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Abstract

Models of optimal monetary policy give rise to restrictions on conditionally expected variables
such as in�ation and the output gap. These conditions have a very natural interpretation. The
central bank uses its policy instrument(s) to ensure a weighted combination of its forecasts of the
target variables are consistent with its policy objectives. This suggests a simple methodology for
testing whether the behavior of central banks is consistent with models of optimal monetary policy.
Estimate a central bank�s optimality conditions or Euler equations and test whether they hold at
di¤erent horizons, i.e. with respect to di¤erent information sets. In this paper we examine whether
the predictions of the standard New Keynesian model of optimal monetary policy are satis�ed for
Australia, Canada and the US. Our results suggest that central banks in all three countries are
�exible in�ation targeters and that their behavior is more consistent with optimal policy under
commitment rather than with discretionary optimization.

JEL Nos: E31, E58.

Corresponding Author: Glenn Otto

Email Contact: g.otto@unsw.edu.au

1



1 Introduction

In�ation targeting was initially developed by central banks as a credible and transparent means of
implementing monetary policy. It can be described by three principles: (1) a numerical target for
in�ation; (2) forward-looking policy decisions; and (3) transparency and accountability for policy
decisions. Subsequent theoretical research has recast in�ation targeting as an optimal monetary
policy rule; that is, as the outcome of a central bank setting monetary policy to maximize social
welfare. Woodford (2003) provides a detailed treatment of the issues and models.

Optimal monetary policy can be analysed in terms of instrument rules and targeting rules. An
instrument rule is a function linking controllable policy instruments (such as the Federal Funds
rate) to current economic conditions. The Taylor rule is a well-known example of an instrument
rule, although it is not necessarily an optimal policy rule (Taylor, 1993). In general instrument
rules can be atheoretical statistical-based models (Clarida,Gali

0
and Gertler, 1998) or they can be

an optimal interest rate rule that is implied by solving an optimization problem for the central
bank (Dennis, 2006).

Svensson (2003) is a strong advocate of the use of optimal targeting rules. A speci�c targeting
rule is an optimality condition for a central bank implied by a speci�c objective function and a
model of the economy. It essence it is an Euler equation for the central bank. Svensson (2005)
draws an analogy with the Euler equation for optimal consumption. Svensson (2003, 2005) and
McCallum and Nelson (2005) discuss the relative merits of each approach for the implementing
monetary policy.

While there is a large literature on estimating and evaluating interest rate rules, relatively little
empirical research has directly focused on estimating and testing optimal targeting rules. Favero
and Rovelli (2003) is the only paper we are aware of that employs an Euler equation approach. In
this paper we examine whether the optimal targeting rules implied by the basic forward-looking
New Keynesian model are satis�ed in the data. In order to keep the Euler equations tractable we
initially assume that only in�ation-target deviations and output gap deviations enter into central
bank�s loss functions. The validity of this assumption can be tested in a straightforward manner.
The model is tested using data for Australia, Canada and the United States (US). The �rst two
of these countries have o¢ cially adopted policies of in�ation targeting. In contrast the US does
not o¢ cially pursue in�ation targeting. Our primary objective is to see whether the theories of
optimal monetary policy describe actual policy behavior. Were this to be true, then these models
are arguably useful tools for analysis. A further objective is to explore how policy behavior departs
from predicted optimal behavior, which may provide information as to how monetary policy might
be improved, or as to how models of monetary policy might be improved.

A particular focus of our analysis concerns the horizon over which central banks choose to target
in�ation. Central banks often couch in�ation targets in terms of the medium term, say 1-2 years.
Implicit in this type of target is an acceptance that the target may not be met in the near-run.
Theory, however, suggests that optimal policy should be as focused on the nearer term. This is
made most explicit in the discussion in Woodford (2004). Finally we also examine the issue of
whether central banks appear to engage in discretionary optimization or commitment.
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2 Theory

Models of optimal monetary policy in New Keynesian environments typically provide conditions
restricting the conditionally expected path of variables targeted by the central bank. As a very
simple example, consider a central bank that uses a policy instrument to target only in�ation �
a pure in�ation target. Given an understanding of the underlying economy, the central bank will
adjust its policy instrument to ensure that in�ation will not deviate from target. Since in most
instances, the central bank does not have immediate control of in�ation, it will in fact operate to
ensure that expected in�ation � at an horizon for which it can control in�ation � will not di¤er
from target. If we suppose for the moment that relative to time t, the horizon under its control is
t+ j; j � k for some k, then optimal policy should ensure;

Et(�t+j � ��) = 0 j � k (1)

where �t+j is in�ation at time t+ j. A condition like (1) arises in a standard New Keynesian model
of optimal monetary policy for a central bank that is concerned only about in�ation, Gali
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(2008).

In most presentations of conditions such as (1), the focus is on the single horizon that is under the
control of the central bank. For example, if we suppose that the structure of the economy is such
that k = 2, the focus would be;

Et(�t+2 � ��) = 0 (2)

However Woodford (2004) notes that optimal monetary policy also constrains all future conditional
expectations of the target variable after the date t+ k. This provides additional restrictions on the
behavior of the policy target variables that can be tested.

Condition (1) is highly restrictive. Most central banks do not claim to be pure in�ation targeters.
However analogous conditions arise in models where central bank�s loss function depends upon
other target variables, such as some measure of output deviations. As we move to more general
models of central bank behavior, the optimality conditions will also depend upon the underlying
structure of the economy. In this paper our starting point is a central bank whose loss function
only depends upon deviations of in�ation from its target level and deviations of output from some
e¢ cient level, subject to a New Keynesian Phillips curve.

If a central bank takes a purely discretionary approach to policy then its optimality condition (or
Euler equation) is given by,

Et(�t+j + �xt+j � ��) = 0 (3)

whereas if it is able to achieve a commitment solution in the sense of Woodford�s "timeless per-
spective" its Euler equation is given by;

Et(�t+j + ��xt+j � ��) = 0 (4)

for some j � k. The value of k depends upon the exact structure of the economy, in particular the
number of periods it takes for central bank�s policy instrument to a¤ect its policy targets. The
parameter � = �

 in the above conditions is the ratio of the weight the central bank places on
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output gap variations (�) to the slope of the Phillips curve (). If � = 0 these �exible in�ation
targeting conditions reduce to pure in�ation targeting.

Conditions (3) and (4) provide simple and intuitive descriptions of policy outcomes. A central
bank that is concerned about in�ation and the output gap will balance-o¤ deviations in these
variables based upon the respective weighting in the loss functions. This involves adjusting the
policy instrument(s) in such a way that if in�ation is expected to be above target, this will be
balanced against a negative expected output gap and vice versa. One attractive feature these
conditions is that they do not directly depend on the means by which the central bank implements
policy.

The conditions (3) and (4) form the basis of our empirical assessment of optimal monetary policy.
In using these conditions we note that they must hold for all values of j � k. Thus we can consider
a system of Euler equations such as,

Et(�t+k + �xt+k � ��) = 0
Et(�t+k+1 + �xt+k+1 � ��) = 0
........................................

Et(�t+k+m + �xt+k+m � ��) = 0

where m is some upper bound on the conditions we wish to consider. As a practical matter we
can think of m as being roughly the equivalent of two years, since this is the longest horizon about
which central banks are generally concerned. In theory the � and �� parameters should be constant
across the moment conditions. This is a testable restriction. Another testable restriction implied
by theory is that � � 0. If � = 0 then we could reasonably conclude that the central bank is a strict
in�ation targeter. A positive value for � indicates the central bank is a �exible in�ation targeter.
While the two parameters in � are not separately identi�ed, given an independent estimate of  we
can recover an estimate of the central bank�s preference parameter �.

An implication of the above Euler equations is that particular linear combinations of in�ation and
the output gap (or its �rst-di¤erence) should be orthogonal to lagged information sets. For example
the linear combination (�t+k +�xt+k � ��) should be uncorrelated with any variable known to the
central bank at time (t). Thus in the following regression

(�t+k + �xt+k � ��) = �+ �Zt + vt+k (5)

we expect to �nd � = � = 0. To implement this test can we use a subset of Zt, call it zt, as
instruments to estimate the model and then use (�t+k + b�xt+k � b��) and other components of Zt
to run the above regression.

The choice of instruments used to estimate the Euler equations is an important one. The precise
form of the Euler equations (3) and (4) is dependent upon what variables are assumed to enter a
central bank�s objective function and on the structure of the economy. For example the central
bank may care about variables other than in�ation and the output gap. A standard generalization
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would be to assume the central bank cares about nominal interest rate volatility. In this case
neither (3) or (4) would be the valid Euler equations. However equation (5) suggests a simple
speci�cation test for any set of Euler equations. Use as instruments in estimating (3) and (4),
variables that are unlikely to directly enter a central bank�s loss function. Then conditional on
these estimates use (5) as a means of checking if interesting variables have been omitted from the
central bank�s Euler equation.

3 Empirical Results

We consider three countries: Canada, Australia, and the United States. The �rst two have operated
monetary policy with well-de�ned in�ation targets since the early 1990s. The US, in contrast, does
not have an explicit in�ation target though its behavior may in fact be consistent with an in�ation
target.

We set the samples for estimation based upon the dates at which in�ation targeting was adopted
or, in the case of the US, a comparable period. Canada e¤ectively adopted its current in�ation
target of 1�3 percent in December 1993, so the Canadian sample is 1994�2007.1 Australia adopted
an in�ation target of 2-3 percent in 1993, so the Australian sample is 1993-2007.2 The sample for
the United States is 1990�2007, which is a comparable period to the other two countries. Since
we are not restricted to a speci�c period, we start somewhat earlier to include the recession of the
early 1990s in our sample.

All three countries set monetary policy at a relatively high frequency. In the case of Canada and
the US, policy interest rates are set roughly every six weeks. In Australia, it is every month (with
the exception of January). 3 Ideally, one should use data that matches most closely this frequency.
This requires monthly measures of output (GDP) and the consumer prices (CPI). Both of these
are available for Canada. For the US, the CPI is available on a monthly basis but GDP is not.
A potential proxy for GDP is available monthly, the industrial production index. For Australia,
both GDP and the CPI are only available on a quarterly basis. For purposes of comparison, we
estimate quarterly models for all three countries. We also estimate monthly models for Canada
and the United States.

For all three countries, we use a headline measure of in�ation, consistent with the de�nitions of
in�ation targets at both the Bank of Canada and the Reserve Bank of Australia. For the output
gap, we use the Hodrick-Prescott �lter to calculate potential GDP. This is a relatively crude means
of identifying the output gap but does have the advantage of being easily applied across the three
countries in a systematic manner. As a check on these results we also use the growth rate of real
output �yt as a proxy for the change in the output gap.

The moment conditions stipulate that in�ation forecasts or indices of in�ation and output are

1Bank of Canada webpage: www.bank-banque-canada.ca/en/backgrounders/bg-i3.html
2Reserve Bank of Australia webpage: www.rba.gov.au/MonetaryPolicy/about_monetary_policy.html. The for-

mal in�ation target commenced in 1996; however, in�ation targetting has in practice been in e¤ect since 1993.
3Each of these central banks has the ability to change policy between meetings if required.
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orthogonal to any information at time t. To estimate these conditions, we need to choose a set
of instruments zt. One concern that guides our choice of instruments is that our Euler conditions
may be mis-speci�ed. In particular, if the central bank is concerned about variables other than
in�ation and the output gap, then these should form part of the index. From this perspective,
possibly omitted variables are changes in interest rates (due to interest smoothing), the exchange
rate, and other relevant measures of in�ation (for example, Giannoni and Woodford (2003) include
wage in�ation). Because of this, we do not view these as suitable instruments. Instead, we focus
on a relatively small set of instruments that is common across all three countries � commodity
price in�ation constructed using the IMF�s non-fuel commodity price index. Commodity prices are
widely used in the empirical monetary policy literature as an exogenous cost shock variable and is
a natural choice for our instrument set.

For the models using quarterly data, the instrument set is zt = f�cxt ; �cxt�1; �cxt�2g and for the monthly
models, zt = f�cxt ; �cxt�3; �cxt�6g. In either case, in�ation is de�ned as year-on-year percentage changes
in commodity prices. (See Table 8 for precise details.)

The empirical results are presented in Tables 1 to 5. Tables 1 to 3 report estimates based on
quarterly data for Australia, Canada and the US, while Tables 4 to 5 report estimates using
monthly data for Canada and the US. In estimating the Euler equations we consider (four) forecast
horizons equivalent to six months, one year, eighteen months and two years.

We initially estimate a version of the strict in�ation targeting condition (see Model 1 in the Tables).
In no case can we reject the existence of constant value for the in�ation target ��across all forecast
horizons. The estimates of ��from the quarterly data are 2.87 for Australia, 1.83 for Canada and
2.68 for the US.

Turing to the more general models we consider estimates of the Euler equation implied by discre-
tionary optimization (Model 2 in the Tables). For Canada the estimates of � are negative and
hence at odds with the theory. In fact the evidence against discretion is particularly strong for
Canada. For both quarterly and monthly data and at all forecast horizons the estimates of � nega-
tive and statistically signi�cant. Rather than setting policy to lean against the wind the estimates
suggest that the Bank of Canada leans with the wind. For the US the point estimates of � vary
with the forecast horizon; they are negative at horizons of 6 to 12 months and positive at horizons
of 18 to 24 months. However the point estimates are generally not statistically signi�cant. On
the basis of the quarterly data one might conclude that the US is a strict in�ation targeter, since
we cannot reject �2 = ::: = �8 = � = 0 . The results for Australia actually provide some support
for the Euler equation under discretion. While point estimates of � tend to vary with the forecast
horizon, the restriction of equal parameters is not rejected by the data, and we obtain a commonb� = 0:42: This �gure suggests that if the RBA forecasts in�ation to be one percent above target in
six months time, they would they seek to adjust current policy settings so as to also have a negative
output gap of 2.5 percent six months hence.

Woodford (2003) makes the case that central banks can achieve higher levels of welfare if they
can in�uence private sector expectations, not just in the long-run through their in�ation target,
but also via their short-run policy actions. This is not possible if central banks engage in purely
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discretionary optimization. Thus Model 3 represents the Euler equation that is implied if a central
bank follows a commitment solution. Interestingly the data for all three countries provide some
support for the Euler equation under commitment. Estimates of �2 (a six month horizon) from
the quarterly data are positive and statistically signi�cant. Although estimates for � at longer
horizons tend to decline in magnitude and are generally not statistically signi�cant. If we impose
a common value for � across all forecast horizons then we obtain sensible results for all three
countries. The respective estimates of � are 0.53 for Australia, 0.85 for Canada, and 1.27 for the
US. The signi�cantly higher estimated value of � for the US is potentially interesting. While it
may re�ect a steeper US Phillips curve (i.e. a low value of ), it may also re�ect a relatively greater
concern by the US Fed to output variability, compared to the Bank of Canada and the RBA. While
both of the latter central banks have formal in�ation targets, the Fed does not. Model 4 uses the
growth rate of real output as a proxy for the change in the output gap. The results are broadly
similar to those obtained from using HP �ltered data.

Results for Canada and the US based on monthly data are reported in Tables 4 and 5. For Canada
the estimates from the monthly data are essentially consistent with the quarterly estimates. This
is not the case for the US where the monthly estimates are frequently not statistically signi�cant.
This may well re�ect the fact that we have had to use industrial production rather than GDP to
measure real output.

Table 6 reports the results of some preliminary speci�cation tests on the models. We focus on
Models 3 and 4 and estimate a version of (5) using the �rst-di¤erence of a country�s respective
policy rate as the explanatory variable. Conditional on our parameter estimates we are asking if
the current change in the policy rate can predict the residuals from (4) at various horizons. There
is some evidence that this is the case and this might indicate the omission of an interest rate term
form the central bank�s Euler equation. To some degree their is stronger evidence against the
restricted version of the model than the unrestricted version.

4 Conclusion

We test two optimality conditions for a central bank implied by a relatively basic version of the
New Keynesian model. Surprisingly in light of the relative simplicity of our assumed loss function
and purely forward-looking nature of the Phillips curve, we �nd that some support in the data for
Australia, Canada and the US for the Euler equation implied by optimal policy under commitment.
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Table 1: Quarterly Results for Australia
Sample: 1993:Q1-2007:Q4

Instruments: zt = (1; �
cx
t ; �

cx
t�1; �

cx
t�2)

Model 1: Et(�t+j � ��j ) = 0; j = 2; 4; 6; 8

��2 ��4 ��6 ��8 JUR �� JR JR � JUR

2.7533
(0.1201)

2:9606
(0:1600)

3.1214
(0.1388)

2.9487
(0.1311)

8.9170
(0:7100)

2.8728
(0:0648)

10.1102
(0:8128)

1.1932
(0:7546)

Model 2: Et(�t+j + �jxt+j � ��j ) = 0; j = 2; 4; 6; 8

�2 �4 �6 �8 ��2 ��4 ��6 ��8 JUR

0.4667
(0.4073)

�0:2266
(0:3555)

0:3332
(0:6015)

3:3858
(0:1693)

2:7749
(0:2135)

2:7611
(0:2279)

2:7604
(0:2097)

2:4663
(0:3079)

8:1728
(0:4168)

� �� JR JR � JUR

0.4244
(0.2073)

2:6124
(0:0951)

10:3686
(0:7348)

2:1958
(0:9008)

Model 3: Et(�t+j + �j�xt+j � ��j ) = 0; j = 2; 4; 6; 8

�2 �4 �6 �8 ��2 ��4 ��6 ��8 JUR

0.8044
(0.4409)

�1.0735
(1.7527)

-0.6775
(0.9702)

-0.0893
(1.3790)

2.5222
(0:1535)

2.4033
(0:2391)

2.6524
(0:2315)

2.6830
(0:1797)

9.3139
(0:3165)

� �� JR JR � JUR

0.5284
(0.2164)

2:7039
(0:0661)

8:6889
(0:8504)

0:6250
(0:9960)

Model 4: Et(�t+j + �j�yt+j � ��j ) = 0; j = 2; 3; 4; 8

�2 �4 �6 �8 ��2 ��4 ��6 ��8 JUR

0.9742
(0.4411)

�1.7706
(3.5042)

-0.3960
(0.9607)

0.1119
(1.0054)

3.1359
(0:4277)

1.0885
(3:0191)

2.3542
(0:8957)

2.8015
(0:8373)

8.6954
(0:3686)

� �� JR JR � JUR

0.6604
(0.2202)

3:2223
(0:1860)

8:7742
(0:8542)

0:0788
(0:9999)

Notes: The second set of estimates for each model restrict the parameters to be constant across moments. JUR and
JRare Hansen�s J-statistic for the unrestricted and restricted models. These are distributed �2(r � k), where r is
the total number of moment conditions and k = kUR or kR is the number of estimated parameters. The di¤erence

if distributed as kUR�kR. Numbers in parentheses are standard errors except for the reported statistics, which are
marginal signi�cance levels. The covariance matrix is estimated following Newey and West (1987) using a truncation

parameter of 2.
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Table 2: Quarterly Results for Canada
Sample: 1994:Q1-2007:Q4

Instruments: zt = (1; �
cx
t ; �

cx
t�1; �

cx
t�2)

Model 1: Et(�t+j � ��j ) = 0; j = 2; 4; 6; 8

��2 ��4 ��6 ��8 JUR �� JR JR � JUR

2.1662
(0.0945)

1.9642
(0.1151)

1.7512
(0.0894)

1.9557
(0.0893)

8.4446
(0:7495)

1.8315
(0:0706)

10.0431
(0:8170)

1.5985
(0:6597)

Model 2: Et(�t+j + �jxt+j � ��j ) = 0; j = 2; 4; 6; 8

�2 �4 �6 �8 ��2 ��4 ��6 ��8 JUR

-0.5400
(0.2720)

�0:6378
(0:2037)

�0:6684
(0:1856)

�0:4734
(0:1979)

2:1162
(0:1134)

2:1610
(0:0884)

2:1072
(0:0989)

2:0454
(0:0997)

4:1977
(0:8389)

� �� JR JR � JUR

-0.6475
(0.1063)

2:1316
(0:0607)

4:6557
(0:9901)

0:4580
(0:9983)

Model 3: Et(�t+j + �j�xt+j � ��j ) = 0; j = 2; 4; 6; 8

�2 �4 �6 �8 ��2 ��4 ��6 ��8 JUR

0.8339
(0.3040)

0.2291
(0.3542)

-0.4169
(0.9055)

-0.3260
(1.9598)

1.9318
(0:1456)

1.9070
(0:1279)

1.8478
(0:1042)

1.9111
(0:1139)

7.3968
(0:4945)

� �� JR JR � JUR

0.8501
(0.2332)

1:7655
(0:0670)

10:2251
(0:7455)

2:8283
(0:8300)

Model 4: Et(�t+j + �j�yt+j � ��j ) = 0; j = 2; 4; 6; 8

�2 �4 �6 �8 ��2 ��4 ��6 ��8 JUR

0.2382
(0.0541)

0.0947
(0.1025)

-0.0743
(0.1851)

-0.2857
(0.3930)

2.6282
(0:1204)

2.1647
(0:2741)

1.6156
(0:5315)

1.0362
(1:2371)

6.7227
(0:5668)

� �� JR JR � JUR

0.6329
(0.1933)

2:3073
(0:1435)

9:8559
(0:7726)

3:1332
(0:7920)

Notes: The second set of estimates for each model restrict the parameters to be constant across moments. JUR and
JRare Hansen�s J-statistic for the unrestricted and restricted models. These are distributed �2(r � k), where r is
the total number of moment conditions and k = kUR or kR is the number of estimated parameters. The di¤erence

if distributed as kUR�kR. Numbers in parentheses are standard errors except for the reported statistics, which are
marginal signi�cance levels. The covariance matrix is estimated following Newey and West (1987) using a truncation

parameter of 2.
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Table 3: Quarterly Results for the United States
Sample: 1990:Q1-2007:Q4

Instruments: zt = (1; �
cx
t ; �

cx
t�1; �

cx
t�2)

Model 1: Et(�t+j � ��j ) = 0; j = 2; 4; 6; 8

��2 ��4 ��6 ��8 JUR �� JR JR � JUR

2.8943
(0.1104)

2.7253
(0.1139)

2.6169
(0.1113)

2.5563
(0.1020)

8.4243
(0:7512)

2.6817
(0:0788)

10.8262
(0:7648)

2.4019
(0:4932)

Model 2: Et(�t+j + �jxt+j � ��j ) = 0; j = 2; 4; 6; 8

�2 �4 �6 �8 ��2 ��4 ��6 ��8 JUR

-0.2377
(0.3290)

�0:0982
(0:2834)

0:3216
(0:4409)

2:0211
(1:5867)

2:9183
(0:1154)

2:7833
(0:1115)

2:6071
(0:1455)

2:2097
(0:2832)

6:8520
(0:5527)

� �� JR JR � JUR

-0.0576
(0.2292)

2:6874
(0:0834)

10:6427
(0:7138)

3:7907
(0:7050)

Model 3: Et(�t+j + �j�xt+j � ��j ) = 0; j = 2; 4; 6; 8

�2 �4 �6 �8 ��2 ��4 ��6 ��8 JUR

2.5563
(1.3815)

0.6533
(0.9573)

-0.2342
(0.4686)

-2.0549
(2.9787)

2.8546
(0:1735)

2.7113
(0:1043)

2.6258
(0:1104)

2.6534
(0:1787)

2.2039
(0:9741)

� �� JR JR � JUR

1.22695
(0.4397)

2:5411
(0:0535)

9:1427
(0:8218)

6:9388
(0:3265)

Model 4: Et(�t+j + �j�yt+j � ��j ) = 0; j = 2; 4; 6; 8

�2 �4 �6 �8 ��2 ��4 ��6 ��8 JUR

2.3047
(0.9759)

0.5702
(0.6921)

-0.1587
(0.4670)

-1.3492
(2.2056)

4.5299
(0:7001)

3.1372
(0:4832)

2.5166
(0:3481)

1.6557
(1:7066)

2.8339
(0:9443)

� �� JR JR � JUR

1.3550
(0.4244)

3:6372
(0:2917)

8:3585
(0:8698)

5:5246
(0:4785)

Notes: The second set of estimates for each model restrict the parameters to be constant across moments. JUR and
JRare Hansen�s J-statistic for the unrestricted and restricted models. These are distributed �2(r � k), where r is
the total number of moment conditions and k = kUR or kR is the number of estimated parameters. The di¤erence

if distributed as kUR�kR. Numbers in parentheses are standard errors except for the reported statistics, which are
marginal signi�cance levels. The covariance matrix is estimated following Newey and West (1987) using a truncation

parameter of 2.
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Table 4 : Monthly Results for Canada
Sample: 1994:M1-2007:M12

Instruments: zt = (1; �
cx
t ; �

cx
t�1; �

cx
t�2)

Model 1: Et(�t+j � ��j ) = 0; j = 6; 12; 18; 24

��6 ��12 ��18 ��24 JUR �� JR JR � JUR

2.1405
(0.0844)

1.9806
(0.0921)

1.8677
(0.0879)

1.9964
(0.0782)

17.9657
(0:1167)

1.9752
(0:0473)

19.6849
(0:1844)

1.7192
(0:6327)

Model 2: Et(�t+j + �jxt+j � ��j ) = 0; j = 6; 12; 18; 24

�6 �12 �18 �24 ��6 ��12 ��18 ��24 JUR

-1.2157
(0.3675)

�1:0997
(0:3494)

�1:1194
(0:3694)

�0:8781
(0:3967)

2:0968
(0:1057)

2:1767
(0:0929)

2:1269
(0:1148)

2:1174
(0:0966)

2:3077
(0:9701)

� �� JR JR � JUR

-1.1380
(0.1984)

2:1493
(0:0468)

3:4726
(0:9979)

1:1649
(0:9786)

Model 3: Et(�t+j + �j�xt+j � ��j ) = 0; j = 6; 12; 18; 24

�6 �12 �18 �24 ��6 ��12 ��18 ��24 JUR

1.3296
(0.3838)

�0.8435
(0.5996)

-0.7941
(0.9914)

0.2453
(0.9174)

1.9408
(0:1119)

1.9858
(0:1118)

1.8588
(0:0930)

1.9609
(0:0862)

13.5117
(0:0954)

� �� JR JR � JUR

0.6365
(0.2678)

1:9112
(0:0534)

19:5870
(0:1437)

6:0753
(0:4148)

Model 4: Et(�t+j + �j�yt+j � ��j ) = 0; j = 6; 12; 18; 24

�6 �12 �18 �24 ��6 ��12 ��18 ��24 JUR

1.0618
(0.2373)

-0.4575
(0.3920)

-0.7777
(0.6773)

-0.1904
(0.6664)

2.7784
(0:1647)

1.6372
(0:2800)

1.2959
(0:5085)

1.8550
(0:4993)

11.6723
(0:1664)

� �� JR JR � JUR

0.5432
(0.1775)

2:3361
(0:1277)

20:0113
(0:1298)

8:3390
(0:2143)

Notes: The second set of estimates for each model restrict the parameters to be constant across moments. JUR and
JRare Hansen�s J-statistic for the unrestricted and restricted models. These are distributed �2(r � k), where r is
the total number of moment conditions and k = kUR or kR is the number of estimated parameters. The di¤erence

if distributed as kUR�kR. Numbers in parentheses are standard errors except for the reported statistics, which are
marginal signi�cance levels. The covariance matrix is estimated following Newey and West (1987) using a truncation

parameter of 2.
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Table 5 : Monthly Results for United States
Sample: 1990:M1-2007:M12

Instruments: zt = (1; �
cx
t ; �

cx
t�1; �

cx
t�2)

Model 1: Et(�t+j � ��j ) = 0; j = 6; 12; 18; 24

��6 ��12 ��18 ��24 JUR �� JR JR � JUR

2.8240
(0.0849)

2.6988
(0.0764)

2.6050
(0.0749)

2.5444
(0.0754)

16.6486
(0:1633)

2.6412
(0:0531)

19.3455
(0:1985)

2.6969
(0:4408)

Model 2: Et(�t+j + �jxt+j � ��j ) = 0; j = 6; 12; 18; 24

�6 �12 �18 �24 ��6 ��12 ��18 ��24 JUR

-0.4333
(0.2277)

�0.0215
(0:1290)

0:0522
(0:1463)

0:6293
(0:3829)

2:9177
(0:0981)

2:7113
(0:0791)

2:6244
(0:0803)

2:5482
(0:1115)

9:6680
(0:2891)

� �� JR JR � JUR

-0.0621
(0.1058)

2:6444
(0:0517)

18:9749
(0:1659)

9:3068
(0:1570)

Model 3: Et(�t+j + �j�xt+j � ��j ) = 0; j = 6; 12; 18; 24

�6 �12 �18 �24 ��6 ��12 ��18 ��24 JUR

0.4680
(0.4256)

�0.1088
(0.2534)

-0.0106
(0.2176)

-0.1514
(0.3554)

2.7435
(0:0948)

2.6515
(0:0830)

2.6134
(0:0814)

2.5919
(0:0844)

15.2180
(0:0550)

� �� JR JR � JUR

0.0545
(0.1728)

2:6322
(0:0537)

19:3246
(0:1529)

4:1066
(0:6623)

Model 4: Et(�t+j + �j�yt+j � ��j ) = 0; j = 6; 12; 18; 24

�6 �12 �18 �24 ��6 ��12 ��18 ��24 JUR

1.5412
(0.9523)

0:2312
(0.2489)

0.0093
(0.1578)

0.0209
(0.1826)

3.9830
(0:7680)

2.8772
(0:2071)

2.6524
(0:1317)

2.6496
(0:1550)

5.4583
(0:7077)

� �� JR JR � JUR

0.0901
(0.1328)

2:7013
(0:1098)

19:2015
(0:1574)

13:7432
(0:0326)

Notes: The second set of estimates for each model restrict the parameters to be constant across moments. JUR and
JRare Hansen�s J-statistic for the unrestricted and restricted models. These are distributed �2(r � k), where r is
the total number of moment conditions and k = kUR or kR is the number of estimated parameters. The di¤erence

if distributed as kUR�kR. Numbers in parentheses are standard errors except for the reported statistics, which are
marginal signi�cance levels. The covariance matrix is estimated following Newey and West (1987) using a truncation

parameter of 2.
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Table 6: Speci�cation Tests

Australia Canada United States

j=2 j=4 j=6 j=8 j=2 j=4 j=6 j=8 j=2 j=4 j=6 j=8

Model 3: (�t+j + b�j�xt+j � b��j ) = �+ ��it + �t+j j = 2; 4; 6; 8

Unrestricted Model

0.32 0.27 0.00 0.00 0.39 0.35 0.09 0.35 0.57 0.18 0.83 0.87

Restricted Model

0.00 0.00 0.12 0.17 0.04 0.04 0.07 0.01 0.02 0.15 0.37 0.37

Model 4: (�t+j + b�j�yt+j � b��j ) = �+ ��it + �t+j j = 2; 4; 6; 8

Unrestricted Model

0.00 0.00 0.19 0.16 0.16 0.17 0.12 0.75 0.18 0.07 0.89 0.98

Restricted Model

0.00 0.00 0.19 0.32 0.03 0.06 0.08 0.02 0.03 0.23 0.88 0.86

Notes: Figures are p-values for test of joint signi�cance of constant and slope coe¢ cients.
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Table 7: Data and Sources

Variable Description Source

Australia

Y GDP SA at annual rates: chained 2005-06 dollars RBA Bulletin
Tab. G10, ABS 5206

P CPI All Groups RBA Bulletin
Tab. G02, ABS 6401

Canada

Y Qrt: GDP SA at annual rates: chained 2000 dollars CANSIM
Tab. 3800002, V1992067

Monthly:

P CPI All, 2005 Basket, Qrt = ave. of monthly nos. CANSIM
Tab. 3260020, V42690973

United States

Y Qrt: GDP SA at annual rates: chained 2000 dollars BEA GDPC96

Monthly: Industrial Production Index, SA BGFRS INDPRO

P CPI All Urban, All Items, Qrt=ave. of monthly nos. BLS CPIAUCSL

Commodity Prices

P cx Non-Fuel Index, Qrt=ave. of monthly nos. IFS Series
00176NFDZF...
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Table 8: Variable De�nitions and Construction

Variable Construction Description/Details

Quarterly Series

�t 100 � (Pt � Pt�4)=Pt�4 Year-on-year qrt. in�ation, %

�cxt 100 � (P cxt � P cxt�4)=P cxt�4 Year-on-year qrt. commodity price in�ation, %

yQt HP (lnYt; 1600) H-P �lter, � = 1600;Sample 1981:Q1-2007:Q4

xt 100 � (lnYt � yQt ) Output gap, %

�xt xt � xt�1 Quarterly �rst-di¤erence

�yt 100 � (lnYt � lnYt�1) Quarterly growth rate, %

Monthly Series

�t 100 � (Pt � Pt�12)=Pt�12 Year-on-year monthly in�ation, %

�cxt 100 � (P cxt � P cxt�12)=P cxt�12 Year-on-year monthly commodity price in�ation, %

yMt HP (lnYt; 14400) H-P �lter, � = 14400;Sample 1981:M1-2007:M12

xt 100 � (lnYt � yMt ) Output gap, %

�3xt xt � xt�3 Monthly third-di¤erence

�3yt 100 � (lnYt � lnYt�3) Monthly third-di¤erence, %
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