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Abstract 

Choosing a model selection criterion for model search when there present many candidate 

models can be a controversy. This is not a surprise as different criteria are derived with 

different objectives in mind. However, it is generally agreed that the Bayesian Information 

Criterion (BIC) and its generalized version, the Generalized Information Criterion (GIC) 

possess the consistency property – choosing the correct model with probability 1 as the 

sample size goes to infinite, as opposed to others such as the Akaike Information Criterion 

(AIC). In this paper, we suggest a particular expression of the GIC as replacing  in the 

penalty term of the BIC with (l , 0

log N

og )rN r< < ∞ . Justifications from the Bayes Factor point 

of view are provided. The strong consistency property of the proposed criterion is 

established. Our consistency results include the consistency of selecting the closest model 

when the true model is not presented and the consistency of selecting the true model with the 

smallest model dimension when there are more than one true models are presented. 

Discussions concerning a choice of r and simulation studies are provided. 
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1. INTRODUCTION 

Criterion based approach for model selection problem remains a popular choice among 

approaches such as hypothesis testing, Bayesian posterior prediction and cross-validation 

(see e.g. Berger and Pericchi 2000, George 2000, Broman and Speed 2002, Miller 2002 for 

excellent review), as well as the newly developed shrinkage-type approach (see e.g. 

Tibshirani 1996, Fan and Li 2001, Efron, Hastie, Johnstone and Tibshirani 2004). This 

mainly owes to the simplicity of its applications for the problem. 

There have been many criteria proposed in the literature (See Miller 2002 for the survey 

of this topic). Most criteria can be written in the form of 

 ( )
2N
dl θ λ−  (1) 

where ( )Nl θ  is the sample log-likelihood function of a model that has parameter θ  of 

dimension ,  is sample size and d N λ  takes different forms in different criteria. The well-

known Akaike Information Criterion (AIC) (Akaike 1973) and the Bayesian information 

criterion (BIC) (1978) take 2λ =  and lo  respectively. In the criterion based approach 

for model selection, one chooses a model, which maximizes 

g N

(1) among a finite number of 

candidate models. There has always been a controversy concerning which model criterion 

should be used. This is not a surprise as different criteria are derived with different 

objectives in mind. However, there is a general consent among statistical professionals that 

the BIC and its generalized version, the Generalized Information Criterion (GIC) (Rao and 

Wu 1989) where λ  satisfies  and  as  enjoy the 

consistency property of correctly identifying the true model with probability 1. Such a 

property is not shared by the AIC or any criteria in which 

1 0N λ− → 1(log log )N λ− → ∞ N → ∞

λ  is fixed (Foster and George 

1994, Yang 2005, 2007). 
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This paper is concerned with a criterion possessing the consistency property. We suggest 

a particular form of expression of the GIC as 

 . (2) (log )rc Nλ =

The AIC corresponds to  and 2c = 0r = , and the BIC corresponds to  and . 

Furthermore, with 0 , for any fixed c  

1c = 1r =

r< < ∞ (2) satisfies the GIC’s conditions above. 

Therefore, it qualifies to be the GIC. As we are interested in the consistency property, we 

could fix  say , so that the AIC can be reflected through c 1c = log 2 / log logr N=  for each 

fixed . N

In the next section, we justify our criterion from the Bayes Factor point of view (e.g. 

Berger, et al. 2000), In particular it is possible for r  to take a value other than 1 as an 

approximation to the posterior density function. 

Section 3 studies the consistency property of our criterion that includes the BIC in a 

general setting. It is commonly believed that one of the assumptions for the consistency 

property of the BIC to hold is that the true model needs to be presented among the candidate 

models (e.g. Haughton 1988, Shao 1997). Our results reveal that when the assumption is 

violated, our criterion leads to consistently choosing the closest model to the true model 

among candidate models. Our consistency results also include the consistency of selecting 

the true model with the smallest model dimension when there are more than one true models 

are presented in candidate models. 

Section 4 discusses an application of our criterion for covariate selection in linear 

regression models where it has been reported that the BIC causes underfitting while the AIC 

results in overfitting. We suggest take 0.5r =  as a practical choice to bridge the strengths of 

the AIC and BIC. Some justifications and simulation studies are provided. 

Finally, some concluding remarks are made in Section 5. 
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2. VIEWPOINT OF BAYES FACTOR 

Suppose there are finite  models, defined by , q im 1,...,i q= , whose joint density for 

observed data Y  is ( ; )if Y θ , where iθ  is a vector of unknown model parameters. If we have 

available prior distributions concerning the model  and the parameter im iθ  as, ( )imπ  and 

( )iπ θ , then by Bayes’ theorem, the posterior probability of  is obtained as, im

 

1

( ; ) ( )( ; )
( ) ( )

i i
i q

i i
i

P Y m mP m Y
m P m

π

π
=

=

∑
, (3) 

where 

 ( ; ) ( ; ) ( )i i iP Y m f Y d iθ π θ θ= ∫ , (4) 

is the marginal density of model . Note that the functions im f ,π  and P are in general 

different for each model, and π ’s are different priors for iθ  and , but we do not make it 

specific here for simplicity of presentation. The ratio of the posterior probabilities of the 

models  and , 

im

im jm i j≠ , , is , {1,..., }i j q∈

 ( ; ) ( ; ) ( )
( ; ) ( ; ) ( )

i i

j j

P m Y P Y m m
P m Y P Y m m

i

j

π
π

= ⋅ , 

where the first term of the right hand side is called the Bayes Factor (BF), i.e. 

 
( ; ) ( )( ; )

( ; ) ( ; ) ( )
i ii

ij
j j j

i

j

f Y dP Y mB
P Y m f Y d

θ π θ θ

θ π θ θ
= = ∫

∫
. (5) 

Commonly researchers assign ( ) 1/iP m q= , i∀ . Then, 

( ; )
( ; )

i
ij

j

P m YB
P m Y

= . 

Therefore, from the Bayesian point of view one chooses model  if ; model  if 

. Computing BF in 

i 1ijB > j

1ijB < (5) involves evaluation of integrals, hence is usually 
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computationally demanding. The Laplace approximation to the integral  has been 

suggested (see e.g. Lindley 1980, Tierney and Kadane 1986, Kass and Raftery 1995). For the 

independent and identically distributed (iid) observations, 

( ; )iP Y m

1( ,... )NY y y ′= , with the 

density ( ; )n if y θ , , the approximation is 1,...,n = N

 
1

12 2
2( ; ) ( ) ( ) ( ) ( )[1 ( )]

id

i i i iP Y m L O N
N
π θ θ π θ −= Σ + , (6) 

where 
1

( ) ( ; )N
i n in

L f y θ
=

= ∏ 2 1( ) [ log ( ; ) /( )]i i i if yθ θ θ θ and −Σ = . θ −∂ ∂ ∂

The well-known BIC can be viewed as taking the leading terms of the logarithm of (6) in 

the view of BF as 

 ( ) log
2

i
i N i

dBIC l Nθ= − , 

where 
1

( ) log ( ; )N
N i i n in

l f yθ θ
=

= ∑ . Obviously the approximation (6) is accurate to the order 

of . That means we may let the penalty term  be replaced by 

, r . Note that 

1(O N − ) N

+ = 0>

( / 2) logid

( / 2) log (log ) ( / 2)(log )r
i id N O N d N 0r ≤  does not satisfy 

, hence it does not qualify to be GIC. Therefore, we have what we 

call Bayesian-like Generalized Information Criterion (BGIC), 

1(log log ) (log )rN N− → ∞

 ( ) (log )
2

ri
i i

dBGIC l Nθ= − . (7) 

Example 1: 

Kass and Wasserman (1995, Example 1). Let ~ ( ,1ny N )ψ  and consider the normal unit-

information prior ~ (0,1)Nψ , the exact posterior density function. 

 
2

0
1log ( ; ) log( 1)

2 1 2
Ny NP y m l N

N
= + −

+
+  
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where 
2

1
0

2log
2 2

N
nn

N yNl
N
π == − − ∑  and 1

N
nn

y
y

N
== ∑ . 

 
2

0
1 log

2 2
NyBIC l N= + − . 

In this case, in the view of (7), we have 

 ( ) (
2

log log 1
1

r NyN
N

)N= + +
+

. (8) 

There exists  for . To show this, let  1r > 3N ≥

 ( ) ( )
2

( ) log log 1
1

r Nyr N N
N

Δ = − − +
+

, 

it is obvious that  is monotonically increasing function in  and ( )rΔ r (1) 0Δ <  and  

for . 

( )Δ ∞ = ∞

3N ≥

3. CONSISTENCY 

It has been shown that the AIC does not possess the consistency property while it has an 

advantage over the BIC in terms of risk inflation (see e.g. Yang 2005). The consistency 

property of the BIC and GIC has been shown for different models in the literature. Haughton 

(1988) proved the consistency of the BIC for the exponential distributions. Nishii (1984), 

Rao and Wu (1989) and Shao (1997) showed the consistency of the GIC for covariates 

selection in the context of linear regression models. The consistency property of the criterion 

based approach for estimating the number of mixture components in mixture models has 

been shown by a number of authors. Leroux (1992) showed that the estimate of number of 

mixture components is not under fitting its true value when the true model (with the true 

number of components) is among the candidate models. Keribin (2000) and Chambaz (2006) 

proved the consistency of the GIC for estimating the number of mixture components in 

mixture models. The consistency results under the non-iid setting have also been established 

by a number of authors such as Pötscher (1989) and Niu and Ang (2003).  
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In this section we study a general approach to the consistency property of our criterion 

that includes the BIC in the iid setting. The existing consistency results require the 

assumption that the true model is presented in candidate models, but we show that when the 

assumption is violated, the closest model to the true is selected with probability 1 as the 

sample size goes to infinite. We also show that, when there exist more than one true model, 

the true model with the smallest dimension is then selected with probability one as the 

sample size goes to infinite.  

Suppose the iid observations 1( ,..., )NY y y ′=  are generated from the true distribution 

function  and density function . Suppose there are a finite set of  true models 

among candidate models, 

( )G y ( )g y kq

{ 1,..., }g k kM m k q= , = , with the density function ( ; )k kg y θ . To 

accommodate the situation of non-identifiable models, we allow there may exist a model 

 such that km M∈ g 01 02( ; ) ( ; )k k k kg y g yθ θ=  for 01 02k kθ θ≠ , 01 02 0,k k k kθ θ ∈Θ ⊂ Θ . For 

example, suppose the true model is . If a candidate model is ~ (0,1)y N 2~ ( , )y N μ σ , then 

there is an unique parameter point  such that the candidate model becomes the 

true model. But if a candidate model is a two-component mixture  

2( , ) (0,1)μ σ =

2
1 1

2
2 2

~ ( , ) with the probability ,   
~ ( , )   with the probability 1- ,

y N
y N

μ σ α
μ σ α

⎧
⎨
⎩

 

then the true model can be recovered with 1α = , , or 2
1 1( , ) (0,1)μ σ = 0α = , 

, or 2
2 2( , ) (0,1)μ σ = 1 2μ μ= , 2

1
2
2σ σ= . We also suppose that there are a finite set of  non-

true models among candidate models, 

kq

{ , 1,..., }f k kM m k q=  = , with the density functions 

( ; )k kf y θ . Note that we use the subscript  and k  to index the true and non-true candidate 

models, respectively, and  to index candidate models, . Let 

k

i { } { }i k k∈ ∪ id
i i Rθ ∈Θ ⊂ . 

Denote the expectation and empirical measure of, say f , as Gf fdG= ∫  and 
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1
1

( )N
N n

G f N f y−
=

= ∑ n , respectively. Denote . .a s⎯⎯→  as convergence almost surely. Let îθ  

be the Maximum Likelihood Estimator (MLE) of the model . im

Assume that  and kg kf  are σ − finite measurable probability density functions with the 

regularity stated below. We state the regularity conditions for  below.  

(C1) , , are compact. iΘ i∀

(C2)  and kg kf  are dominated for k∀  and k∀ , i.e. 1( )kg b y≤  and 2 ( )kf b y≤ , where 

 and  are continuous on Y  and integrable with respect to G . 1( )b y 2 ( )b y

(C3)  and kg kf , k∀ , , are almost surely continuous on k∀ kY θ× , and kY θ× , 

respectively. 

Remarks: The compactness condition (C1) may involve other restrictive conditions for 

models such as mixture normal models (see e.g. Hathaway 1985). The domination condition 

(C2) ensures the existence of the expectations , , log kG g log kG f log kG g  and log kG f , 

, . The nonidentifiability problem of the kind discussed above is allowed for . 

However, such problem is not permitted for 

k∀ k∀ kg

kf ; there exist no point kθ  such that 

f ( )kk gθ = . 

Suppose one of candidate models is selected if the corresponding model selection 

criterion evaluated at the MLE, N il − d Npθ  is maximized . The following conditions are 

ass  for the penal  fun n

(P1)  if . 

(P2) 

,
ˆ( )

i

umed ty ctio .  ,id Np

1 2, ,i id N d Np p< , N∀  
1 2i id d<

, . . 0id N a sp
N

⎯⎯→ . 
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(P3) , . .id N a sp
log log N

⎯⎯→∞ . 

Theorem 1. Assume conditions (C1) – (C3) and (P1) – (P3) are satisfied. 

(i) If the set of candidate models is f kM m∪  (i.e.  is the only true model; km g kM m=  

and ), then 1kq = ˆlim Pr( ) 1i kN
m m

→
1,..., 1ki q= += , =

∞
, a.s.. 

(ii) If the set of candidate models is fM  (i.e. it does not include a true model), then 

m m*ˆlim Pr( ) 1iN →∞
= , , a.s., where  is the model whose density 1,..., ki q= *m=

*f  is closest to g  in the Kullback-Leibler (KL) m ong the function easure am

models in fM . 

f gM M∪  with { , 1}g k kM m q= >

*

(iii) If the set of candidate models is  (i.e. it contains 

more than one true model), then m mˆlim Pr( ) 1i kN →∞
= q, 1,..., kki q= += , a.s., where 

*
km  is the true model with the smallest dimension *

kd  among the models in gM . 

ify that our criterion that includes the BIC satisfies Conditions 

(P1) – (P3). Our criterion as a generalized version of the BIC possesses the consistency 

results sta

Remarks. 

1.  BIC relies on the true model 

2.  of size of model dimension, d, which 

implies the result l in 

It is straightforward to ver

ted in Theorem 1. 

There is common belief that the consistency of

being included in the candidate models (e.g. Haughton 1988, Shao 1997). Our 

results in (ii) do not require such assumption. 

The results in (i) and (ii) hold regardless

s hold even when the true model in (i) or the closest mode

(ii) have a large model dimensionality. 
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(log log )O Nλ =  proposed by Hannan and Quinn (1979) does not satis

Condition P(3), hence does n  in (i

( / log )O N N

3. fy 

ot give rise to the results ii).  

4. λ =  suggested by Rao and Tibshirani (1997) satisfies all 

conditions P(1)-P(3). But as (log ) /( / log ) 0rN N N →  as , it leads to a 

re aggressive criterion than our BGIC for all . In fact it quickly goes 

well above 5 for a mod  ( e Table 1).  

 CHOICE OF 

 N → ∞

mo 0r >

erate sample size se

 

r  4.

 

4.1. Reporting the range of r  values 

As we have seen in Section 2, different choices of priors on θ  and m , as well as nu

of terms of the Laplace expansion being used have impacts on the value of r . It is generally

difficult to decide what value r  should take. Even for the AIC, it is also derived in an 

approximate form (Akaike 1973). In fact, Zhang (1996) recommended 

mber 

 

λ  in (1) can takes a 

value from the range between 1 and 5 with a larger value leading to a more parsimony 

model. On the other hand, ther  exist situations, where one e m

for ple i fo  s e 

ch  of  values whenever possible. 

For example, suppose  for two models  and . Model  is 

preferred over  for  

 

odel is preferred over another 

 a range of values of r  based on the sam nformation. Ther re, w uggest on

should report su  a ran

e e

ge  r

1 2

ˆ ˆ( ) ( )N i N il f l f> , 3n ≥
1i

m
2i

m
1i

m

2i
m

1 2 1

ˆ ˆlog 2[ ( ) ( )] log( )
0 2N i N i i il f l f d d

r
> − −

< <  

 if jd d . 

log log N

if i jd d> ; for 0 r< < ∞ i < 
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One immed ately knows whether the preference is suggested by AIC not BIC if 0 <

or both AIC and BIC if 1r ≥ . 

Reporting viden e of model fit in terms of how much penalty a 

preferred model can afford to. In some senses, it offers some sort of P-value ideas for model

comparison; log 2 / log logr N=  and 1 co responding to th  offer benchm

values l

i 1< , 

range provides e c

 

r e AIC and BIC ark 

ike t . It ggests to what extent the choice of a model is made 

o lose the upper bound  is away from  (AIC) and 

(B

ed 

. 

a 

odel context. One would then use such value in a similar model context with a 

 that the consistency of model selection is held with a sample size approaches to 

inf

been 

words, while the AIC often results in selecting too many covariates, BIC often just retains 

r

r  

he significance levels su

 r  log 2 / log log N 1 by lo king at how c

IC). 

4.2. Choice of r  

As demonstrated in Section 2, the derivation of the BIC involves an use of the Laplace 

approximation, accuracy of which closely relates to the model density function and prior 

distribution function. It implies that it might be difficult to find an uniform Bayesian type 

criterion that works well for in different model context. We suggest that a simulation bas

technique such as cross validation (CV) may be used for choosing an r value in our criterion

Such choice would provide some understanding of those factors influencing the BF in 

particular m

view

inity.    

4.3. Linear regression 

As covariate selection in linear regression is an important application of model selection 

criteria, (see e.g. Foster, et al. 1994, Shao 1997, George 2000, Yang 2005, 2007 and 

references therein), we discuss a choice of r  of our criterion in such applications. It has 

reported in the literature (Shibata 1976, Shao 1997, Yang 2007), that while AIC is too 

conservative in selecting covariates, BIC on the other hand often is too liberal. In other 
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those very influential ones. These observations naturally lead us to suggest to choose a value 

between log 2 / log g N  and 1. Shown in Table 1, loglo 2 / log log 0.508N ≈  for  then 

slowly dies off as in

50N =

N  creases. It is about 0.220 when 1010

ld 

N = . 

If we choose 0.5r = , from the comparison among the columns under, our criterion wou

roughly match AIC for a small sample size, while enjoying the consistency property for a 

large sample size. Although our criterion with 0 1r< <  has a slower rate of identifying the

true model or the closest model compared to the BIC, it provi

 

 an opportunity to bridge 

the

e model than 

des

 strengths of the AIC and BIC when sample size is large. 

Foster and George (1994), Shao (1997) and Yang (2005, 2007) showed that the BIC has 

much greater model risk in terms of the estimated model deviating from the tru

the AIC for a large sample size. On the other hand, Zhang (1992) argued that 5λ >  is too 

itting consideration. From Table 1 it is clear that ourgreat a penalty for overf  n with 

, i.e. 

criterio

0.5r = log Nλ =  satisfies Zhang’s suggestion, up to a very large N, 

= × ; our criterion meets most practical needs. 

4.4 Simulation studies 

 

results hold even when there exists 

the non-identifiability problem discussed in Section 3.  

10exp(25) 7.2 10N =

 

. 

APPENDIXEquation Section (Next) 

We first show the following strong consistency. The 
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Lemma 1. If the conditions (C1) - (C3) are satisfied, then . .ˆlog ( ) loga s
N k kG g Gθ ⎯⎯→ g , 

, and k∀ . .
0

ˆlog ( ) log ( )a s
N k k k kG f G fθ θ⎯⎯→ , k∀ , where 0kθ  is the maximum of 

0log ( )k kG f θ . 

Proof. When a model does not involve the nonidentifiability problem, the standard 

MLE results ensure . For a misspecified model . .ˆlog ( ) loga s
N k kG g Gθ ⎯⎯→ g fkm M∈ , such 

strong consistency result also hold, i.e. . .
0

ˆlog ( ) log ( )a s
N k k k kG f G fθ θ⎯⎯→ , (see e.g White 

1994). strong consistency of MLE 
.ˆ a s

i iθ θ→  readily gives rise to the above results by the 

continuous mapping theorem.  

When a model does involve the nonidentifiability problem for a model , we now 

show . Our proof is based on Feng and McCulloch’s (1996) 

idea, but provides an alternative approach, which extends a standard argument for the 

consistency in the ML context. Following the idea presented in, we define  

as an open neighbourhood around such that 

km M∈ g

g. .ˆlog ( ) loga s
N k kG g Gθ ⎯⎯→

0 0( ) \k kAδ θ ⊂ Θ Θ

0kΘ 0k kθ θ δ− < , where .  is the Euclidean 

norm, 0δ > , 0(k Aδ )kθ θ∈  and  is the selected point such that it is the closest point 

in  to 

0kθ ∈Θ 0k

0kΘ kθ , i.e., 0 0k k k kθ θ θ θ− ≤ − 0k for all 0kθ ∈Θ , and 0k 0kθ θ≠ . Denote  

00 0( )( , , ) sup log ( , ) log ( , )
k kk k kAc y g y g y

δθ θθ δ θ θ∈= − k k

)

. 

Because of the compactness condition (C1), 0( kAδ θ  can be reduced to a finite number of 

open coverings , , 0, j( )j kA Aδ δ θ= 1,...,j J= , such that for each , jAδ , we have   
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0

0, 0, 0,

0, 0

0, 0, 0,

0,

   log ( ) log ( )

log ( ) log ( ) log ( ) log ( )

          log ( ) log ( )

{ ( , , ) ( , , )} ( , , )

   log ( ) log (

N k k k k

N k k k k j N k k j k k j

k k j k k

N k j k j k j

N k k j k k

G g G g

G g g G g G g

G g G g

G c y Gc y Gc y

G g G g

θ θ

θ θ θ θ

θ θ

θ δ θ δ θ δ

θ θ

−

= − + −

+ −

= − +

+ − 0, 0, 0) log ( ) log (j k k j kG g G gθ θ+ − ) .k

 

Following Tauchen (1985, p439), we have that for any 0δ > , there exists 0ω > , such that 

0, 0,[ ( , , ( ))]k j k jE c y θ δ θ ω≤ , and 1
0(log ( )) log ( ) 4N k k k kN l g G gθ θ ω− − ≤ ,k j, Aθ δ∈ , whenever 

 a.s.. Thus 0,( ( ))k jN N δ θ≥ . .
0log ( ) log ( )a s

N k k k kG g G gθ θ⎯⎯→ . Finally by the standard 

argument, as k̂θ  maximizing log ( )N kG g kθ , we have . .
0

ˆlog ( ) log ( )a s
N k k k kG g G gθ θ⎯⎯→ . 

Proof of Theorem 1. 

(i) Define the KL measure (Kullback and Leibler 1951) as 

 ( , ) log gK g f dG
f

= ∫  

The non-negativity property of the KL measure gives  if ( , ) 0K g f > f g≠  and 

 if ( , ) 0K g f = f g= .. 

By the strong Uniform Law of Large Numbers (ULLN) 

 .( ( )) ( ( ))
( , )N k k N a sk k

k k

l g l f
K g f

N
θ θ−

⎯⎯→ . (A.1) 

Because  

 

, ,

,,

.

1 ˆ ˆ   { ( ( )) [ ( ( )) ]}

1 ˆ ˆ{ ( ( )) ( ( ))}

( , ) 0,

k k

k k

N k d N N d Nk k

d Nd N
N k N k k

a s
k

l g p l f p
N

pp
l g l f

N N
K g f

θ θ

θ θ

− − −

= − − +

⎯⎯→ >
N

 

the third line above follows the strong consistency property of Lemma 1 and Condition (P2). 

Therefore, for , 1k = fkm M∈ , , k∀
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, ,
ˆ ˆlim Pr( ( ( )) ( ( )) ) 1

k kN k d N N d Nk kN
l g p l f pθ θ

→∞
− > − =  a.s. 

(ii)  also serves as a measure of the closeness of ( , )K g f f  to g  (Akaike 1973), e.g. 

for two non-true densities 
1kf  and 

2kf , we have 
1 2

( , ) ( , )k kK g f K g f<
1k, if f  is closer to g 

than 
2kf . Define  

 1 2 1 2

2 1

( , ) ( , ) ( , )

                log ( ) log ( ).

k k k k

k k

D f f K g f K g f

f dG y f dG y

= −

= −∫ ∫
 

Because , if ( , ) 0K g f > f g≠ , we have 
1 2

( , ) 0k kD f f < , if 
1kf  is closer than 

2kf  to g; 

, otherwise. 
1 2

( , ) 0k kD f f >

By the strong ULLN, 

 
* *

. *( ( )) ( ( ))
( , ) 0N N a sk k

k

l f l f
D f f

N
θ θ−

⎯⎯→ >  

where *f  is closest to  among all non the true candidate models in g fM .  

Therefore, together with the result of Lemma 1, we have  

*
.* * *

,,

1 ˆ ˆ{ ( ( )) [ ( ( )) ]} ( , ) 0
k

a s
N N d Nk k kd N

l f P l f P D f f
N

θ θ− − − ⎯⎯→ > , 

i.e., 

*
* *

,,
ˆ ˆlim Pr( ( ( )) ( ( )) ) 1

kN N k kd NN
l f p l f pθ θ

→∞ d N− > − =

g k

 a.s. 

(iii) We will present two lemmas before we turn to show our result. 

Consider a model . Let km M∈ 0 0( ) \k kAδθ θ∈ ⊂ Θ Θ  for any 0δ > . Note that if  is 

identifiable, then  collapses to a single point. Let 

km

0kΘ 0( ; ) log ( ; ) log ( ; )k k k kh y g y g y kθ θ θ= − , 

0k 0kθ ∈Θ . The non-negativity property of the KL measure suggests 0Gh− > .  
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Lemma 2. If kθ maximizes log ( ; )N kG g y kθ , 

 2( ; )( ; ) {( ) }
( ; )

k
N k N

k

h yG h y G G
Gh y

θθ
θ

≤ −
−

. (A.2) 

Proof: 

The proof can be established by applying the technique presented in Chambaz (2006, 

Proposition A.1). Consider  

 (N NG h Gh G G h)− = − . (A.3) 

As , 0Gh− > (A.3) gives rise to  

 ( ; )( ; )( )
( ; )

k
N k N

k

h yG h Gh y G G
Gh y

θθ
θ

< − −
−

. (A.4) 

Since kθ maximizes G glog ( ; )N k ky θ , . Therefore 0NG h > (A.3) also gives rise to 

 ( ; )( ; )( )
( ; )

k
k N

k

h yGh Gh y G G
Gh y

θθ
θ

− < − −
−

, 

 ( ; )( ; ) ( )
( ; )

k
k N

k

h yGh y G G
Gh y

θθ
θ

− < −
−

. (A.5) 

From (A.4) and (A.5), we have (A.2). 

Lemma 3. 

For , 
1 2
, ,k km m M∈ g

 1 1 2 2 . .

,

ˆ ˆ( ( )) ( ( ))
0

ks

N k k N k k a s

d N

l g l g
p

θ θ−
⎯⎯→ , 

where . 1, 2s =

Proof:  

From Lemma 2, we have for any 
1 10 0k kθ ∈Θ  

 16



1 1 1 1 1

1

1

0

2

ˆ( ( )) ( ( )) ( ; )

( ; )
{( ) } .

( ; )

N k k N k k N k

k
N

k

l g l g N G h y

h y
N G G

Gh y

θ θ θ

θ

θ

− =

≤ −
−

 

By the bounded Law of Iterated Logarithm (van der Vaart 1998, p. 19), we have 

 

1

1

1

( ; )
( )

( ; )

log log

k
N

k

h y
N G G

Gh y
c

N

θ
θ

−
−

< , a.s. 

where .  10 c< < ∞

Therefore, 

 

1 1 1 1 1

1

0 2

, ,

2
1

,

ˆ( ( )) ( ( )) ( ; )
{( ) }

( ; )

log log .

k ks s

ks

N k k N k k k
N

d N d N k

d N

l g l g h yN G G
p p Gh y

N c
p

θ θ θ

θ

−
≤ −

−

≤

, 

Because of (P3), we have  

 1 1 1 1 0 . .

,

ˆ( ( )) ( ( ))
0

ks

N k k N k k a s

d N

l g l g
p

θ θ−
⎯⎯→ . 

Similarly, we have for any 
2 20 0k kθ ∈Θ  

 2 2 2 2 0 . .

,

ˆ( ( )) ( ( ))
0

ks

N k k N k k a s

d N

l g l g
p

θ θ−
⎯⎯→ . 

Finally, because 
1 1 2 20( ) (k k k kg g 0 )θ θ= , we have  

 

1 1 2 2

1 1 1 1 2 2 2 2

,

0 0

, ,

. .

ˆ ˆ( ( )) ( ( ))
   

ˆ ˆ( ( )) ( ( )) ( ( )) ( ( ))

0

ks

k ks s

N k k N k k

d N

N k k N k k N k k N k k

d N d N

a s

l g l g
p

l g l g l g l g
p p

θ θ

θ θ θ

−

− −
= −

⎯⎯→

θ
, 
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We now turn to prove the result presented in Part (iii) of Theorem 1. For any two models 

 with . Consider 
1 2
, ,k km m M∈ g 2k1kd d<

 1 2 1

1 21 2

2 2

,
, ,

, ,

ˆ ˆ( ) ( )
ˆ ˆPr( ( ) ( ) ) Pr( 1)k

k k

k k

d Nk k
N k d N N k d N

d N d N

pl g l g
l g p l g p

p p
−

− > − = > −

⎯→

0

. 

Because of Lemma 3, . By condition (P1),  

results in 

1 2 2

. .
,ˆ ˆ{ ( ) ( )}/ 0

k

a s
N k N k d Nl g l g p− ⎯

1 2k kd d<

1 2, ,/ 1
k kd N d Np p − < . Therefore, 

1 21 2, ,ˆ ˆlim Pr( ( ) ( ) ) 0
k kk d N k d NN

l g p l g p
→∞

− > − =

g 2k

N

 a.s. 

for all  with . This implies, 
1 2
,k km m M∈

1kd d>

 *
*

,,
ˆ ˆlim Pr( ( ) ( ) ) 1

kk
k k dd Nn

l g p l g p
→∞

− > − =  a.s. (A.6) 

for any  with . km M∈ g

N

*
k kd d>

Also because of the result in (i), we have 

 *
*

,,
ˆˆlim Pr( ( ) ( ) ) 1

kk
k dkd NN

l g p l f p
→∞

− ≥ − =  a.s. (A.7) 

where fkm M∈ . Combining (A.6) and (A.7) prove the results presented in (iii). 

 

ACKNOWLEDGMENTS 

This research was supported in part by the Australian Research Council's Discovery 

project grants DP0666677 and DP0880796.  

 

 18



References 

Akaike, H. (1973), "Information Theory and an Extension of the Maximum Likelihood 

Principle," in 2nd International Symposium on Information Theory, Tsahkadsor, Armenian 

SSR, pp. 267-281. 

Berger, J., and Pericchi, L. (2000), "Objective Bayesian Methods for Model Selection: 

Introduction and Comparison," in Model Selection, ed. P. Lahiri, Institute of Mathematical 

Statistics. 

Broman, K. W., and Speed, T. P. (2002), "A Model Selection Approach for the Identification 

of Quantitative Trait Loci in Experimental Crosses," Journal of the Royal Statistical Society: 

Series B (Statistical Methodology), 64, 641-656. 

Chambaz, A. (2006), "Testing the Order of a Model," The Annals of Statistics, 34, 1166-

1203. 

Dacunha-Castelle, D., and Gassiat , E. (1997), "Testing in Locally Conic Models, and 

Application to Mixture Models," Probability and Statistics, 1, 285-317. 

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004), "Least Angle Regression," The 

Annals of Statistics, 32, 407-499. 

Fan, J., and Li, R. (2001), "Variable Selection Via Nonconcave Penalized Likelihood and Its 

Oracle Properties," Journal of the American Statistical Association, 96, 1348-1360. 

Feng, Z. D., and McCulloch, C. E. (1996), "Using Bootstrap Likelihood Ratios in Finite 

Mixture Models," Journal of the Royal Statistical Society. Series B (Methodological), 58, 

609-617. 

Foster, D. P., and George, E. I. (1994), "The Risk Inflation Criterion for Multiple 

Regression," The Annals of Statistics, 22, 1947-1975. 

 19



George, E. I. (2000), "The Variable Selection Problem," Journal of the American Statistical 

Association, 95, 1304-1308. 

Hannan, E. J., and Quinn, B. G. (1979), "The Determination of the Order of an 

Autoregression," Journal of the Royal Statistical Society. Series B (Methodological), 41, 

190-195. 

Hathaway, R. J. (1985), "A Constrained Formulation of Maximum-Likelihood Estimation for 

Normal Mixture Distributions," The Annals of Statistics, 13, 795-800. 

Haughton, D. M. A. (1988), "On the Choice of a Model to Fit Data from an Exponential 

Family," The Annals of Statistics, 16, 342-355. 

Huber, P. J. (1967), "The Behavior of Maximum Likelihood Estimates under Nonstandard 

Conditions," in Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and 

Probability, pp. 221-233. 

Kass, R. E., and Raftery, A. E. (1995), "Bayes Factors," Journal of the American Statistical 

Association, 90, 773-795. 

Kass, R. E., and Wasserman, L. (1995), "A Reference Bayesian Test for Nested Hypotheses 

and Its Relationship to the Schwarz Criterion," Journal of the American Statistical 

Association, 90, 928-934. 

Keribin, C. (2000), "Consistent Estimation of the Order of Mixture Models," Sankhyā Series 

A 62, 49-66. 

Kullback, S., and Leibler, R. A. (1951), "On Information and Sufficiency," The Annals of 

Mathematical Statistics, 22, 79-86. 

Leroux, B. G. (1992), "Consistent Estimation of a Mixing Distribution," The Annals of 

Statistics, 20, 1350-1360. 

 20



Lindley, D. V. (1980), "Approximate Bayesian Methods," in Bayesian Statistics, eds. J. 

Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, Valencia: Valencia University 

Press, pp. 223-237. 

Miller, A. (2002), Subset Selection in Regression (2nd ed.), Chapman & Hall/CRC. 

Nishii, R. (1984), "Asymptotic Properties of Criteria for Selection of Variables in Multiple 

Regression," Annals of Statistics, 12, 758-765. 

Rao, C. R. (1973), Linear Statistical Inference and Its Applications (2 ed.), Wiley. 

Rao, C. R., and Wu, Y. H. (1989), "A Strongly Consistent Procedure for Model Selection in a 

Regression Problem," Biometrika, 76, 369-374. 

Rao, J. S., and Tibshirani, R. (1997), "Discussion To "An Asymptotic Theory for Model 

Selection" By Jun Shao," Statistica Sinica, 7, 249-252. 

Schwarz, G. (1978), "Estimating the Dimension of a Model," The Annals of Statistics, 6, 

461-464. 

Shao, J. (1997), "An Asymptotic Theory for Linear Model Selection," Statistica Sinica, 7, 

221-264. 

Shibata, R. (1976), "Selection of the Order of an Autoregressive Model by Akaike's 

Information Criterion," Biometrika, 63, 117-126. 

Tibshirani, R. (1996), "Regression Shrinkage and Selection Via the Lasso," Journal of the 

Royal Statistical Society. Series B (Methodological), 58, 267-288. 

Tierney, L., and Kadane, J. B. (1986), "Accurate Approximations for Posterior Moments and 

Marginal Densities," Journal of the American Statistical Association, 81, 82-86. 

van der Vaart, A. W. (1998), Asymptotic Statistics, Cambridge University Press. 

 21



Yang, Y. (2005), "Can the Strengths of Aic and Bic Be Shared? A Conflict between Model 

Indentification and Regression Estimation," Biometrika, 92, 937-950. 

Yang, Y. (2007), "Prediction/Estimation with Simple Linear Models: Is It Really That 

Simple?," Econometric Theory, 23, 1-36. 

Zhang, P. (1992), "On the Distributional Properties of Model Selection Criteria," Journal of 

the American Statistical Association, 87, 732-737. 

 

 

 22



Table 1. Table 1 Caption Here. 

N r(AIC)=log2/loglogN r(BIC)=logN logN^1/2 
2 -1.891 0.693 0.833 
3 7.370 1.099 1.048 
5 1.457 1.609 1.269 
10 0.831 2.303 1.517 
50 0.508 3.912 1.978 

100 0.454 4.605 2.146 
500 0.379 6.215 2.493 
1000 0.359 6.908 2.628 

10000 0.312 9.210 3.035 
100000 0.284 11.513 3.393 

1000000 0.264 13.816 3.717 
10000000 0.249 16.118 4.015 

1E+08 0.238 18.421 4.292 
1E+09 0.229 20.723 4.552 
1E+10 0.221 23.026 4.799 

1.00E+15 0.196 34.539 5.877 
1.00E+20 0.181 46.052 6.786 
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