleading. Most likely 
the seasonally adjusted series will appear more volatile over the years immediately 
before and after the seasonal break. This is because the seasonal factors for the 
months affected by the break will not be well estimated over that period. While we have 
may have prior knowledge of a expected break in the seasonal pattern of the series, it is 
also necessary to identify unexpected break in the seasonal pattern. We will term these 
breaks in the seasonal pattern seasonal breaks. 

In the next section we show why identification of seasonal breaks is important and 
outline the current visual examination method used by Statistics New Zealand for this 
purpose. The X-12 outputs from a series where we have strong prior evidence of a 
seasonal break are presented in section 3. The following sections outline the Bai and 
Perron and Atheoretical Regression Tree approaches to identifying breaks and provide 
empirical results using these to identify seasonal breaks. Section 6 reports on the 
application of Atheoretical Regression Trees to two simulated series with seasonal 
breaks. Our conclusions are given in the final section. 

2. Structural breaks 

Detection of structural breaks is a topic of considerable interest in applied time series 
analysis. For time series models stationarity is a key assumption, which implies the 
mean, variance and trend do not evolve in time. However many time series in 
economics and finance do not hold to this assumption as the data generating process 
associated with the time series can change abruptly. That is, a structural break occurs. 
Hansen (2001) states that an undetected structural break can lead to three major 
problems in a time series analysis. 

 
1. misinterpretation of time series model; 

2. biased estimates; 
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3. less accurate forecasting. 

 
Statistics New Zealand not only produces the time series as measured, but often 
provides a seasonal adjusted time series, and sometimes a trend series, to assist users 
in the interpretation and understanding of the behaviour of the measured series. To 
produce a seasonally adjusted series the seasonal cycle needs to be estimated. From 
this seasonal cycle the individual quarterly or monthly seasonal factors are taken, and 
then removed from the quarterly or monthly measured time series. This requires the 
seasonal cycle to be well estimated. However it is possible to have a structural break in 
this seasonal cycle. While there have been many investigations into structural breaks in 
levels or trends of time series, little work has been done on applying structural break 
methodology to the seasonal cycle.  

To seasonally adjust time series Statistics New Zealand uses the U.S. Bureau of the 
Census product, X-12 Variant of Census II Seasonal Adjustment Method, more 
commonly referred to as X-12, to decompose the original time series into a set of 
unobserved components (Ladiray and Quenneville, 2001). An integral part of X-12 is its 
use of Henderson moving averages to generate some of those components.  

A Henderson filter is derived by minimising the sum of squares of the third difference of 
the moving average series. It is equivalent to minimising the quantity 23 )( iH θ∑ ∇= , 

where ∇  is the first difference operator, and { }iθ  are the weights or coefficients of the 
moving average (Henderson 1916, Doherty 2001). The advantage to using Henderson 
filters is that they provide a smoother output than standard moving average (eg 2 x 12 
moving average) and eliminate irregular variations 

While X-12 can estimate a range of components, for our exposition we will assume that 
X-12 decomposes the original time series into 3 unobserved components, the trend-
cycle (C), seasonal (S) and irregular (I) components. We also assume that the series is 
measured monthly. Most work has been on structural breaks in the trends rather than in 
the seasonal pattern. It should be noted that a seasonal break may not affect the overall 
level of the series. Instead the annual pattern has suddenly and permanently been 
altered, thus it may not appear as a structural break in the trend. 

X-12 initially estimates the trend and then removes this from the original series. This 
creates a SI component (ie combination of seasonal and irregular components), from 
which the individual monthly seasonal factors are estimated. Over a complete annual 
cycle these factors average to approximately 0. If a break is present in a particular SI 
series for a particular month, the estimates of the seasonal factors for that month will be 
distorted before and after the break. The three unobserved components must combine 
to the values of the original series, so an incorrect estimation of the seasonal 
component will affect the estimation of at least one of the other components, usually the 
irregular component. As the SI series for any month are estimates of the seasonal 
factors for that month for a particular year, the seasonal factors, and thus the seasonally 
adjusted series, for two to three years before and after the seasonal break will appear 
more volatile. At present Statistics New Zealand identifies seasonal breaks by visual 
inspection of the SI plots (figure 3). 

3. New Zealand resident short-term departures 

When any person arrives or departs from New Zealand they are required to fill in an 
arrival or departure card. Total arrivals and departures are categorised into three sub-
series. 

1. overseas visitors to New Zealand 
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2. permanent migration, based on an expected absence from New 
Zealand of more than 12 months, or staying in New Zealand for more 
than 12 months 

3. New Zealand residents absent short-term from New Zealand, that is, 
an expected absence of less than 12 months. 

 
The overseas visitor arrivals series was examined by Haywood and Randal (2005), who 
investigate possible breaks caused by 9/11, but we focus on New Zealand residents’ 
short-term departures (STD). This series will be affected by a range of events and 
changed circumstances, but generally the effects of these changes are incremental and 
will not seriously affect Statistics New Zealand’s outputs.  

While there are many reasons why New Zealand residents travel overseas, it is 
expected that a major driver of the STD series arises from families holidaying overseas. 
This leads to an obvious hypothesis that the travel patterns of New Zealand families are 
heavily influenced by the timing of school holidays. Before 1996, New Zealand had a 
three-term school year, so school holidays occurred in December–January, May and 
August–September. In 1996 a four-term school year was introduced, thus holidays are 
now December–January, March–April, June–July and September–October. It is 
therefore of interest to compare the seasonal pattern of the STD series before and after 
1996. 

As noted above, if the seasonal pattern changes abruptly and this is not modelled 
properly the seasonally adjusted series produced by deseasonalising the actual series 
using this incorrect seasonal model will be misleading. The seasonally adjusted series 
will most likely appear more volatile over the years immediately before and after the 
seasonal breaks as the seasonal factors for the months affected by the break will not be 
well estimated over that period. For the STD series this can be seen in the increased 
volatility of the seasonally adjusted series (trend × irregular) in figure 1. The volatility of 
adjusted series has become greater in the years around 1996, the year the timing of the 
school holidays changed. 

To deal with this abrupt change in the seasonal pattern Statistics New Zealand splits the 
series at 1996 and adjusts the two resulting sub-series separately, thus producing a 
different seasonally adjusted series to that plotted in figure 1. 

We have used X-12 to decompose 27 years of monthly STD data, from January 1980 to 
December 2006, into the three unobserved components and the outputs are shown in 
figure 2. Again this does not correspond to the decomposition as published by Statistics 
New Zealand as we have not split the series. The plot shows an increasing trend with 
potential structural changes and an evolving seasonal pattern. Clearly the amplitude 
and shape of the seasonal pattern has changed over time, and X-12 has modelled a 
slowly evolving seasonal pattern. The irregular component is weakly-stationary and 
homogenous, although some potential outliers appear in the series. 

At present, Statistics New Zealand detects seasonal breaks by visually inspecting the SI 
plots (figure 3). There is an SI plot for each month, and the plot consists of the SI series, 
the combined seasonal and irregular components, and the seasonal factor estimated by 
applying a moving average to the SI series. A break in the August factor at 1996 is 
clearly apparent, but the expected mirror shift in either June, July or September from the 
change in school holiday dates is not obvious. This could be because the seasonal 
break is smaller than expected or the change in the seasonal pattern is more complex 
than initially hypothesised. This demonstrates that the current process is subjective and 
may be inconsistent, as the identification of a seasonal break depends on the particular 
analysts’ background and knowledge. 
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Figure 1: Original (black solid) and seasonally adjusted (red, dash) series of NZ resident short term 
departures between 1994 and 1998. Grey line indicates January 1996. Note that the seasonally 

adjusted series is not that published by Statistics New 
Zealand.

 

 

Figure 2: X-12 Decomposition. Top graph is actual(black) and seasonally adjusted series(red). 
Middle graph is seasonal component. Bottom graph is the irregular component. Grey dashed line 

indicates January 1996. These series differ from those used and published by Statistics New 
Zealand. 
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Figure 3: SI charts – SI values (black dots); Final Seasonal Factors (red lines) 

 

4. Structural break methodology 

Given the possible problems with visual identification of seasonal breaks we now 
introduce two methods for identifying structural breaks, that of Bai and Perron (1998, 
2003) and Atheoretical Regression Trees (Cappelli and Reale, 2005). 

Bai and Perron’s method (BP) uses dynamic programming and Fisher’s exact 
optimisation for fitting a regression model with structural breaks. Each serial point is 
allocated into mutually exclusive and exhaustive sub-series which maximise the sum of 
squared errors between groups and minimise the sum of squared errors within groups. 
This guarantees that the differences between adjacent sub-series are maximally 
distinguished. This methodology has these advantages: it is a global minimiser of the 
sum of squared errors given a known number of breaks, and it is a parametric 
procedure that provides statistical inferences for the parameters (eg date of breaks). 
However it is computationally intensive, an issue when series are long (eg > 1,000 
points), and tends to underestimate the number of structural breaks in the time series. 

An alternate method for detecting structural breaks is Atheoretical Regression Trees 
(ART) (Cappeli and Reale, 2005). It is a non-parametric approach, and produces 
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hierarchical tree structures with break dates. It makes use of a recursive binary division 
algorithm using Fishers’ contiguous partitions method (1958) combined with a Least 
Square Regression Tree splitting criterion (Breiman et al, 1984). Under this approach, 
series are separated as far as possible until they reach the minimum size of sub-
series/regime and no improvement on the splitting criterion. Usually ART will generate a 
maximal tree which is considered to be overfitted and is pruned by information criterion, 
like AIC and BIC. ART is computationally inexpensive and it is easy to interpret its 
outputs as it is non-parametric and allows inspection of the overall results as tree 
diagrams. However the splitting process does not guarantee to be optimal, and it tends 
to overestimate the number of breaks, especially for short series. 

We estimate the seasonal factors of the 12 separate monthly SI series derived by X-12 
from the STD series (figure 3) by fitting a structural break model to each of the SI series. 
We use the functions ‘strucchange’ (Zeileis et al, 2008) and ‘tree’ (Ripley, 2007) 
available in R to apply BP and ART respectively to the 12 STD SI series. 

5. Results 

As we are initially interested in whether BP and ART can identify the break in August 
1996 we set the minimum regime length, the minimum length of the time series between 
breaks, as 10 years. We also asked BP and ART to identify the most likely single break 
point in the SI series for each of the 12 months (table 1). 

Table 1: Date of structural Break identified by ART and BP. Minimum regime length 10. 

Month ART BP 
BP 95% confidence 

interval 
January 1993.5 1994 [1993, 1996] 
February 1990.5 1991 [1990, 1993] 
March 1993.5 1994 [1991, 1999] 
April 1989.5 1990 [1988, 1991] 
May 1993.5 1994 [1993, 1995] 
June 1989.5 1990 [1983, 2000] 
July 1989.5 1990 [1989, 1992] 
August 1995.5 1996 [1995, 1997] 
September 1990.5 1991 [1990, 1992] 
October 1990.5 1991 [1987, 1994] 
November 1989.5 1990 [1988, 1994] 
December 1989.5 1990 [1987, 1992] 

 
Examination of table 1 shows that BP and ART produce very similar results in terms of 
identifying the year of a break in the SI series for all months. Both identify the break in 
1996 for August; however they also show that the most likely break in the June, July or 
September factors is around 1990. This was unexpected, because if the effect of the 
change in school holidays is to shift the August holiday travel earlier to June–July 
school holiday or later to September this is not reflected in the overall seasonal break 
pattern identified by BP and ART. It is clear that there was an abrupt change in the 
August factor after 1995, so Statistics New Zealand is correct in splitting the series for 
seasonal adjustment, but the expected seasonal break model is not supported by our 
results. Of interest is the large number of months that have a break in 1989-90. This 
may be a random construct of the data as we have asked BP and ART to identify at 
least one break point and for each monthly series the size of the seasonal break will 
vary and may be, for any particular month, small. This possibility is further supported by 
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inspection of figure 3, as this shows the flatter,  and thus more stable an SI series, the 
wider the confidence interval given by BP.  

However it is important to remember that the individual monthly seasonal factors 
estimated from the SI series lead to an annual seasonal pattern. This seasonal pattern 
should, over any 12-month cycle, have the 12 monthly seasonal factors average 
approximately to 0, as most seasonal models assume seasonal patterns change slowly 
over time. A rapid change in the seasonal pattern could result from a set of small 
seasonal breaks in a number of months, which may be difficult to recognise by 
independently examining each month. 

As Statistics New Zealand would like to identify a seasonal break as soon as possible 
after it occurs, a minimum regime length of 10 implies that the seasonal break would not 
be identified until 10 years have elapsed. We now repeat the work done above, but 
instead specify a minimum regime length of 3 years (table 2). 

Table 2 Date of structural Break identified by ART and BP. Minimum regime length 3. 

Month ART BP 
BP 95% confidence 

interval 
January 1993.5 1994 [1993, 1996] 
February 1990.5 1991 [1990, 1993] 
March 1988.5 1989 [1985, 1991] 
April 1989.5 1990 [1987, 1991] 
May 1993.5 1994 [1993, 1995] 
June 1985.5 1986 [1984, 1987] 
July 1989.5 1990 [1989, 1992] 
August 1995.5 1996 [1995, 1997] 
September 1990.5 1991 [1990, 1992] 
October 1986.5 1987 [1984, 1988] 
November 1989.5 1990 [1987, 1992] 
December 1989.5 1990 [1987, 1992] 

 
 
Overall the results using a regime length of 3 (table 2) are broadly similar to those using 
a minimum regime length of 10 (table 1). The most likely seasonal break identified by 
BP and ART changes only for March, June and October. A minimum regime length of 3, 
rather than 10, provides a much larger range of possible years for a break point to 
occur, since the first and last seven years of the SI series can now be tested for break 
points. The similarity of the results using the two different minimum regime length gives 
us some confidence having a minimum regime length of 3 will not significantly increase 
the number of spurious seasonal breaks. 

We are not confident at this stage that BP and ART can replace inspection of the SI 
plots to identify seasonal breaks, but feel it is useful to combine the approaches. This is 
done by overlaying the seasonal break points and regime levels on the SI plots (figure 
4). This could lead to more consistency and better interpretation of those plots as this 
addition information provides input into when a seasonal break may have occurred 
along with an indication of its significance. It also provides input into the scale of the 
break across the various months, which is important when trying to define a possible 
structural change in the seasonal pattern involving a large number of months. 
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Figure 4: SI plots with break points (vertical blue line) and their 95% confidence intervals (red 
vertical lines) and regime levels (horizontal red line). Minimum regime length is 3. 

 

6. Monte Carlo simulations 

As the seasonal break pattern we expected from the change in the timing of school 
holidays does not seem to occur we have done some preliminary investigations using 
synthetic time series with 2 modelled seasonal breaks. For each seasonal break 500 
series are generated from the model which consists of a mean trend of zero, a seasonal 
pattern that is a sine function and Normally distributed noise (eg white noise)  

tttt tSinsy ε
π

ε +=+= )
6

(*10 , 

Based on expected types of seasonal breaks we modelled 2 types of seasonal breaks. 

1. A general shift of one month in the monthly pattern. This resembles a 
seasonal change that occurred some 20 years ago when the central 
government financial year changed from a March year to a June year. 
We term this a ‘seasonal pattern shift’. 
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2. A seasonal break as expected for STD. That is, two seasonal factors 
swapped after the seasonal break point. We term this a ‘seasonal 
factor exchange’. 

The length of each simulated series is 240 points (ie a monthly series of 20 years). In 
each set of simulations we had the seasonal break occurring either in the fifth, tenth or 
fifteenth cycle for each of 500 replications. For simplicity we modelled one seasonal 
break. We have passed the series through X-12 to produce the 12 SI series. The 
minimum regime length is 3, and we used ART to identify the most likely seasonal 
break. 

Seasonal pattern shift 
In a seasonal pattern shift we move the sine function to the right by one month at the 
break point. In our model before the seasonal break the peak is in April and in May 
afterwards, but the shape of the seasonal pattern remains the same (figure 5). 
Detecting a seasonal break in a particular seasonal factor will depend on the change in 
the factor before the break compared to its value after the break. The greater the 
change in the value of the seasonal factor the greater the likelihood of its detection. 
Examining figure 5 and looking at the vertical separation of the points (ie the change in 
value of the seasonal factors) before and after the shift one would expect seasonal 
breaks to be more readily identified for those months not near the peak or trough. The 
results in table 3 support this: the months at the peaks and troughs (April and May, 
October and November respectively) are not identified as breaks by ART, while for the 
other months ART does identify a seasonal break. This shows that different types of 
seasonal pattern shifts, in terms of when the shift occurs in the seasonal cycle along 
with the number of months the pattern is shifted, will produce different patterns of 
seasonal breaks for individual months. 

Table 3: Seasonal Pattern Shift – Percentage of breaks identified by ART in a cycle 

 
Break in the  
5th cycle (%) 

Break in the  
10th cycle (%) 

Break in the  
15th cycle (%) 

Month 5th  6th  10th  11th  15th  16th  
January 8.4 75.2 8.0 76.4 8.6 76.4 
February 10.0 75.6 9.2 75.0 7.8 75.8 
March 13.6 52.2 12.6 57.2 11.2 57.8 
April 12.2 16.4 9.0 14.2 9.0 19.8 
May 16.4 8.0 16.0 10.8 16.0 9.0 
June 55.4 11.6 59.4 10.2 56.0 10.8 
July 73.2 10.6 72.0 8.8 78.8 8.0 
August 70.0 9.8 74.2 10.0 75.2 9.0 
September 60.0 9.0 50.6 13.2 54.2 13.2 
October 16.4 11.2 16.2 8.8 14.0 10.0 
November 14.8 8.2 17.6 8.8 16.0 10.6 
December 54.4 9.6 55.8 13.4 57.0 9.0 
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Figure 5: Seasonal Pattern Shift – Seasonal pattern prior to break (solid line); seasonal pattern after 
break (dashed 

line).

 

6.2 Seasonal Factor Exchange 
In this seasonal break model we have swapped the March and April factors (figure 6). 
We can see from figure 6 that, as we have swapped the factors at the peak of the 
seasonal cycle, a seasonal break may be difficult to identify as the seasonal factors 
have not changed markedly. The results from applying ART (table 4) support this. 
However it is worth noting that ART has increased the probability of a break at the 
seasonal break point (ie March and April) compared to the probabilities for the other 
months. In any case it is clear, as for seasonal pattern shifts in the previous section, that 
where the structural break occurs in the seasonal cycle has a major effect on the 
identification of seasonal breaks in the individual SI series 

This leads us to conclude that it is not the individual SI series alone that are relevant, 
but rather that the distribution of seasonal breaks in all the SI series needs to be 
considered. To sum up, it would be useful to have an understanding of possible abrupt 
changes in the seasonal cycle and how that change will affect the individual monthly 
seasonal factors. We believe ART with its tree structure for its outputs may be better 
suited than BP for this task. However a more work is required investigating a range of 
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possible changes seasonal patterns before it would be possible to examine the break 
point pattern across months and identify possible changes in the seasonal pattern. 

Table 4: Seasonal Factor Exchange – Percentage of breaks identified by ART in a cycle. 

 
Break in the 5th 

cycle (%) 
Break in the 10th 

cycle (%) 
Break in the 15th 

cycle (%) 
Month 5th  6th  10th  11th 15th  16th  
February 6.8 6.6 5.4 6.6 7.2 7.2 
March 11.8 4.8 13.0 10.6 16.8 11.6 
April 18.4 8.2 14.6 9.0 16.0 10.8 
May 6.4 6.6 5.0 5.2 8.4 6.6 

 

Figure 6: Seasonal Factor Exchange – Seasonal pattern prior to break (solid line); seasonal pattern 
after break (dashed line). 

 

7. Conclusions 

Statistics New Zealand produces a range of time series beyond those that it directly 
measures. By providing seasonally adjusted series and trend estimates Statistics New 
Zealand assists users in their interpretation and understanding of the time series. 
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However it is important that any major changes in the data generating process 
associated with a time series is effectively identified as early as possible. Changes not 
identified and adequately modelled may lead to volatile and less useful seasonally 
adjusted series and trend estimates. This requires not only identifying breaks in trends, 
but also breaks in seasonal patterns. 

We have investigated the use of structural break methods, normally used to identify 
trend breaks, to breaks in seasonal patterns. Our work focused on the individual 
seasonal factors in the seasonal pattern by applying the structural break methods to the 
SI series produced by X-12. Using an output from X-12 in this way has been revealed to 
have potential for identifying seasonal breaks. We have also shown that using a short 
regime length does not appear to affect the quality and stability of the seasonal break 
identification, thus it may be feasible for Statistics New Zealand to identify seasonal 
breaks in a timely manner. 

It is clear that examining the seasonal factors for individual months is only a first step to 
identifying, interpreting, and understanding the break in the seasonal pattern. This is to 
be expected because the seasonal pattern over any annual cycle should average out to 
the trend. It is therefore necessary to do further simulations with a range of changes in 
seasonal patterns, as well undertake some theoretical research, possibly using some 
research into co-breaking (Hendry & Massmann, 2005).  
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