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Abstract

Replacing rational expectations by adaptive learning algorithms complicates the dynamics of

economic models. Identi�cation of the structural parameters is improved under learning relative

to rational expectations, but it deteriorates when learning converges to rational expectations.

Learning also induces persistent dynamics, and this makes the distribution of estimators and

test statistics non-standard. We show that valid inference can be conducted using the Anderson-

Rubin statistic with appropriate choice of instruments. Application of this method to the new

Keynesian Phillips curve with US data provides evidence against constant gain least squares

learning.
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1 Introduction

This paper studies inference on structural models when expectations are modelled using adaptive

learning schemes. A growing number of studies consider adaptive learning as an alternative to

rational expectations (RE), see for instance Sargent (1993), Evans and Honkapohja (2001; 2008),

Orphanides and Williams (2004; 2005a), Primiceri (2006), Milani (2005; 2007). Structural models

with learning are self-referential and their dynamics are considerably more complicated than the

dynamics under RE. As a result, little is known about the properties of structural estimation and

inference in these models.

On the one hand, it is well-understood that learning typically induces more persistence in the

data than what is implied by models with RE. In fact, one of the motivations for replacing RE with

adaptive learning in forward-looking models is to match the dynamics in the data without the need

to introduce any intrinsic sources of persistence, which are thought of as ad hoc, see Milani (2005,

2007). On the other hand, it is well-known that forward-looking models su¤er from identi�cation

problems, see Canova and Sala (2005) Mavroeidis (2005) and Cochrane (2007a,b). Hence, the

objective of this paper is to study the implications of those two issues, persistent dynamics and

weak identi�cation, for inference on the structural parameters of models with adaptive learning.

Our main results can be summarized as follows.

First, we show that identi�cation of structural models is improved under learning relative to

rational expectations. The intuition for this result is simple: expectations are more variable under

learning than under perfect knowledge, and this improves the accuracy of estimators in models

where expectations appear as regressors. However, we also �nd that under decreasing or small con-

stant gain, identi�cation becomes weak. The problem can be expressed as near-multicollinearity in

regression models, or as �weak instruments�in models identi�ed by exclusion restrictions. Moreover,

it is shown that identi�cation is stronger when the gain parameter is larger. Weak identi�cation

invalidates inference using conventional methods, such as Wald statistics, see Stock, Wright, and

Yogo (2002). However, there is one additional complication which prevents us from using standard

identi�cation-robust methods. Learning induces persistence in the data and can cause nearly non-

stationary behavior. Thus, methods that rely on normal asymptotic theory become inapplicable.

Second, we show that there is a straightforward and easy-to-implement solution to the problem

of inference. In particular, we propose to use a statistic developed by Anderson and Rubin (1949)

and popularized recently by the weak instruments literature, with an appropriate choice of instru-
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ments, such as lags of the identi�ed structural shocks, so that the required regularity conditions

hold. The limiting distribution of the test statistic is �2 and does not depend on any nuisance

parameters. Simulations show that our proposed method controls size in �nite samples and has

reasonably good power properties, and the empirical application con�rms this in practice.

Third, we apply our method to study the new Keynesian Phillips curve, a very popular model

of in�ation dynamics, under learning. The papers most closely related to our empirical study are

those by Milani (2005, 2007). Consistently with Milani, we �nd that indexation is unnecessary

when in�ation expectations are formed by some form of adaptive learning. However, unlike Milani,

we �nd that learning with a constant gain parameter does not �t the data, since there is evidence

of shifts in the gain parameter in the US over the past �fty years. Speci�cally, we �nd that the gain

parameter was signi�cantly higher during a period of macroeconomic instability (1973 to 1987)

than it was before and after that period. A learning model with an endogenously determined gain

parameter may therefore be more appropriate to model the dynamics of in�ation in the US.

The paper is structured as follows. Section 2 discusses the problems of inference due to weak

identi�cation and persistence in the data, with a textbook example of a model with learning from

Evans and Honkapohja (2001). Section 3 introduces our proposed method and provides simulation

evidence on its size and power properties in �nite samples. Section 4 contains an application of

the method to the new Keynesian Phillips curve with adaptive learning. Proofs and additional

empirical results are given in an Appendix at the end.

The following notation is used throughout the paper: �
p!�stands for convergence in probability,

�)�for weak convergence, aT = O (bT ) means that the sequence aT =bT is bounded, aT = o (bT )

means aT =bT ! 0, and Op (�) ; op (�) denote bounds in probability.

2 The problem

To �x ideas, we consider a simple model taken from Evans and Honkapohja (2001), section 14.2:

yt = �yet + �xt�1 + �t (1)

where �t is an innovation process with variance �2�, and y
e
t denotes expectations based on information

available at time t� 1 and xt�1 is a vector of exogenous and predetermined variables. This is the

model studied by Bray and Savin (1986). Evans and Honkapohja (2001) motivate this as a reduced

form price equation arising either from a simple cobweb model, or the well-known Lucas (1973)

3



aggregate supply model. In the former example, � < 0; while in the latter � 2 (0; 1) :

Provided � 6= 1, the unique rational expectations equilibrium (REE) of the model is found to

be

yt = �xt�1 + �t; � =
�

1� � : (2)

Equation (2) describes the law of motion under the REE. We assume that agents perceive this

as the law of motion (PLM) of yt; but they do not know �. In order to form their forecast yet ;

they estimate � by at using a stochastic recursive algorithm (SRA) with gain sequence ftg. For

instance, least squares (henceforth LS) is a SRA that can be written recursively as

at = at�1 + t (yt � at�1xt�1)x0t�1R�1t (3)

Rt = Rt�1 + t
�
xt�1x

0
t�1 �Rt�1

�
(4)

for t = 1; 2; ..., given some initial conditions a0; R0. Two well-studied versions of LS learning are

recursive least squares (RLS), obtained from (3) and (4) with t = 1=t; and constant gain (CGLS)

with t =  2 (0; 1). The latter is also sometimes referred to as perpetual learning (see, e.g.,

Orphanides and Williams (2005a)) and is particularly popular in empirical work. Agents�forecasts

are then given by

yet = at�1xt�1: (5)

Equation (2) is the PLM.1 The dynamics of yt under learning are characterized by the so-called

Actual Law of Motion (ALM)

yt = �at�1xt�1 + �xt�1 + �t (6)

which is derived by substituting at�1xt�1 for yet in the structural model (1). It is clear that the

dynamics of yt under the ALM (6) are more complicated than under the REE (2). Here, we are

interested in the implications of the learning dynamics for inference on the structural parameters

� and �.

1The assumption that the PLM coincides with the REE is inessential for the ensuing results, since they apply also
under mis-speci�ed learning, as de�ned in EH section 3.6.
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We consider the ordinary least squares (OLS) estimator of (�; �):2

0@ b� � �b� � �
1A =

2666664
0@ PT

t=1 a
2
t�1x

2
t�1

PT
t=1 at�1x

2
t�1PT

t=1 at�1x
2
t�1

PT
t=1 x

2
t�1

1A
| {z }

AT

3777775
�10@ PT

t=1 at�1xt�1�tPT
t=1 xt�1�t

1A
| {z }

bT

: (7)

Consistency and asymptotic normality of b�; b� require that the matrix AT ; scaled appropriately,
should be invertible with probability (approaching) one. This is the rank condition for the identi-

�cation of �; �: To establish asymptotic normality at rate
p
T , we need conditions that guarantee

T�1AT converges in probability to a nonstochastic and invertible matrix and that the process

T�1=2bT in equation (7) satis�es a central limit theorem. Under these conditions, the OLS esti-

mator b�; b� and the associated t statistics are asymptotically normal, and the Wald statistics are
asymptotically �2, under the null hypothesis. So, our question of interest is whether these as-

ymptotic results hold and whether they provide a good approximation to the distributions of the

statistics in �nite samples.

We start by reporting some Monte Carlo simulations on the distribution of OLS estimators and

test statistics for the model (1). For simplicity, we make the regressor xt�1 in the model a scalar

constant, i.e., xt�1 = 1; and we normalize the true value of the coe¢ cient � to zero. Figures 1 and

2 show, for samples of size 100; 1000 and 10000 observations, the densities of the OLS estimatorsb�; b�, and compare those densities to normal approximations. It is clear from those pictures that

the normal distribution provides a very poor approximation to the sampling distribution of the

OLS estimators even for samples of 10000 observations. Similar results can be obtained for the

distribution of the t statistics for � and � under the null hypothesis. Their distributions are non-

normal, and, in the case of the t statistic for �; even bimodal. The graphs are omitted for brevity.

The above results suggest that there appears to be some convergence to normality under CGLS.

So, a relevant question is to look at how large the sample needs to be for the asymptotic approxima-

tions to become accurate. We answer this question by looking at the distance of the distribution of

the Wald statistic on � (the square of the t statistic) under the null, from its asymptotic distribution

which is �2 (1) : We shall use the Kolmogorov-Smirnov statistic for equality of two distributions as

a measure, and formal test, of the quality of the asymptotic approximation.3 Table 1 reports the

2This is also the maximum likelihood estimator under Gaussian and homoskedastic innovations �t:
3The Kolmogorov-Smirnov statistic is equal to the maximum absolute di¤erence between two distribution functions

F1; F2; over all the points of support in the sample, scaled by the square root of the sample size: Its use in measuring
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Figure 1: Densities of OLS estimators of the coe¢ cients of model yt = �yet + �+�t, under recursive
least squares learning, for samples of size T = 100; 1000; 10000. �t is Gaussian white noise with
unit variance, � = 0:9 and � = 0. The number of MC replications is 10000.
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Figure 2: Densities of OLS estimators of the coe¢ cients of model yt = �yet + �+ �t, under constant
gain least squares learning, for samples of size T = 100; 1000; 10000. �t is Gaussian white noise
with unit variance, � = 0:9, � = 0 and  = 0:02: The number of MC replications is 10000.

6



 = 0:01 0:05 0:1

�
0:90 100� 103 30� 103 5� 103

0:95 170� 103 50� 103 20� 103

0:99 500� 103 170� 103 80� 103

Table 1: The table reports the minimum sample size T that is needed for the distribution of the
Wald statistic on � not to be signi�cantly di¤erent from �2 (1) at the 5% level according to the
Kolmogorov-Smirnov test. The model is yt = �yet + � + �t, under constant squares learning with
gain parameter : �t is Gaussian white noise with unit variance, � = 0 and learning is initialized at
zero. T is incremented by 100 up to 10000, and by 10000 thereafter. The number of Monte Carlo
replications is 10000.

smallest sample sizes that are needed for the distribution of the Wald statistic to be approximately

�2 (1) ; for di¤erent values of � and the gain parameter : It is noteworthy that when � = 0:99 and

 = 0:01; the required sample size is half a million observations!

We now show that these non-standard distributions are the result of identi�cation problems

and persistence in the data, taking each explanation in turn.

2.1 Identi�cation

It is immediately obvious from equation (2) that the parameters � and � are not separately identi�ed

under rational expectations. One way to see this identi�cation problem is to observe that, under

the REE, the regressor yet is perfectly collinear with the regressors xt�1. In contrast, under learning,

yet = at�1xt�1; and this breaks the perfect collinearity with xt�1 as long as at�1 varies with t: So,

learning improves the identi�ability of the structural parameters relative to the REE.

The above discussion shows that the identi�cation of the structural parameters � and � hinges

upon the behavior of at. The latter is a well-studied problem in the learning literature. For the

simple model (1) with xt = 1; it can be shown that provided � < 1; agents�estimator at converges

to � under RLS learning with probability one, see Evans and Honkapohja (2001, Theorem 2.1).

Hence, the regressors yet = at�1xt�1 and xt�1 in (1) become perfectly collinear in large samples,4

and this is an example of a phenomenon known in econometrics as near multicollinearity, see, e.g.,

Judge et al (1985). In other words, under RLS the identi�cation of the coe¢ cients � and � breaks

down, and this explains the lack of convergence of the OLS estimators shown in Figure 1.

the quality of asymptotic approximations is common in econometrics, see, e.g., Staiger and Stock (1997).
4This is also true if at converges to some value other than �; as in the case of self-con�rming equilibria under

mis-speci�ed learning.
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The conditions under which RLS learning converges to the REE (or to some other self-con�rming

equilibrium under misspeci�cation of the PLM) are referred to as E-stability conditions. These are

restrictions on the structural parameters, e.g., � < 1 in the cobweb model (1), and regularity

assumptions on the process xt; see, e.g., Fourgeaud, Gourieroux, and Pradel (1986). Thus, we see

that when the structural parameters of the model are not identi�ed under the REE, RLS will lead

to weak identi�cation when the E-stability conditions hold.

With constant gain learning, it is well-known that at does not converge to a nonstochastic limit.

Evans and Honkapohja (2001, chapter 7) discuss the behavior of at under constant gain learning

for a large class of SRAs that includes CGLS as a special case. They show that when the constant

gain parameter  is small and � < 1; at � � = Op
�
1=2

�
. Hence, it is clear that if we let  tend

to zero, there will be near multicollinearity in equation (1). This situation is in fact empirically

relevant, because researchers are often interested in estimating the dynamics of the economy when

there are only small departures from rational expectations, i.e., when  is small (e.g., Milani 2007).

When  is bounded away from zero, the multicollinearity problem disappears. This explains

why in Figure 2 there appeared to be convergence under CGLS, since  was kept �xed as we

increased T . In fact, since the variability of at is increasing in ; and since the accuracy with which

the coe¢ cients �; � in (1) can be estimated is positively related to the variability of the regressors,

other things equal, the parameters will be better identi�ed (i.e., more accurately estimable) the

higher is . In other words, under constant gain learning, identi�cation improves as the speed

of learning decreases. An illustration of this point is provided by simulations reported in section

3 below in the context of a forward-looking model, where it is shown that, for inference on the

structural parameters, the gain parameter plays a role similar to the sample size.

In models that are identi�ed by exclusion restrictions, and typically estimated by instrumental

variables, decreasing or small constant gain learning leads to the problem of �weak instruments�, as

it was de�ned by Staiger and Stock (1997). To see this, consider a model with non-predetermined

regressors xt:

yt = �yet + �xt + �t (8)

Under the assumption that Et�1�t = 0; the parameters (�; �) in equation (8) can be estimated by

instrumental variables regression, using any variables known at data t � 1 as instruments. Now,

observe that the REE of (8) is given by

yt = �Et�1xt + �t; � = (1� �)�1 � (9)

8



so it is clear that (�; �) are not identi�ed under RE. Let zt denote the set of instruments for

predicting xt and suppose that Et�1xt = �zt: Assume agents� forecasts are given by yet = �tzt;

where �t is a recursive estimate of �. By equation (9), the RE forecast is ��zt; and, if �t converges

to ��; then yet = ��zt + Op (t) ; i.e., it is asymptotically collinear with the projection of xt on

the instruments zt: Another way to put this is that the covariance matrix between the regressors

(yet ; xt) and the instruments zt becomes rank de�cient as the gain parameter goes to zero.

2.2 Persistence

Next, we turn to the issue of persistence of the data under learning dynamics. We �rst observe

that in the simple model (1) the persistence of yt and yet under the REE (2) is determined solely

by the dynamics of the driving process xt; but learning adds further dynamics to yt independently

of xt: Thus, we need to examine how much persistence learning generates, and what implications

this has for inference on the structural parameters.

We shall focus our discussion on CGLS learning, since it is more relevant empirically than RLS

learning. To keep the exposition simple, we discuss only the case in which the regressor xt is a

scalar constant, because in that case, the ALM reduces to a linear time series model, which most

readers are familiar with. Even though our analysis can be generalized to allow for stochastic

and multiple regressors, such extensions do not add any new insights to our understanding of the

problem. Moreover, the asymptotic approximations we derive below are only used to explain why

standard asymptotic theory fails, as we saw in �gure 2 above, and they are not used to propose

solutions to the problem of inference. The solution we propose in the next section is, in fact, quite

general, and does not rely on any non-standard asymptotic theory.

When xt = 1 in model (1), it follows that Rt = 1 for all t in (4), and the SRA reduces to

at = at�1+ (yt � at�1). Substituting for yt using (1) and the fact that yet = at�1, the law of motion

for at can be written as a �rst-order autoregression with autoregressive coe¢ cient 1� (1� �)  and

scale parameter  :

at � � = (1� (1� �) ) (at�1 � �) + �t; t = 1; 2; ::: (10)

Hence, when � < 1 and  > 0; the process at is ergodic and admits a stationary solution, and this

implies that the asymptotic distribution theory for OLS estimators and Wald tests is standard.

Now, let us consider what happens when the gain parameter, ; is small. To approximate the
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distribution of the stochastic process at and the OLS estimators in (7), we let  lie in a neighborhood

of zero, i.e., we set  = O (T��) ; with � > 0: We also let � = 1�O (T�!) in order to characterize

the situation in which � is close to one, which is often empirically relevant, e.g., when � is a discount

factor. This approach leads to local asymptotic approximations, which have been used e¤ectively

to characterize the behavior of nearly integrated autoregressive processes. Note that the standard

autoregression with a near unit root, see Chan and Wei (1987) and Phillips (1987), is a special case

of the model (10) with 1� � = O
�
T�1

�
and  �xed. However, since  also a¤ects the variance of

the innovation to at through the term �t in (10), when  ! 0; the present problem is di¤erent

from the nearly integrated autoregressive model studied in the literature. e.g., in Phillips (1987),

because at here is Op (1) rather than Op
�p

T
�
: This has implications for the rate of convergence

of the OLS estimators of b� and b� that we discuss below.
Di¤erent choices of the rates � and ! at which  and 1� � go to zero with T; respectively, give

rise to alternative local asymptotic approximations to the behavior of at and of the OLS estimatorsb�; b�: We shall discuss here only the case � = ! = 1=2; since this localization was found to give

the best approximation to the �nite sample distributions.:The results are given in the following

proposition.

Proposition 1 Consider the stochastic process at that satis�es equation (10) with initial condition

a0. Suppose (1� �)  = 1 � e�=T and  =  =
p
T with � < 0 and  > 0, and let [Tr] denote the

integer part of Tr; for 0 � r � 1: Then, as T !1

a[Tr] ) �+ e�r (a0 � �) +  ��J� (r)
def
= K ;� (r) (11)

where J� (r) is an Ornstein-Uhlenbeck di¤usion with parameter � and J� (0) = 0; driven by the

standard Brownian motion W (r) : Moreover, the asymptotic distribution of the OLS estimators b�;b� de�ned in equation (7) with xt = 1 is
24 pT �b� � ��p

T
�b� � ��

35)
24 R 10 K2

 ;� (r) dr
R 1
0 K ;� (r) drR 1

0 K ;� (r) dr 1

35�1 24 ��
R 1
0 K ;� (r) dW (r)

��W (1)

35 : (12)

In the above result, the parameters � and  measure, respectively, the distance of the autore-

gressive root from unity and of the gain parameter from zero, relative to the sample size. The

Ornstein-Uhlenbeck di¤usion is a continuous time autoregressive process whose persistence is in-

versely related to �; where the limiting case � = 0 corresponds to a random walk. Proposition 1
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Figure 3: Densities of the OLS estimators for � and � in a sample of size T = 100 (solid lines),
local asymptotic approximations given by expression (??) (dotted lines) and normal asymptotic
approximation (dashed lines). The model is yt = �yet + �+�t with CGLS with parameter  = 0:02,
and � = 0:99, � = 0, and learning is initialized at a0 = 1. The number of MC replications is 10000.

therefore shows that the persistence in at is increasing the closer is (1� �)  to zero. We also notice

that at is not ergodic, since it does not converge to its stationary distribution for arbitrary initial

condition a0.

Regarding the asymptotic distribution of the OLS estimators, we see that it is non-normal. This

is because the second moment matrix of the regressors does not converge to a non-stochastic limit,

and the moment conditions involving the persistent regressor at�1 do not satisfy a normal central

limit theorem. In the special case � = a0 = 0; the distribution of the OLS estimator given by the

right-hand side of equation (12) corresponds almost exactly to the local-to-unit root approximation

in the model considered by Phillips (1987) and the resulting distribution is of the Dickey-Fuller

type, i.e. skewed towards negative values. Yet, contrary to the pure unit-root case, b� does not
converge faster than at rate

p
T : This is because of the dampening e¤ect of a vanishing  on the

variance of the regressor at�1; which we mentioned earlier.

Figure 3 shows that the local asymptotic distribution given by the right-hand side of expression

(12) provides a very accurate approximation to the �nite sample distribution of the OLS estimators

(7) for a sample of size T = 100 and for � = 0:99 and  = 0:02; for which the standard �xed-

parameter asymptotic approximation is poor. The approximation is also very good for other values

of � and , the results being omitted for brevity.
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3 Robust inference using the Anderson-Rubin statistic

The previous section showed that weak identi�cation and persistence of the regressors in models

with learning render inference using conventional test statistics, such as the Wald statistic, unre-

liable. In this section, we propose a test statistic whose asymptotic distribution under the null is

�2-distributed without any assumptions on identi�cation or weak dependence in yt: Hence, infer-

ence based on this statistic is fully robust to violations or near violations of these conditions. The

proposed method is an application of the Anderson and Rubin (1949) statistic, which has been re-

cently revived by the weak instruments literature, see Dufour (1997), Staiger and Stock (1997). The

exact Anderson-Rubin (AR) statistic applies to a linear instrumental variable model with strongly

exogenous instruments and Gaussian independently and identically distributed (i.i.d.) data, but

Stock and Wright (2000) extended it to nonlinear models with dependent and heterogeneous data

that are estimable by the generalized method of moments (GMM), under mild regularity condi-

tions. Here we show how to obtain versions of the AR statistic for which the regularity conditions

in Stock and Wright (2000) can be veri�ed for models with learning. For a detailed description of

the Anderson-Rubin statistic, the reader is referred to the excellent surveys of Stock et al. (2002),

Dufour (2003) and Andrews and Stock (2005).

The main drawback of the AR test is that it is less powerful than the Wald test of H0 when

the regularity conditions for the latter hold, so the AR test trades o¤ power for robustness, see

Andrews and Stock (2005). Moreover, in linear models with i.i.d. data and a single endogenous

regressor, Andrews, Moreira, and Stock (2006) show that another identi�cation-robust statistic,

known as the conditional likelihood ratio (CLR) statistic proposed by Moreira (2003), dominates

the AR statistic in terms of power. Unfortunately, neither this, nor the score statistic proposed

by Kleibergen (2005) can be used when the regressors or the instruments are highly persistent,

because the conditions under which their asymptotic distribution was derived, see (Kleibergen,

2005, Assumption 1), cannot be veri�ed. In fact, for the model we examined in the previous

section, we saw that those conditions do not hold. However, we can still make valid inference using

the AR statistic because the conditions for its validity are milder than those for the CLR and the

score statistic.

Consider a generic model de�ned by the equation h (Yt; �0) = �t; where Yt denotes the data, � is

a vector of parameters, and �t is an unobserved process, which could be a vector, e.g., in a multiple-

equation model. Identifying assumptions are usually placed on the dynamics of the disturbance
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term, e.g., Et�1�t = 0 whenever �t is a shock. The model discussed in the previous section, see

equation (1), �ts in this framework, as do many popular dynamic stochastic general equilibrium

models. Using the over-identifying assumption Et�1�t = 0; we can identify the parameters by the

moment conditions EZth (Yt; �) for any vector of predetermined instruments Zt:

Consider now the problem of testing the hypothesis H0 : � = �0; against H1 : � 6= �0. Under the

null hypothesis, the disturbances �t of the model are identi�ed by the function h (Yt; �0) : Hence,

H0 implies H�
0 : EZt�t = 0: The AR statistic for H0 is then the Wald statistic for testing the

hypothesis H�
0 ; which can be computed by running a regression of �t (which is observable under

H0) on Zt and testing that the coe¢ cients of Zt are all zero, i.e.

AR (�0) =
1

T

 
TX
t=1

�tZ
0
t

! bV �1Z�

 
TX
t=1

Zt�t

!
(13)

where bVZ� is an estimator of the variance of T�1=2PT
t=1 Zt�t; such as White�s (1980) heteroskedas-

ticity consistent estimator, which is consistent under the assumption Et�1�t = 0 and some addi-

tional mild regularity conditions, see Nicholls and Pagan (1983).

Now, under the high level assumption that T�1=2
PT

t=1 Zt�t is asymptotically normal with

zero mean, the distribution of the AR statistic is, in large samples, �2 (k) under H0; where k is

the dimension of the instrument vector Zt: Stock and Wright (2000) discuss su¢ cient primitive

conditions to establish this result, but when Zt is highly persistent these conditions may not hold.

As we saw in the previous section, limit theory involving the persistent regressor is nonstandard,

and this has an impact on the AR statistic as well.5 Therefore, to avoid having to work out special

asymptotic theory for the AR statistic, we need to use in Zt processes for which the asymptotic

normality assumption for T�1=2
PT

t=1 Zt�t can be veri�ed. This includes predetermined variables

that are weakly dependent, but it excludes lags of the endogenous variable yt or its forecast yet ;

which depend on the recursive estimates at; and may therefore be highly persistent. In fact, a

set of valid instruments is the lags of the disturbance �t. This is motivated by the recent work

of Gorodnichenko and Ng (2007), who suggested a similar approach for developing tests that are

robust to misspeci�cation in the detrending method used. Since �t is a martingale di¤erence

sequence, the asymptotic normality of T�1=2
PT

t=j �t�t�j can be established under mild conditions

based on standard limit theory, see e.g., Hamilton (1994) or White (1984). So, by suitable selection

5 In the model we studied in section 2, we found that T�1=2
PT
t=1 at�1�t ) ��

R 1
0
K ;� (r) dW (r) ; which is non-

normal, see Proposition 1 and the Appendix.
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of instruments and the use of the AR statistic, we have turned a di¢ cult problem into a trivial one.

The above principle can be generalized to cover alternative assumptions on the time dependence

of the disturbances. In particular, suppose that the shock �t is assumed to be autocorrelated.

Clearly, some structure must be placed on the autocorrelation of �t for the model to be identi�ed,

as is true for any dynamic model that does not have only strictly exogenous regressors.6 So, suppose

one makes the (relatively common) assumption that shocks are autoregressive of order one, i.e.,

�t = ���t�1+"t; where "t is now the underlying martingale di¤erence process. The AR statistic (13)

can be easily adapted to deal with this alternative speci�cation. Simply run the regression of �t on

�t�1; :::; �t�m and any n additional instruments z2;t; and compute the Wald test for the hypothesis

that all coe¢ cients, except that on �t�1 are equal to zero. Under mild assumptions,7 the asymptotic

distribution of this statistic will be �2 (m+ n� 1) : That reasoning can, of course, be extended to �t
following any other autoregressive moving average (ARMA) process, as one sometimes encounters

in applied work, see e.g., Smets and Wouters (2007).

3.1 Simulations

We evaluate the �nite sample size and power properties of the proposed AR statistic and compare it

to the Wald statistic, using simulations of the hybrid NKPC model of in�ation. i.e. the model that

we use in our empirical application in Section 4. The present section provides a brief summary of

our simulation results which illustrate that our proposed method works well. Extensive simulation

results are available on request.

The hybrid NKPC model with indexation takes the form

�t =
�

1 + �%
�et+1 +

%

1 + �%
�t�1 +

�

1 + �%
xt +

�

1 + �%
"t; (14)

where �t denotes in�ation, xt is an observable forcing variable, and "t is a disturbance term.

Details of the model are given in the next section. The observable forcing variable xt is assumed

to follow a second-order autoregressive process xt = �1xt�1 + �2xt�2 + vt; where the shocks "t; vt

are independently and jointly normally distributed with zero mean, and variance matrix E"2t = �2" ;

6 It is particularly true for models with expectations, such as dynamic stochastic general equilibrium models, see
e.g., the examples discussed in Cochrane (2007a) and Beyer and Farmer (2007).

7For example, "t; z2;t are stationary and ergodic with �nite fourth moments and j��j < 1.
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E"tvt = �"v and Ev2t = 1: The rational expectation of �t+1 is given by

E (�t+1j�t�1; :::; xt; xt�1; :::) = �1�t�1 + �2xt + �3xt�1 (15)

where the parameters � = (�1; �2; �3)
0 are functions of the structural parameters, see Mavroeidis

(2005). We assume the PLM is given by (15), and � is estimated by CGLS, so that �et+1 is given

by:8

�et+1 = a1;t�1�t�1 + a2;t�1xt + a3;t�1xt�1 = at�1zt:

Our information assumptions and the fact that Et�1�t = 0 imply that the parameters of equa-

tion (14) can be estimated by two stage least squares (2SLS) using predetermined variables as

instruments. For the Wald statistic, we use the �rst two lags of �t and xt as instruments, while

the AR statistic is computed using two lags of �t and xt as instruments. We also allow for an un-

restricted constant in the estimation and we impose the restriction that � is known, as is common

in applied work. With this restriction, the NKPC can be written in the following linear form:

yt = %wt + �xt + "t (16)

where yt = �t � ��et+1, wt = �t�1 � ��t are both endogenous regressors. The parameter values in

the DGP are chosen so as to be representative of the estimates reported in the literature, e.g., Galí

and Gertler (1999), while the parameters of the forcing variable xt are calibrated to US data, see

Mavroeidis (2005) for details.

We �rst compare the �nite-sample distributions of the AR and Wald statistics for a joint test

on % and � under the null with their �2 (4) and �2 (2) asymptotic counterparts, respectively, using

the Kolmogorov-Smirnov statistic. Table 2 reports the results for di¤erent sample sizes T: The

distribution of the AR statistic does not di¤er signi�cantly from a �2 (4) for most sample sizes,

while the opposite is true for the Wald statistic.

Next, we study the coverage probabilities of con�dence intervals derived by inverting the Wald

and AR statistics. Table 3 displays the actual coverage probabilities for the Wald test of H0 : % = %0

at nominal levels of � = 75%, 90%, 95% and 99%. For simplicity, we assume � is known. The AR-

based con�dence sets have exact coverage, with only slight distortions in small samples. The Wald

8 In excluding �t from the information set used to forecast �t+1 we follow the vast majority of the literature, in
order to avoid the simultaneity induced by having �t on both sides of the model (14). This informational assumption
is used to simplify the simulations, and it actually makes no di¤erence to the empirical results on the NKPC reported
later.
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T Wald AR
100 0:2266�� 0:0194��

200 0:1325�� 0:0101
400 0:0906�� 0:0093
600 0:0712�� 0:0076
800 0:0631�� 0:0067
1000 0:0554�� 0:0038
10000 0:0148� 0:0070

Table 2: Kolmogorov-Smirnov (KS) tests of equality of the distribution of the AR and Wald
statistics to �2 (4) and �2 (2), respectively, under the joint null hypothesis that both % and � are
equal to their true values. The parameters in the DGP are � = 0:99,  = 0:01, % = 0:65, � = 0:15,
�" = 3, �"v = 0:1, �1 = 0:9 and �2 = 0. The number of Monte Carlo replications is M = 10000.
One asterisk denotes signi�cance of the KS test at the 5% level, two asterisks indicate signi�cance
at the 1% level, the critical values being 0.0136 and 0.0163, respectively.

Wald AR
T 75% 90% 95% 99% 75% 90% 95% 99%

100 48:7�� 63:0�� 70:4�� 82:0�� 73:1�� 88:5�� 94:0�� 98:6��

200 56:0�� 71:2�� 78:7�� 89:2�� 74:1� 89:4 94:4� 98:9
400 59:6�� 75:5�� 82:6�� 92:2�� 74:5 89:7 94:9 98:9
600 60:2�� 76:7�� 84:3�� 93:1�� 75:0 89:9 94:9 99:0
800 60:8�� 78:3�� 85:4�� 94:5�� 75:2 89:6 94:5� 99:0
1000 61:5�� 78:2�� 85:7�� 94:5�� 75:0 90:0 94:9 99:0
10000 66:3�� 83:4�� 90:4�� 97:1�� 75:6 90:3 95:1 99:0

Table 3: Coverage probabilities of the Wald and the AR-based con�dence sets with con�dence levels
75%, 90%, 95% and 99% for the null hypothesis that % is equal to its true value. The parameter
values in the DGP are � = 0:99,  = 0:01, % = 0:65, � = 0:15, �" = 3, �"v = 0:1, �1 = 0:9 and
�2 = 0. The number of Monte Carlo replications is M = 10000. One or two asterisks indicate
signi�cance of the coverage probability at the 5% and 1% level, respectively, as measured by its
asymptotic Normal distribution.

always undercovers, which means that the usual standard error bands around the point estimate

are too tight.

Figure 4 shows the power curves of the Wald and AR tests of the hypothesis H0 : % = %0 at

the 5% nominal level of signi�cance for sample sizes T = 100 and 200. As we explain in the next

section, the parameter % measures the degree of indexation of prices to past in�ation. It is evident

that the AR test has good power, especially over the theoretically relevant parameter regions. In

particular, it rejects with high probability the null hypothesis of % = 0 (no indexation), when

indexation is substantial, and thus, it can provide reliable evidence on this issue of considerable

interest in applied work. The AR test does not have good power for high values of % against higher

alternatives. This means the test has di¢ culty distinguishing between a high degree and complete
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Figure 4: Power curves of the Wald (dotted line) and AR (solid line) tests for T = 100 (left column),
and T = 200 (right column). The null hypothesis is H0 : % = %0, where %0 = 0 (top row), %0 = 0:5
(middle row), and %0 = 1 (bottom row), and it is superimposed by means of a vertical line. The
value of % under the alternative is shown by the abscissa. The other parameter values in the DGP
are: � = 0:99,  = 0:01, � = 0:15, �" = 3, �"v = 0:1, �1 = 0:9, �2 = 0. The number of MC
replications is M = 10000 and the nominal level of signi�cance is 5%.

indexation.

Finally, as we discussed in section 2.1, higher values of the gain parameter, which are inter-

pretable as a slower speed of learning, generate more variability of the adaptive forecasts relative

to the corresponding RE forecast, and we expect this to have a positive impact on the accuracy

of inference on the structural parameters. Figure 5 gives evidence of this e¤ect through a direct

comparison of the power function of the AR statistic at di¤erent values of  and T . Speci�cally,

the �gure depicts the contour plots of the power function for the null hypothesis H0 : % = 0 against

four alternatives, with respect to  and T: It is clear that power increases in  as well as T , and,

moreover, that  plays a role similar to the sample size, in that the same power can be achieved

with a lower value of T and a higher value of :
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Figure 5: Power of the 5% level AR test of the null hypothesis H0 : % = 0 against the four
alternatives: % = 0:3, 0:4, 0:5 and 0:6. Each panel shows contours of the power function in terms
of  (the ordinate) and T (the abscissa). Power increases in the north-easterly direction in each of
the four panels. The other parameter values are: � = 0:99, � = 0:15, �" = 3, �"v = 0:1, �1 = 0:9,
�2 = 0. The number of MC replications is M = 10000.
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4 Application: the new Keynesian Phillips curve

4.1 Model and empirical issues

The NKPC is a purely forward-looking model of in�ation dynamics which takes the form

�t = �Et�t+1 + �bst + ut (17)

where �t denotes in�ation, the forcing variable bst is a measure of real marginal costs in deviation
from their steady state and ut is an unobserved disturbance. The deep parameters of the model

are the discount factor � and the degree of price stickiness #, which is the probability that a �rm

will be unable to change its price in a given period. The slope of the Phillips curve � is function of

� and #; � = (1� #) (1� #�) =�:

Many studies report di¢ culties in �tting model (17) to US data when expectations are modelled

as rational, see, for instance, Fuhrer and Moore (1995), Gali and Gertler (1999), Rudd and Whelan

(2005, 2006). In particular, the model predicts that the dynamics of in�ation should be explained

solely by the dynamics of marginal costs, but this does not turn out to be the case with US data.

In response to this empirical failure, the baseline purely forward-looking speci�cation (17) has been

extended to include lagged in�ation on the right hand side. For example, assuming that a fraction

% of prices that cannot be reoptimized are indexed to past in�ation, the model becomes

�t = �Et (�t+1 � %�t) + %�t�1 + �bst + ut: (18)

see Woodford (2003, ch. 3 sec. 3.2) for details. Notably, the hybrid NKPC (18) nests the pure model

(17) when % = 0: The other polar case of complete indexation, % = 1, is often used in empirical

studies, see, e.g., Christiano, Eichenbaum, and Evans (2005).9 Another common approach to

introducing additional dynamics to the pure NKPC model (17) is to suppose that the unobservable

cost push shock ut is autocorrelated, as in Clarida, Gali, and Gertler (1999).10 Yet another source

of in�ation persistence are time delays in the introduction of new prices. With a delay of d quarters,

9Galí and Gertler (1999) provided an alternative derivation of the NKPC, based on the idea that some fraction of
�rms set prices according to a backward-looking rule of thumb.. As Woodford (2003, p. 217) notes, the two models
have identical implications in the limiting case � = 1.
10There are also studies that use both indexation and autocorrelated shocks, e.g., Smets and Wouters (2007).
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the NKPC (18) becomes instead

�t = �Et�d (�t+1 � %�t) + %�t�1 + �Et�dbst + ut (19)

see Woodford (2003, p. 217).

Recently, Milani (2005, 2007) argued that if the assumption of rational expectations is replaced

by some form of boundedly rational expectations, the pure NKPC model �ts the data without

the need to make potentially ad hoc assumptions to generate additional sources of persistence.

Speci�cally, if in�ation expectations are formed recursively by CGLS, they will depend on past

data more than they would under rational expectations. Using OLS and Bayesian methods, Milani

found that indexation is not statistically signi�cantly di¤erent from zero.

Since our focus is primarily on the �t of the NKPC, we take a limited-information approach,

following Galí and Gertler (1999) and Sbordone (2002). As Woodford (2003) explains, this approach

makes weaker assumptions than full-information methods about the determinants of marginal costs,

and is therefore more robust to misspeci�cation of other parts of the system. Moreover, unlike

Bayesian inference, our approach does not require the speci�cation of the distribution of the shocks.

Of course, weaker assumptions imply fewer identifying restrictions, and thus robustness comes at

the cost of lower accuracy of inference. However, our results show, in line with the simulation

evidence reported earlier, that our limited-information analysis is powerful enough to uncover new

evidence on the empirical �t of the NKPC under learning, and our tests are highly informative

about certain parameters of the model.

In our analysis we �x the discount factor � to 0.99. This assumption simpli�es inference on the

other three key parameters of the model %, # and the gain parameter, which are admittedly the

more interesting ones. We note that our results remain robust if � is unrestricted.

Data Our estimation results are based on quarterly US data that cover the period 1960:Q2 to

2007:Q3. Following Galí and Gertler (1999) and Sbordone (2002), we derive our measure of bst
assuming it is proportional to the log of the labor share.11 The factor of proportionality depends

on assumptions about factor markets and is typically calibrated. We set it to the value used by Galí

and Gertler (1999), following the method of Sbordone (2002), so that our results are comparable to

theirs.12 In�ation is measured by the �rst di¤erence in the logarithm of the (seasonally adjusted)
11We use the data reported by the Bureau of Labor Statistics (series ID: PRS85006173).
12Speci�cally, we set it to (1� !�)�1 where � is the elasticity of substitution between di¤erentiated goods and

! = 1� 1=�n; where �n is the elasticity of output with respect to labor in the production function. The parameters
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implicit GDP de�ator. We also use the Federal Funds rate as an additional instrument.

4.2 Results for the baseline speci�cation

Our baseline speci�cation is the hybrid NKPC (18) with expectations determined by perpetual

learning, that is, CGLS. To close the model, we need to specify the PLM agents use to derive

their forecasts. We assume the PLM is a vector autoregression of order p, VAR(p) in in�ation and

the labor share. This nests the simple speci�cation of a �rst order autoregression for in�ation,

used, amongst others, in Milani (2005) and Orphanides and Williams (2005b). Also, under certain

conditions on the law of motion of the labor share, it also nests the rational expectations equilibrium,

as explained in Evans and Honkapohja (2001). This approach is also common in the literature, see

Bullard and Eusepi (2005), Milani (2007) and Orphanides and Williams (2005a). The number of

lags p in the VAR in our baseline speci�cation is set to one based on information criteria, but we

also investigate the robustness of the results to di¤erent choices of p:

Agents estimate the coe¢ cients of the PLM recursively using the SRA (3)-(4) with constant

gain parameter :13 Their h-step ahead forecasts are then derived in the usual way.

Our identi�cation assumption in the baseline model is that the disturbance term ut is uncorre-

lated with its own lags and any other predetermined variables. This is identical to the assumption

used in Galí and Gertler (1999), Sbordone (2002) and Milani (2005),14 but it can be easily relaxed

to allow for exogenous persistence in the cost push shock, e.g., ut = �uut�1+ "t:We investigate the

robustness of the results to this as well as more general alternatives.

We collect the parameters of interest in a vector � = (#; %; )0 (recall that � is �xed to 0.99), and

use the notation �et+1 () to denote explicitly the dependence of �
e
t+1 on :We allow the parameters

# and % to take values that are consistent with the underlying theory, namely 0 < # � 1 and

0 � % � 1: In principle,  could take any value between zero and one but we put an upper bound

at 0.1. This is motivated by the assumptions in Milani (2007), but our results are robust to using

are calibrated such that the markup � = �= (� � 1) is 1.1 (10%) and ��n = 2=3; following Gali and Gertler (1999).
13We initialize the learning algorithm by

Rt0 = 

t0�1X
i=0

(1� )j zt�iz0t�i; at0 = R
�1
t0 

t0�1X
i=0

(1� )j zt�iyt:

where in yt = (�t; bst)0 and zt = (1;�t�1; : : : ; �t�p; bst�1; : : : ; bst�p); using presample data. Carceles-Poveda and Gian-
nitsarou (2007) discuss this and other alternative initialization schemes and show that the choice of initialization is
unimportant for CGLS. Indeed, alternative initializations do not make material di¤erence to our results.
14 In their estimation, Galí and Gertler (1999) assumed rational expectations and replaced �et+1 by its realization

�t+1; thus causing the residual in the estimated model to be a moving average of order 1. This is consistent with the
disturbance in the NKPC being serially uncorrelated.
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higher upper bounds on .15 We exclude zero, since �et+1 cannot be computed at zero using the

CGLS algorithm, as explained in Carceles-Poveda and Giannitsarou (2007), though it can be argued

that, provided � < 1, �et+1 () converges to the rational expectation of �t+1 as  goes to zero, see

Milani (2007) or Orphanides and Williams (2005b).

We compute the AR statistic at �; AR (�) ; using the formula (13) corrected for an unrestricted

constant, where the residuals �t are given by the following function of the data and the parameters:

ht (�) = �t � ��et+1jt ()� % (�t�1 � ��t)�
(1� #) (1� �#)

#
bst: (20)

We employ four lags of the residuals ht (�) the labor share and the Fed Funds rate as instruments,

and use White�s (1980) heteroskedasticity consistent estimator for the variance in the AR statistic

(13), in order to account for time-variation in the volatility of the shocks, given the evidence

reported in the literature, see Sims and Zha (2006).

We construct (1� ')-level con�dence sets on the parameters � by inverting a '-level test based

on the AR statistic. This is done by evaluating AR (�) over the entire parameter space and collecting

all the values of � such that AR (�) is less than the 1�' quantile of the �2 (k) distribution, where k

is the number of instruments (twelve in the baseline model). If the con�dence set is empty, it means

that there is no � for which the moment conditions are satis�ed, i.e., the model is misspeci�ed.

Thus, the p-value (i.e., tail probability) corresponding to minimum value of AR (�) serves as a

measure and formal test of the model�s �t. Moreover, the �best-�tting value�b� = argmin� AR (�)
is the continuously updated GMM estimator (CUE) of �, since AR (�) can be interpreted as a

continuously updated GMM objective function, see Hansen, Heaton, and Yaron (1996).

We start by assessing the �t of the baseline model (18). Our main �nding is that the baseline

model does not �t the data. The p-value associated with least rejected value of � is 0.0002, indicating

rejection at the 0.02% level of signi�cance. The failure of the baseline model to match the data is

robust to alternative speci�cations of �et+1. Table 4 reports such robustness checks and shows that,

whether �t is included in the forecast of �t+1 or not, and whether higher order VAR speci�cations

are used in the PLM, the p-value of the minimum AR statistic remains well below the 5% level of

signi�cance. As a further robustness check against potential misspeci�cation of agents�forecasting

model, we report the �t of the baseline model when �et+1 is measured using data from the Survey

15Milani�s prior distribution restricts the gain parameter to be less than 0.1 with probability 0.999. Most other
studies �x or calibrate the gain parameters to values well below 0.1, and typically around 0.02. Our results are robust
to using an upper bound of 0.15 or 0.2:
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Baseline speci�cation: minAR (�) = 37:03; p-value�: 0:0002
Alternative assumptions about �et+1

minAR (�) p-value�

�t included in �et+1 31.11 0.002
PLM is VAR(2) 29.37 0.003
PLM is VAR(3) 24.63 0.017
PLM is VAR(4) 26.11 0.010

Alternative measures of �et+1
minAR (�) p-value� Available sample

Greenbook forecasts 41.65 0.000 1967q1-1995q4
Survey of prof. forecasters 58.80 0.000 1970q2-2007q3

�p-value is based on �2 (12) distribution.

Table 4: Fit of the baseline NKPC with indexation

of Professional Forecasters, or real-time Greenbook data.16 The results reported in Table 4 show

that the baseline model remains resoundingly rejected.

A possible cause of misspeci�cation is variation in the parameters of the model over time, such

as a structural break. Parameter instability will result in a violation of the moment conditions

of a model that incorrectly assumes the parameters are constant over the entire sample. Perhaps

the simplest way to account for variation in the parameters is to check the �t of the model over

subsamples. Looking at subsamples of ten years each, the results remain the same. In all of the

subsamples the model is rejected at the 5% level.
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Figure 6: Correlogram of the residuals of the baseline NKPC model with indexation

16The Greenbook data were kindly provided by Orphanides, and are the data used in Orphanides (2004). The
survey data are the median one-year-ahead forecasts of in�ation compiled by the Philadelphia Fed.
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p minAR (�) p-value d.f.
1 34.00 0.0004 11
2 32.38 0.0003 10
3 32.35 0.0002 9
4 12.45 0.1322 8
Shocks: ut � AR (p).
p-value is based on �2 (df) dist.

Table 5: Fit of the NKPC with indexation and autocorrelated shocks

A look at the residuals of the model sheds light onto the possible sources of misspeci�cation.

Figure 6 plots the correlogram of the residuals up to twelve quarters. It is immediately apparent that

the residuals exhibit signi�cant autocorrelation at lag four that is not explained by the baseline

speci�cation of the model. Moreover, the structure of autocorrelation is such that it cannot be

captured by modelling the residuals as AR(1). Table 5 reports tests of the �t of the model with

alternative assumptions about the autocorrelation of the shock ut in the NKPC (18). Consistently

with the correlogram in Figure 6, the AR statistic remains signi�cant at the 1% level unless ut

is modelled as AR(4). ARMA models for ut may be used as alternatives to the autoregressive

speci�cation. However, it is clear from the picture that an ARMA(1,1) speci�cation, as for example,

in Smets and Wouters (2007), is not �exible enough to capture the serial correlation pattern of the

residuals.17 The type of model for ut that is required to do so is not one that we have seen used

in applied work. We therefore consider time delays in price changes as an alternative source of

persistence in in�ation, see equation (19), which is more appealing from a theoretical perspective

than ad hoc assumptions about the autocorrelation of the errors.

4.3 Results for a model with time delays in price changes

We now turn to the NKPC with indexation and time delays of d quarters, which is given by

equation (19). Preliminary estimates, reported in Table 7 of the appendix, show that this model

is still unable to �t the data over the full sample. However, it appears that the model with d = 4

and AR(1) shocks �ts the data when the parameters are allowed to be di¤erent over subperiods.

In fact, the only parameter that appears to vary signi�cantly over time is the gain parameter.

So, a model estimated over the entire sample that allows for changes only in the gain parameter

su¢ ces to �t the data. The gain parameter is interpretable as measuring the speed of learning,

17We are not suggesting that the version of the NKPC in Smets and Wouters (2007) su¤ers from misspeci�cation of
the kind that is discussed here, since their NKPC is di¤erent from our speci�cation. We mention Smets and Wouters
only as an exmple of an empirical study that models the disturbance in the NKPC as ARMA(1,1).
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because higher gains are associated with faster discounting of past data in the estimation of the

PLM. One may expect to see higher discounting of past observations over periods of instability,

during which the use of constant parameter reduced-form models for forecasting is susceptible to

the Lucas (1976) critique.

The above considerations motivate us to consider three periods of similar length across which the

gain parameter may be di¤erent: 1960q1-1973q3, 1973q4-1987q3 and 1987q4-2007q3 The second

period starts at the onset of the �rst oil price shock, covers the great in�ation of the seventies

and the subsequent disin�ation of the early eighties, and ends in 1987q3, when Greenspan became

the chairman of the Fed. The �rst and third periods are characterized by relative macroeconomic

stability. The gain parameter is allowed to be di¤erent across periods, but constant within each

period:

t =

8>>><>>>:
1; before 1973q4

2; 1973q4 to 1987q3

3; after 1987q3

(21)

We estimate the NKPC (19) with indexation and time delay of four quarters, d = 4, and an

AR(1) shock, allowing for a break in the gain parameter as in (21) �the model does not �t with

d < 4 or serially uncorrelated shocks. Table 6 reports the estimation results. The p-value associated

with minAR (�) is 0.3, indicating nonrejection at conventional signi�cance levels. Thus, con�dence

sets on � derived by inverting the AR statistic are non-empty at conventional levels. Figure 7

reports two-dimensional con�dence sets on the two pairs of parameters (#; %) and (1; 2) : The

shaded areas contain �-level con�dence sets for each pair, derived by the projection method, see

Dufour and Taamouti (2005).

The point estimates reported in Table 6 suggest that the gain parameter is di¤erent across

the three periods. Speci�cally, the gain parameter is high during the volatile period of 1973 to

1987, and is small before and after that period. In fact, the estimates of  for the �rst and last

period, b1 and b3 are identical, so we impose this restriction in the ensuing analysis. We can assess
whether the di¤erence in the gain parameters 1 and 2 is statistically signi�cant using the AR

statistic. The p-value associated with the hypothesis 1 = 2 = 3 is 0.03, showing that the change

in the gain parameter is indeed statistically signi�cant at the 5% level. This is also evident from

the con�dence set on (1; 2) reported in the right panel of �gure 7. Even though the con�dence

set is wide, showing that the gain parameters cannot be estimated very precisely, they are still

informative about a break in the gain parameter, since the 95%-level con�dence set does not cross
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Parameter Estimate 95% CI 90% CI

# 0.65 [0:38; 1] [0:42; 1]
% 0.14 [0; 0:46] [0; 0:40]
1 0.01 [0:01; 0:06] [0:01; 0:05]
2 0.10 [0:02; 0:1] [0:03; 0:1]

2 � 1 0.09 [0:01; 0:09] [0:02; 0:09]

minAR: 12.93, p-value: 0.3 [�2 (11)]

Table 6: The NKPC with time delays, autocorrelated shocks and structural change in the gain
parameter: 2 is the value of the gain parameter in the period 1973q4-1987q3, and 1 is the value
before and after that period.

the 45 degree line.

We now look at the estimates of the two structural parameters # and %. Consistently with Milani

(2007), the indexation parameter % is not signi�cantly di¤erent from zero. Its point estimate is

low (0.14) compared to other studies, but the con�dence interval associated with it is wide, [0; 0:4].

Still, the con�dence interval is small enough to reject a model with full indexation. The parameter

governing the degree of price stickiness, #; is notably very imprecisely estimated. Virtually all

the parameter estimates reported in the literature �t within the 90% con�dence interval [0:42; 1]..

Moreover, we cannot reject the null hypothesis that the Phillips curve is completely �at, # = 1:
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Figure 7: Two-dimensional con�dence sets for (�; %) (left) and (1; 2) (right) based on the Anderson
Rubin statistic. The model is the NKPC with indexation, four-quarter time delay in price changes
and AR(1) shock. Instruments include four lags of the shocks, the labor share and the Fed Funds
rate, and White�s HC estimator is used.

The above inference can be sharpened considerably by using more instruments, without altering
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any of the conclusions reached above. When we use four additional lags of the residuals of the model

as instruments, the con�dence sets and intervals are generally tighter, and we can reject the null

hypothesis of a constant gain across periods at the 0.1% level of signi�cance.

4.4 Discussion

One important message of our analysis is that standard versions of the NKPC are unable to �t

the dynamics in in�ation, and this is as true under learning as it is under rational expectations,

the latter shown, amongst others, by Rudd and Whelan (2005, 2006). In particular, the model

fails to account for signi�cant fourth order autocorrelation in in�ation. To capture this feature of

in�ation dynamics, we considered a simple extension of the model that allows for time delays in

price changes. There are certainly other ways of modelling dependence at the annual frequency.

Time delays in price changes may be a relevant feature of most markets, but a delay of four quarters,

which is needed for the NKPC to �t the data, may seem unrealistically long. It seems plausible

that such dependence may be the result of wage contracts being negotiated on an annual basis,

so, modelling wage and price setting behavior jointly may provide a more appealing explanation of

this feature of the data.

Another important message of our analysis concerns the speed of learning. Unlike earlier work,

we �nd evidence against a model of learning with small and constant gain. In particular, our results

show that the gain parameter varies over time and is higher in periods of macroeconomic instability.

Our attempt to model this time variation in the gain parameter is rather limited, of course, and is

not intended as a structural alternative to CGLS. However, it is su¢ cient to provide reduced-form

evidence against a constant gain speci�cation of learning dynamics. Our empirical results suggest

that it may be appropriate to make the gain parameter endogenous, as for instance in Marcet and

Nicolini (2003). Such alternatives can be studied easily using the econometric method that we

propose in this paper.

A Appendix

Proof of proposition 1. Solving equation (10) in terms of f�tgTt=1 and a0; we obtain:

at � � = (1� (1� �) )t (a0 � �) + 
t�1X
i=0

(1� (1� �) )i �t�i
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Substituting for � and  using  =  =
p
T and 1� (1� �)  = exp (�=T ), this can be written as:

at � � = e�t=T (a0 � �) +
 p
T

t�1X
i=0

e�i=T �t�i

As T !1; then

T�1=2
[Tr]X
t=1

�t ) ��W (r)

 p
T

[Tr]�1X
i=0

e�i=T �[Tr]�i )  ��J� (r)

for 0 � r � 1; see (Phillips, 1987, Lemma 1), where J� is an Ornstein-Uhlenbeck di¤usion with

J� (0) = 0; and parameter �; driven by the Brownian motionW (r) :Moreover, since e�r�e�t=T ! 0

as T !1 uniformly in 0 � r � 1; equation (11) follows by Slutsky�s formula for weak convergence.

Now, we turn to the OLS estimators:

24 b� � �b� � �
35 =

24 PT
t=1 a

2
t�1

PT
t=1 at�1PT

t=1 at�1 T

35�1 24 PT
t=1 at�1�tPT
t=1 �t

35 ; or

24 pT �b� � ��p
T
�b� � ��

35 =
0@24 T�1

PT
t=1 a

2
t�1 T�1

PT
t=1 at�1

T�1
PT

t=1 at�1 1

351A�1 24 T�1=2
PT

t=1 at�1�t

T�1=2
PT

t=1 �t

35 (22)

SinceK ;� (r) is adapted toW (r) ; it follows that
PT

t=1 at�1
�tp
T
) ��

R 1
0 K ;� (r) dW (r) :Moreover,

application of the continuous mapping theorem shows that T�1
PT

t=1 at�1 )
R 1
0 K ;� (r) dr and

T�1
PT

t=1 a
2
t�1 )

R 1
0 K

2
 ;� (r) dr, and hence, the result (12) follows.
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shock: serially uncorrelated AR(1)
d minAR (�) p value minAR (�) p value

1 33.20 0.0009 30.37 0.0014
2 42.77 0.0000 37.23 0.0001
3 41.25 0.0000 48.05 0.0000
4 34.45 0.0006 21.28 0.0306

Table 7: Fit of the NKPC with time delays

References

Anderson, T. W. and H. Rubin (1949). Estimation of the parameters of a single equation in a

complete system of stochastic equations. Ann. Math. Statistics 20, 46�63.

Andrews, D. W. and J. H. Stock (2005). Inference with weak instruments. NBER Technical

Working Papers 0313, National Bureau of Economic Research, Inc.

Andrews, D. W. K., M. J. Moreira, and J. H. Stock (2006). Optimal two-sided invariant similar

tests for instrumental variables regression. Econometrica 74 (3), 715�752.

Beyer, A. and R. E. A. Farmer (2007). Testing for indeterminacy: An application to U.S. monetary

policy: Comment. American Economic Review 97 (1), 524�529.

Bray, M. M. and N. E. Savin (1986). Rational expectations equilibria, learning, and model speci�-

cation. Econometrica 54 (5), 1129�1160.

Bullard, J. B. and S. Eusepi (2005). Did the great in�ation occur despite policymaker commitment

to a taylor rule? Review of Economic Dynamics 8, 3244�359.

Carceles-Poveda, E. and C. Giannitsarou (2007). Adaptive learning in practice. Journal of Eco-

nomic Dynamics and Control 31, 2659�2697.

Chan, N. H. and C. Z. Wei (1987). Asymptotic inference for nearly nonstationary ar(1) processes.

Annals of Statistics 15 (3), 1050�63.

Christiano, L. J., M. Eichenbaum, and C. Evans (2005). Nominal rigidities and the dynamic e¤ects

of a shock to monetary policy. J. Political Economy 113, 1�45.

Clarida, R., J. Gali, and M. Gertler (1999). The science of monetary policy: A new keynesian

perspective. Journal of Economic Literature 37 (4), 1661�1707.

29



Cochrane, J. H. (2007a). Identi�cation with taylor rules: A critical review. NBER Working Papers

13410, National Bureau of Economic Research, Inc.

Cochrane, J. H. (2007b). In�ation determination with taylor rules: A critical review. NBER

Working Papers 13409, National Bureau of Economic Research, Inc.

Dufour, J.-M. (1997). Some impossibility theorems in econometrics with applications to structural

and dynamic models. Econometrica 65 (6), 1365�1387.

Dufour, J.-M. (2003). Identi�cation, weak instruments and statistical inference in econometrics.

Canadian Journal of Economics 36 (4), 767�808. Presidential Address to the Canadian Economics

Association.

Dufour, J.-M. and M. Taamouti (2005). Projection-based statistical inference in linear structural

models with possibly weak instruments. Econometrica 73 (4), 1351�1365.

Evans, G. W. and S. Honkapohja (2001). Learning and Expectations in Macroeconomics. Princeton:

Princeton University Press.

Evans, G. W. and S. Honkapohja (2008). Expectations, learning and monetary policy: An overview

of recent rersearch. Discussion Paper 6640, CEPR.

Fourgeaud, C., C. Gourieroux, and J. Pradel (1986). Learning procedures and convergence to

rationality. Econometrica 54 (4), 845�68.

Galí, J. and M. Gertler (1999). In�ation dynamics: a structural econometric analysis. Journal of

Monetary Economics 44, 195�222.

Gorodnichenko, Y. and S. Ng (2007). Estimation of dsge models when the data are persistent.

Technical report. Preseented at NBER Summer Institute.

Hamilton, J. D. (1994). Time series analysis. Princeton, NJ: Princeton University Press.

Hansen, L. P., J. Heaton, and A. Yaron (1996). Finite sample properties of some alternative GMM

estimators. Journal of Business and Economic Statistics 14, 262�280.

Judge, G., R. Hill, W. Gri¢ ths, H. Lutkepohl, and T.-C. Lee (1985). The Theory and Practice of

Econometrics. New York, U.S.A.: Wiley.

30



Kleibergen, F. (2005). Testing parameters in GMM without assuming that they are identi�ed.

Econometrica 73 (4), 1103�1123.

Lucas, R. E. (1973). Some international evidence on output-in�ation tradeo¤s. American Economic

Review 63 (3), 326�334.

Lucas, R. E. J. (1976). Econometric policy evaluation: a critique. In K. Brunner and A. Meltzer

(Eds.), The Philips Curve and Labor Markets., Carnegie-Rochester Conference Series on Public

Policy. Amsterdam: North-Holland.

Marcet, A. and J. P. Nicolini (2003). Recurrent hyperin�ations and in�ation. Americon Economic

Review 93, 1476�1498.

Mavroeidis, S. (2005). Identi�cation issues in forward-looking models estimated by GMM with an

application to the Phillips Curve. Journal of Money Credit and Banking 37 (3), 421�449.

Milani, F. (2005). Adaptive learning and in�ation persistence. Working Papers 050607, University

of California-Irvine, Department of Economics.

Milani, F. (2007). Expectations, learning and macroeconomic persistence. Journal of Monetary

Economics 54 (7), 2065�2082.

Moreira, M. J. (2003). A conditional likelihood ratio test for structural models. Econometrica 71 (4),

1027�1048.

Nicholls, D. F. and A. R. Pagan (1983). Heteroscedasticity in models with lagged dependent

variables. Econometrica 51 (4), 1233�42.

Orphanides, A. (2004). Monetary policy rules, macroeconomic stability, and in�ation: A view from

the trenches. Journal of Money, Credit and Banking 36 (2), 151�75.

Orphanides, A. and J. C. Williams (2004). Imperfect knowledge, in�ation expectations, and mone-

tary policy. In B. Bernanke and M. Woodford (Eds.), The In�ation Targeting Debate. University

of Chicago Press.

Orphanides, A. and J. C. Williams (2005a). The decline of activist stabilization policy: Natural rate

misperceptions, learning, and expectations. Journal of Economic Dynamics and Control 29 (11),

1927�1950.

31



Orphanides, A. and J. C. Williams (2005b). In�ation scares and forecast-based monetary policy.

Review of Economic Dynamics 8 (2), 498�527.

Phillips, P. C. B. (1987). Towards a uni�ed asymptotic theory for autoregression. Biometrika 74 (3),

535�547.

Primiceri, G. E. (2006). Why in�ation rose and fell: Policymakers�beliefs and us postwar stabi-

lization policy. Quarterly Journal of Economics 121 (3), 867�901.

Rudd, J. and K. Whelan (2005). New tests of the new-keynesian phillips curve. Journal of Monetary

Economics 52 (6), 1167�1181.

Rudd, J. and K. Whelan (2006). Can rational expectations sticky-price models explain in�ation

dynamics? American Economic Review 96 (1), 303�320.

Sargent, T. J. (1993). Bounded Rationality in Macroeconomics. Oxford: Clarendon Press.

Sbordone, A. M. (2002). Prices and unit labor costs: a new test of price stickiness. Journal of

Monetary Economics 49, 265�292.

Sims, C. A. and T. Zha (2006). Were there regime switches in u.s. monetary policy? American

Economic Review 96 (1), 54�81.

Smets, F. and R. Wouters (2007). Shocks and frictions in us business cycles: A bayesian dsge

approach. AER 97 (3), 586�606.

Staiger, D. and J. Stock (1997). Instrumental variables regression with weak instruments. Econo-

metrica 65, 557�586.

Stock, J. H. and J. H. Wright (2000). GMM with weak identi�cation. Econometrica 68 (5), 1055�

1096.

Stock, J. H., J. H. Wright, and M. Yogo (2002). GMM, weak instruments, and weak identi�cation.

Journal of Business and Economic Statistics 20, 518�530.

White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for

heteroskedasticity. Econometrica 48 (4), 817�38.

White, H. (1984). Asymptotic Theory for econometricians. New York: Academic Press.

32


