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1 Introduction

My aim in this paper is to compare infinite and finite horizon models of the interaction

between a hydro power generator and a thermal power generator. I use Crampes and

Moreaux (2001) (CM henceforth) as the basis for my comparison.

This paper is preliminary and incomplete. Comments are very welcome. My

apologies to all the authors who deserve citation, but as yet have received none.

2 Model

I model here a hydro power producing dam in Cournot competition with a thermal

producer of electricity. We do not presume any commitment power on the part of the

Hydro plant, and ask if the dynamic nature of his problem, as compared to the static

nature of Thermal plant, is going to result in an endogenous commitment power. For

our analysis to have relevance to the problems of power generation, we need to take

account of the fact that power demand fluctuates through time. It varies on a monthly

basis in response to heating and cooling needs. It also fluctuates through the day in

response to, for example, sleep patterns. We do presume that one year is identical to

the next. However, within each year, we allow T ≥ 1 heterogeneous periods. Hence, in

our analysis period t has the same exogenous details as period t + T . Let n(t) denote

the remainder of t/T . That is, if there is some integer x such that t = xT + j, then
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n(t) = j. (As written, we have n(t) ∈ {0, ..., T − 1}.)

In period t, Thermal generates qt units of electricity, and Hydro generates ht units

of electricity. In period t, the inverse demand for electricity is Pt = at − bt(qt + ht).

Given our assumption of a yearly cycle, at = an(t) and bt = bn(t). Thermal has marginal

costs of mc = c+ z · qt. Let ψt and Ut denote Thermal’s instantaneous profits and value

function for time t. Let r denote the discount rate. Thermal’s objective is

max
qt

ψt(ht, qt) + rUt+1(Rt+1) (1)

We place no non-negativity constraint on Thermal. This would probably not be worth

noting, except that we do place one on Hydro. However, the dynamic nature of Hy-

dro’s problem means that interesting effects can arise from his non-negativity constraint.

However, nothing out of the ordinary would arise from including a non-negativity con-

straint for Thermal. Because Thermal has no control of the state variable, his incentives

are captured with the first order condition in qt;

∂ψt

∂qt
= 0 (2)

Since ψt is not a function of Rt, Thermal’s decisions are static in nature. In fact, the

only sense in which the choice of qt is dynamic is that the first order condition depends

upon ht which is chosen dynamically. LetQt(Rt, ht) denote the dependence of Thermal’s
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choice as a function of the state and Hydro’s output. From the arguments just made,

it follows that ∂Qt

∂Rt
= 0.

Hydro is assumed to have no marginal costs, but to face a resource constraint on

water. In particular, Hydro’s reserve of water evolves according to Rt+1 = Rt +wt −ht,

where wt is the inflow of water. The yearly cycle requires that wt = wn(t). In period

t, Hydro faces three constraints. The current capacity constraint requires that he not

use more water than currently available, so he must leave Rt+1 ≥ 0 (multiplier λt.) Let

R̄ denote the maximum capacity of Hydro’s reservoir. The overflow constraint requires

that Hydro not allow his reservoir to overflow, which requires that Rt+1 ≤ R̄ (multiplier

θt.) We assume throughout that wt < R̄. Hence, the overflow constraint cannot bind

if we enter the current period with no water. Finally, Hydro can’t produce negative

energy, ht ≥ 0 (multiplier δ.)

Let πt and Vt denote Hydro’s instantaneous profits and value function for time t.

Hydro’s objective is

max
ht

πt(ht, qt) + rVt+1(Rt+1) (3)

subject to Rt+1 = Rt + wt − ht (4)

Rt+1 ≥ 0 with multiplier λt (5)

Rt+1 ≤ R̄ with multiplier θt (6)

ht ≥ 0 with multiplier δt (7)
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Note that we need the t subscript on πt and Vt because different periods have different

values for at (demand parameter) and wt (water inflows.) Hydro has a first order

condition in ht of

r
dVt+1

dRt+1
=
∂πt

∂ht
− λt + θt + δt (8)

let Ht(Rt, qt) denote the dependence of Hydro’s choice on the state and Thermal’s

output. Because Ht and Qt solve the maximization problems,

Vt(Rt) = πt(Ht, Qt)+λt(Rt +wt−Ht)+θt(R̄−Rt−wt +Ht)+δtht +rVt+1(Rt +wt−Ht)

This equation has an envelope condition in Rt of

dVt

dRt
=
∂πt

∂ht
·
dHt

dRt
+
∂πt

∂qt
·
dQt

dRt
+

(

λt − θt + r
dVt+1

dRt+1

) (

1 −
dHt

dRt

)

+ δt ·
dHt

dRt
(9)

Hydro’s Euler equation arises from combining Equations 8 and 9. Before writing out

the Euler equation, we make it more precise with the following observation. Because

∂Qt

∂Rt
= 0, it follows that dQt

dRt
= ∂Qt

∂ht
· ∂ht

∂Rt
. It now follows that Hydro’s Euler equation is

∂πt

∂ht
− λt + θt + δt = r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·
∂Ht+1

∂Rt+1
+ δt+1

)

(10)

Because we assume zero variable costs of energy production for the Hydro Plant, the

derivative on the Left Hand Side of Equation 10 is marginal revenue in period t. The
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Right Hand Side of Equation 10 is the shadow price of water in period t.

Rather than work with our specific functional form, we attempt a characterization

which requires only that ∂Qt+1

∂ht+1
> 0. We break the analysis of Equation 10 into a

number of different circumstance. Before doing so, we consider the relationship between

the three constraints. The overflow constraint and the non-negativity constraint both

place lower bounds on production, while the current capacity constraint places an upper

bound. If the current capacity constraint binds, then the other two constraints do not.

The relationship between the overflow constraint and the non-negativity constraint is

more complicated. If Rt+wt−R̄ > 0, then the non-negativity constraint is non-binding.

If Rt + wt − R̄ < 0, then the overflow constraint is non-binding. In both these cases,

the unmentioned constraint may or may not bind. However, if Rt +wt − R̄ = 0, then it

is possible for both constraints to bind simultaneously. In fact, if one of the constraints

binds, then the other must bind at least weakly. Furthermore, in this case it is possible

that both constraints bind strictly. We can see that Euler equation 10 depends only

upon the sum θt + δt. Nonetheless, we will see that it matters which constraint binds.

2.1 A period t constraint binds

If one of the period t constraints binds, then behavior in period t is nailed down exactly

by the need to satisfy that constraint. If the current capacity constraint binds, then all

available water is used and ht = Rt + wt. In this case, ∂πt

∂ht
is greater than the shadow
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price, and λt > 0 measures this disparity.

If the overflow constraint binds, then just sufficient water to avoid an overflow is

used and ht = Rt +wt − R̄. If the non-negativity constraint is the only constraint that

binds, then ht = 0. In either case, ∂πt

∂ht
is less than the shadow price, and θt + δt > 0

measures the disparity.

Since the Hydro Plant has no choice about satisfying the constraints, the above

conclusions hold no matter what else is going on. Hence, in all that follows, as we

analyze other situations we are implicitly assuming that no period t constraint binds.

2.2 The period t + 1 non-negativity constraint binds

We consider first the case in which the non-negativity constraint binds in period t+ 1.

It is possible that the overflow constraint binds as well, but we know that the current

capacity constraint does not bind. Hence, we might have the following as our period t

and period t+ 1 Euler equations

∂πt

∂ht

= r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·
∂Ht+1

∂Rt+1
+ δt+1

)

(11)

∂πt+1

∂ht+1
+ θt+1 + δt+1 = r

(

∂πt+2

∂ht+2
+
∂πt+2

∂qt+2
·
∂Qt+2

∂ht+2
·
∂Ht+2

∂Rt+2
+ δt+2

)

(12)
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We can combine these two equations to arrive at

∂πt

∂ht
= r2

(

∂πt+2

∂ht+2
+
∂πt+2

∂qt+2
·
∂Qt+2

∂ht+2
·
∂Ht+2

∂Rt+2
+ δt+2

)

−r

(

∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·
∂Ht+1

∂Rt+1
− θt+1

)

(13)

If we ignore the last term in Equation 13, then we would have the Euler equation for a

problem in which Hydro was simply not allowed to produce electricity in period t+ 1.

Whether or not Hydro is allowed to produce in period t+ 1 should make no difference,

as he has no desire to do so. Hence, the last term in equation 13 must be zero. That is

θt+1 = ∂πt+1

∂qt+1
· ∂Qt+1

∂ht+1
· ∂Ht+1

∂Rt+1
. Proceeding in this manner then, we can see that if the first

period following period t in which the non-negativity constraint does not bind is period

t+ k, then output in period t is set based upon

∂πt

∂ht
= rk

(

∂πt+k

∂ht+k

+
∂πt+k

∂qt+k

·
∂Qt+k

∂ht+k

·
∂Ht+k

∂Rt+k

)

(14)

We can see that the value of k in equation 14 does not make a qualitative difference.

Hence, for the sake of exposition, the remainder of our discussion will be for the case in

which δt+1 = 0.
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2.3 The t + 1 non-negativity constraint does not bind

We are now working with the assumption that every multiplier in the Euler Equation

10 are equal to zero. This leaves us with the following for a period t Euler Equation

∂πt

∂ht

= r

(

∂πt+1

∂ht+1
+
∂πt+1

∂qt+1
·
∂Qt+1

∂ht+1
·
∂Ht+1

∂Rt+1

)

(15)

The first term on the Right Hand Side of Equation 10 is the marginal revenue in period

t + 1. The second term is the strategic effect. It is the increase in profits which arises

because of Thermal’s decrease in output in anticipation of an increase in Hydro’s output.

The interesting part of that equation is the strategic effect, and in particular the value

of ∂Ht+1

∂Rt+1
. If we have ∂Ht+1

∂Rt+1
= 0 then we have a solution which looks very much like the

closed loop solution in CM. If ∂Ht+1

∂Rt+1
= 1, then the period t Euler equation would be

essentially identical to the first order condition for the closed loop in CM’s two period

model. That is, period t + 1 would be much like the end period in the closed loop

solution of a finite horizon game.

Let us consider the possibility that either overflow or current capacity constraint

binds in period t+1. If the overflow constraint binds (weakly,) then any addition water

passed onto period t+ 1 must be used immediately. This holds even if the overflow and

non-negativity constraint both hold. If the current capacity constraint binds strictly,

then any small amount of water passed onto period t + 1 will be used immediately

8



because it has higher value in period t + 1 than in later periods. This implies that in

both cases dHt+1

dRt+1
= 1.1 Hence, if either the overflow or current capacity constraint binds

in period t+ 1, then it is as if period t+ 1 were the last period in a finite horizon game.

Lets say that one of these constraints binds in period t+ 1, but no constraint binds

in period t. We know that dHt+1

dRt+1
= 1. What about dHt

dRt
? Clearly this derivative is not

equal to one or zero. If if were equal to one, then an exogenous increase in Rt would all

be consumed in period t. If it were equal to zero, then any increase in Rt would be all

consumed in period t + 1. Either situation would throw the Euler Equation 15 out of

balance. Hence 0 < dHt

dRt
< 1.

How do things change as the period in which the constraint binds moves further into

the future? That is, lets say that the constraint binds in period t + k. How does dHt

dRt

change as we change the value of k?

3 The Steady Cycle

Our objective here is to argue that the stable cycle is the appropriate prediction, and

then demonstrate that if one chooses the appropriate starting date, then one can dupli-

cate the steady cycle with a finite horizon equilibrium. We compare a T period steady

cycle with a T period finite horizon model. A key issue is the choice of start date for the

1Strictly speaking, we may only be able to say that the right hand derivative is equal to one. However,

since we presume that
∂Qt+1

∂ht+1
> 0 it is the right hand derivative which matters.
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finite horizon model. With this in mind, we need to define new summation notation.

For t1, t2 ∈ 1, ...T − 1, let

◦
∑

t2

t=t1
at =



















∑t2
t=t1

at if t1 ≤ t2

∑T−1
t=t1

at +
∑t2

t=0 at if t1 > t2

We will see that a key determinant of Hydro’s behavior is the total amount of water

available in a year. Consider a one year, T period, finite horizon model. For the

moment, treat Hydro as a thermal producer with zero marginal costs. Doing so, makes

this a totally static model in which each period is treated independently. Let w0
t denote

Hydro’s output in period t in this case, and W 0 =
∑T

t=0 w
0
t denote the total energy

output by Hydro in this case.

Let ∆(t, τ) =
◦
∑

t

s=τ (ws − w0
s). If a run starts in period τ , then Rτ denotes the

amount of water at the end of period t if hs = w0
s .

Proposition 1 A necessary, but not sufficient, condition for a open loop solution to

replicate the steady cycle is that ∃τ such that 0 ≤ Rτ + ∆(t, τ) < R̄ and W̄ = W 0.

Proof: If the overflow constraint binds (even weakly) in period t + 1, then there is a

strategic effect in period t. If the current capacity constraint binds strictly in period t+1,

then there is a strategic effect in period t. Hence, for the steady cycle to look like the

open loop solution, neither mentioned situation can arise once the steady cycle has been

entered. Hence ∂πt

∂ht
= rk ∂πt+k

∂ht+k
. Since we have an infinite horizon model, this holds in the
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limit as k → ∞, which implies that ∂πt

∂ht
= 0. Consequently, ht = w0

t , and a total of W 0

is used each cycle. Hence, if W̄ > W 0 (resp. W̄ < W 0
t ,) then the current capacity (resp.

overflow) constraint will eventually strictly bind. The condition 0 ≤ Rτ + ∆(t, τ) < R̄

is exaclty the condition that it is possible to set ht = w0
t without the current capacity

constraint binding strictly or the overflow constraint binding. Hence, if it is not possible

to satsify this condition, then there is a period in which there is a strategic effect. ♣

Here I need two examples one where it works, one where it does not.

To make the model more tractable, we assume that we can partition the year into a

wet season and a dry season. During the wet season, the inflow of water is greater than

would reasonably be used. During the dry seaons it is less than would reasonably be

used. For simplicity we assume that periods tw = 0 through td − 1 are the we season,

and that td through period T − 1 are the dry season. We assume that during the wet

season wt > at/b while in the dry season wt = 0. (Note, at/b is the competitive output

with zero marginal costs.)

Proposition 2 Consider a steady cycle. If W̄ > W 0, then the overflow constraint

binds in period td − 1. Once may duplicate the steady cycle with the closed loop solution

for the run starting at τ = td.
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4 Appendix: Multiple Thermal Plants

We show here that nothing is gained by using multiple thermal plants. For simplicity we

will work with M symmetric (identical costs) thermal plants and ignore time subscripts.

The problem for a thermal plant is essentially static, and they act in any period to set

their marginal revenue equal to marginal cost. Let us denote a given firm i′s output as

qi, the total output of all thermal plants as Q, and the output of the Hydro plants as

H. We set Q−i = Q− qi. The reaction function for firm i is found by setting marginal

revenue to marginal cost

a− b(Q−i + H) − 2bqi = c+ zqi (16)

Solving for qi, we get the reaction function

qi =
a− c− b(Q−i + H)

2b+ z

Of course this reaction function applies to all thermal plants. Hence, the symmetry of

the problem assures that we can specify an ’aggregate reaction function’ for the thermal

sector, by recognizing that all the qi will be equal. In particular,

Q = M

(

a− c− bH

z + (M + 1)b

)
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One can choose φ and ξ such that a single firm with marginal costs = φ+ξq will duplicate

the behaviour of the above group of M firms. This requires only setting ξ = z−(M−1)b
M

and φ = a − (a−c)(ξ+2b)M
z+(M+1)b . Now if we set ẑ = z+(M+1)b

M
− 2b, then a market with one

firm and marginal cost of c+ ẑqi exactly replicates a market with M firms and marginal

costs of c+ ẑqi.

13


