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Abstract: The information matrix (IM) test, introduced by White (1982), is well known as

a general test for misspecification of a parametric likelihood. This test is based on the fact

that if the model is correct then the information matrix is equal to the covariance of the score

vector. However, the use of information matrix test in applied econometrics is limited because

the actual size of the test derived according to asymptotic critical values often differs considerably

from its nominal size. This paper investigates the application of the multiple testing procedure,

proposed by King et al. (2008), to the information matrix test, where the test is conducted

through the bootstrapping procedure due to Horowitz (1994). This procedure is used to obtain

the critical values, which are used for computing p-value of the test. To examine the size- and

power-performance of the information matrix test based on this approach, we employed the Tobit

model to simulate data. The proposed testing procedure is compared with the Lancaster (1984)

version of information matrix test. We find that both tests have approximately correct sizes, while

the power of our test is higher than that of Lancaster’s version of information matrix test.

Key words: information matrix, bootstrapping, Hessian, multivariate kernel density, score vector,

Tobit model.

1 Introduction

It is often important to test whether a model is correctly specified. When the model is cor-

rectly specified and estimated by maximizing the likelihood, the information matrix should be

asymptotically equal to the negative Hessian matrix. The information matrix test, introduced by
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White (1982), aims to test the significance of the discrepancy between the negative Hessian and

the outer product of the score vector, where the lower triangular components of matrix of such

differences are organized into a vector called the test vector. Chesher (1984) demonstrated that it

can be viewed as a Lagrange multiplier (LM) test for specification error against the alternative of

parameter heterogeneity. As a by product of this analysis, Chesher (1983) and Lancaster (1984)

provided an nR2 version of the IM test, where n is the sample size and R2 is obtained through the

ordinary least squares regression of a column of ones on a matrix whose elements are functions of

1st and 2nd derivatives of the log-density function. For the normal fixed regressor linear model,

Hall (1987) showed that the test decomposed asymptotically into the sum of three components,

while one is White’s general test for heteroscedasticity and the other two test some forms of nor-

mality. An important finding of Hall (1987) is that the components of the IM test are insensitive

to serial correlation.

However, the use of information matrix test in applied econometrics is limited because the

actual size of the test obtained according to asymptotic critical values often differs greatly from its

nominal size, as evidence by the Monte Carlo experiments reported in Taylor (1987), Orme (1990),

Chesher and Spady (1991), Davidson and MacKinnon (1992). Davidson and MacKinnon (1992)

have proposed dealing with this problem by using double-length artificial regressions to compute a

variant of the IM test statistic, but the models for discrete, censored, or truncated data cannot be

dealt with their method. Chesher and Spady (1991) have proposed obtaining the critical value for

the IM test from the Edgeworth expansion through order O(n−1) of the finite-sample distribution

of the test statistic, where n is the sample size. They provided Monte Carlo evidence indicating

that such critical values provide a good approximation to the exact finite-sample distribution of the

IM test statistics and found to be superior to the usual χ2 approximation in some special cases. In

the examples considered by Chesher and Spady (1991), the Edgeworth expansions are independent

of the parameters of the models being tested, but this is not the case in general. Horowitz (1994)

proposed a bootstrapping procedure to obtain critical values for the information matrix test and

illustrated the ability of bootstrapping to overcome the incorrect-size problem in finite samples.

The main purpose of Horowitz paper is to point out that in many circumstances that are important
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in application, good finite-sample critical values for the IM test can be obtained easily through

the use of Monte Carlo simulations or the bootstrap. It is not necessary to derive Edgeworth

expansions or to carry out other algebraically complicated manipulations. The another purpose

of Horowitz’s paper is to provide some insights into the power of the IM test and to encourage

further investigation of power.

All existing versions of the information matrix test rely on the estimate of the asymptotic

covariance matrix of the test vector. The original formula for the asymptotic covariance of the test

vector is analytically complicated and involves the third derivative of the log-likelihood function.

Lancaster (1984) pointed out how the covariance matrix of the White’s information matrix test can

be estimated without computing the third derivative of the log-likelihood function. Dhaene and

Hoorelbeke (2004) indicated that the incorrect-size problem stems from the inaccurate variance-

covariance matrix of the test vector, and proposed the covariance matrix of the test vector be

estimated using a parametric bootstrap. Nonetheless, with the multivariate kernel density esti-

mation technique of Zhang et al. (2006), we are able to estimate the joint density of the test vector

through a bootstrapping procedure other than to construct a scalar statistic in the way that the

current information matrix test does. According to the estimated joint density of the test vector,

we are able to calculate the p-value for the test.

In this paper, we propose an information matrix test using a multiple testing procedure

introduced by King et al. (2008), which involves estimating the density of multiple statistics such

as the test vector in the information matrix test under the null hypothesis, and the bootstrapping

procedure of Horowitz (1994) is used in our test. The variance-covariance matrix of the test vector

is computed according to Lancaster (1984). The proposed testing procedure is then compared

with the Lancaster (1984) version of IM test. The reason of selecting the Lancaster’s version

for comparison is as follows. First, the estimation of variance-covariance matrix of the vector

of indicators is analytically simple and does not require third derivatives of the log likelihood

function. Secondly, it has similar or better size- and power-performances then the other IM tests

considered by Horowitz (1994).
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The rest of the paper is organized as follows. Section 2 briefly describes the information

matrix test. In Section 3, we provide simulation methodology, where we examine the performance

of the proposed testing procedure and the Lancaster’s version of the information matrix test in

terms of size and power. We conclude the results of the paper in Section 4.

2 Information Matrix Test

Let f(y|θ) denote the density for a postulated model and θ an p × 1 vector of parameters. Let

y = (y1, y2, · · · , yn)′ be the vector of observations, and `(y|θ) = log f(y|θ) the logarithmic density.

We need the following notations.

A(θ) = E

[
∂2`(y|θ)
∂θ∂θ′

]
, An(y, θ) =

1

n

n∑
i=1

∂2`(yi|θ)
∂θ∂θ′

,

B(θ) = E

[
∂`(y|θ)

∂θ

∂`(y|θ)
∂θ′

]
, Bn(y, θ) =

1

n

n∑
i=1

∂`(yi|θ)
∂θ

∂`(yi|θ)
∂θ′

,

where expectations are taken with respect to the true density. When the model is correctly

specified, the true density is f(y|θ0), where θ0 is the true value of θ.

The information matrix procedure is based on the information-matrix equality, which states

that A(θ0) + B(θ0) = 0 when the model is correctly specified. Given the vector of n independent

observations, y, the information-matrix test investigates the statistical significance of An(y, θ̂) +

Bn(y, θ̂), where θ̂ is the maximum likelihood estimator of θ.

Let

dij =
1

n

n∑
t=1

[
∂`(yt|θ)

∂θi

∂`(yt|θ)
∂θj

+
∂2`(yt|θ)
∂θi∂θj

]
, (1)

which is evaluated at θ = θ̂. Let D denote the test vector whose elements are dij, for i = 1, · · · , p,

j = 1, · · · , i, and V̂ the consistent estimator of the covariance matrix of D. White (1982) shows

that under regularity conditions, the information-matrix test is

ξn = nD′V̂ −1D. (2)
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Under the null hypothesis, ξn is distributed asymptotically χ2
q with q = p(p+1)/2. Since An(y, θ̂)+

Bn(y, θ̂) is a symmetric matrix, a test of the complete IM identity can be based on the lower

triangular elements of An(y, θ̂)+Bn(y, θ̂). However, according to White (1982), in many situation

it is inappropriate to base the test on all q indicators because some indicators may be identically

zero, furthermore, some indicators may be linear combinations of other. In either case, it is

appropriate to ignore such indicators.

The available Monte Carlo evidence shows that the finite-sample distribution of the IM statis-

tic is poorly approximated by the χ2
q distribution (see, for example, Dhaene and Hoorelbeke, 2004).

Under certain regularity conditions, a central limit theorem can be applied to show that as n tends

to infinity,
√

nD converges to a multivariate normal distribution with mean zero if the model is

correctly specified (see White, 1984, p113).

3 Simulation method

This section reports the results of a Monte Carlo investigation of the finite-sample size and power

of the Information matrix test. The experiments use two forms of the IM test statistic: the

proposed form of the information matrix test (introduced by King et al., 2008) denoted by IMP ,

and the Lancaster form of IM test denoted by IML.

Bootstrapping procedure of Horowitz (1994) has been employed to compare the proposed

form of the information matrix test with the Lancaster’s form of information matrix test. This

procedure is used to obtain the critical values of the test, where the test statistic is not pivotal. In

all the experiments considered by Chesher and Spady (1991), the IM statistic is pivotal. That is,

under the null hypothesis of correct specification, the finite-sample distribution of the test statistic

is independent of the parameters of the model being tested. In the cases investigated by Horowitz

(1994), the use of bootstrap-based critical values makes the empirical sizes of the IM test very

close to its nominal sizes, whereas the empirical and nominal sizes can differ enormously when

asymptotic critical values are used.
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3.1 Tobit model

To evaluate the finite-sample size and power performance of the information matrix test based on

these approaches, we employed the Tobit model to simulate data. The Tobit model is

yi =





x′iβ + ui if RHS > 0

0 if RHS ≤ 0
, (3)

where ui ∼ N(0, σ2). It will be convenient to re-parameterize the model as

hyi =





x′ib + vi if RHS > 0

0 if RHS ≤ 0
, (4)

where h = 1/σ, b = β/σ, and vi ∼ N(0, 1).

Given yi > 0 and xi, the conditional cumulative density of yi is

F (y|yi > 0, xi, b, h) = P{yi ≤ y|yi > 0, xi}

=
Φ(hyi − x′ib)− Φ(−x′ib)

Φ(x′ib)
,

where Φ(·) is the cumulative density function of the standard normal distribution. Given yi > 0

and xi, the conditional density of yi is

f(y|yi > 0) =

h√
2π

exp
{−1

2
(hyi − x′ib)

2
}

Φ(x′ib)
.

Let δi be an indicator variable, such that,

δi =





1 if yi > 0

0 if yi = 0

then we have

P{δi = 1} = P{yi > 0} = Φ(x′ib),

P{δi = 0} = 1− Φ(x′ib).

Let θ = (b′, h)′ denote the parameter vector. The likelihood function for model (4) is

L(y1, y2, · · · , yn|θ) =
n∏

i=1

[1− Φ(x′ib)]
1−δi × [Φ(x′ib)]

δi × [f(yi|yi > 0)]δi .
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When yi = 0, only the first term, which is P{yi = 0}, is kept, and when yi > 0 the product of

the second and third terms, which are P{yi > 0}f(yi|yi > 0), is kept. The logarithmic likelihood

function is

`(y1, y2, · · · , yn|θ) =
n∑

i=1

(1− δi) log {1− Φ(x′ib)}+
n∑

i=1

δi log h− 1

2

n∑
i=1

δi(hyi − x′ib)
2.

The first-order derivatives of `(.) with respect to θ are, respectively,

∂`(.)

∂b
= −

n∑
i=1

(1− δi)
φ(x′ib)

1− Φ(x′ib)
xi +

n∑
i=1

δi(hyi − x′ib)xi,

∂`(.)

∂h
=

n∑
i=1

δi/h−
n∑

i=1

δi(hyi − x′ib)yi,

where φ(.) is the density function of standard normal distribution. The second-order derivatives

of `(.) with respect to θ are, respectively,

∂2`(.)

∂b∂b′
=

n∑
i=1

(1− δi)
φ(x′ib)

1− Φ(x′ib)

[
x′ib−

φ(x′ib)
1− Φ(x′ib)

]
xix

′
i −

n∑
i=1

δixix
′
i,

∂2`(.)

∂b∂h
=

n∑
i=1

δiyixi,

∂2`(.)

∂h∂h
= −

n∑
i=1

δi/h
2 −

n∑
i=1

δiy
2
i .

3.2 Design of experiment

The experiments consist of applying both forms of IM tests to tobit model, given in (4). In model

(4), xi is a vector of explanatory variables, b is a vector of parameters and vi ∼ N(0, 1). xi consists

of an intercept component and either one or two additional variables. The values of xi are fixed in

repeated samples. The values of b are (0.75,1) when xi consists of an intercept and one regressor,

and (0.75,1,1) when xi consists of an intercept and two regressors. The non-intercept components

of xi are sampled independently either from the standard normal distribution or from the uniform

distribution on (-1,1). The values of σ2 is 1 in all of the experiments. The sample sizes are 50,

100, 200 and 300.

The null hypothesis underlying the class of IM tests is H0 : A(θ0) + B(θ0) = 0, i.e., the

model is correctly specified or, in other words, the IM test is a score test of model specification
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against the alternative of local random parameter heterogeneity. In order to test this hypothesis

the proposed form of IM test, IMP , aims to estimate the joint density of the vector of indicators

(D) based on which we can derive the critical values, and therefore the null hypothesis can be

tested. We use Monte Carlo simulation to investigate the size and power performance of both

forms of the IM tests, where the size-corrected critical values were used for computing the sizes

and powers of the tests. When examining the power of the two tests, the data were generated by

the following two models, following Horowitz (1994).

yi = max(0, x′iβ + ui), ui ∼ N(0, exp(0.5 x′iβ)) (5)

and

yi = max(0, x′iβ + 0.75x2x3 + ui), ui ∼ N(0, 1) (6)

where x2 and x3 are the two non-intercept components of xi. In the experiment based on model (5)

the null hypothesis is false because it ignores heteroscedasticity, and the experiment based on

model (6) the null hypothesis uses an incorrect mean function.

3.3 Bootstrapping procedure

In this section, finite-sample sizes and powers of the IML and the IMP tests are illustrated with

bootstrap-based critical values. The bootstrap-based method, due to Horowitz (1994), can be used

to obtain critical values that are more accurate than asymptotic ones. The experiments consist of

applying these versions of IM tests to tobit model. In all experiments, the results based on 2000

Monte Carlo replications with 200 bootstrap samples in each replication. According to Horowitz

(1994), the bootstrap samples beyond 100 had little effect on the results of the experiment. The

bootstrap is very accurate with sample sizes as small as 50 to 100 in the cases investigated by

Horowitz (1994). It follows from Hall (1986) that the error in the size of a test using bootstrap

based critical values is O[n−(j+1)/2] regardless of the number of bootstrap samples used to estimate

α level critical value.
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3.3.1 Finite-sample sizes and powers

For the finite-sample sizes, the experiment consisted of following steps.

1) Generate an estimation data set of size n by random sampling from model (4). xi is fixed

under repeated samples. Estimate parameters (θ) by ML method and compute the IML

test statistic using the vector of non-zero indicators, D. Denote this value by f̂1(IML).

2) Generate a bootstrap sample of size n by random sampling from model (4) but using

the parameter values estimated in step 1 instead of the true values. Using this sample,

re-estimate parameters (θ) by ML method and compute the IML test statistic using the

vector of non-zero indicators. Repeat this step for B=200 times, to estimate the empirical

distribution function of the IML test statistic. Estimate the α-level critical value of IML test

statistic from its empirical distribution. Let fα(IML) denote the estimated α-level critical

value.

3) The proposed testing procedure aims to estimate the joint density of the vector of indicators,

D, through the multivariate kernel density (MKD) method. Using the “B” bootstrap vectors

of indicators obtained in step 2, compute the proposed form of IM test statistic (IMP )

for each vector of non-zero indicators, through the MKD method. Consequently, we get

the empirical distribution function of the IMP test statistic. Estimate the α-level critical

values from the empirical distribution of IMP . Let fα(IMP ) denote the estimated α-level

bootstrap-based critical value of the IMP test.

4) Using the density function of indicator vectors, obtained in step 3, compute the IMP test

statistic of the vector of non-zero indicators computed in step 1. Denote this value by

f̂1(IMP ).

5) Reject the model being tested at the nominal α level based on the bootstrap critical value if

f̂1(IML) > fα(IML) for the Lancaster form of IM test, and if f̂1(IMP ) < fα(IMP ) for the

proposed form of IM test.

6) Repeat steps 1-5 for m=2000 times, and compute the relative frequencies that f̂j(IML) >
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fα(IML) holds for the IML test, and f̂j(IMP ) < fα(IMP ) holds for the IMP test, for

j = 1, 2, · · · ,m, and α = 0.01, 0.05, 0.10. The p-value is approximated by these relative

frequencies.

For the finite-sample powers of the IML and the IMP tests, the values of xi and parameters

are the same as in the case of finite-sample sizes. In each experiment, the power of the IM tests

were computed using bootstrap-based critical values. The experiment were carried out using the

above 6-steps procedure with the modification that in step 1 the data were sampled from the true

data generating process (one of models 5 or 6) not the model being tested.

The results, based on bootstrap procedure, are presented in Tables 1 and 2 for sizes and

powers, respectively. From Table 1, we found that the sizes derived through the IMP test are

very close to the corresponding nominal sizes for both one-regressor and two-regressors models,

and whether the design matrix xi is generated through standard normal distribution or uniform

distribution. Whereas, the sizes obtained through IML test have mixed behavior. At 1% level,

the sizes seems to be over rejecting the null hypothesis, while at 5% and 10%, levels, the sizes are

close to their nominal sizes. This behavior is consistent for both design matrices as well as both

one-regressor and two-regressor models. In term of accuracy of the estimated sizes, the IMP test

perform better than the IML test, specially at 1% level.

Table 2 presents the probability values of rejecting a false null hypothesis, where model (5) is

used as a true alternative hypothesis. We found that the IMP test has larger probability vales then

the IML test in rejecting the false null hypothesis for both one-regressor and two-regressor models.

This result is consistent whether the design matrix xi is generated through standard normal

distribution or uniform distribution. Moreover, the difference between the estimated powers of

IMP and IML tests decrease by the increase of sample size, specially, in the case of two-regressor

model. Thus, the simulation study shows that the proposed form of IM test, IMP , produce correct

sizes and has higher power probabilities than the Lancaster form of IM test, IML.

If we use model (6) as a true alternative, the behavior of probability values of rejecting a false

null hypothesis is similar to those where model (5) is used under the true alternative hypothesis.
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We haven’t provided these results in this paper.

4 Conclusion

This paper presents an information matrix test using a new multiple testing procedure proposed

by King et al. (2008), which involves estimating the density of the multiple test statistics, such as

the score vector in the information matrix test, through bootstrapping rather than constructing

a critical region through a scalar test statistic. According to the estimated density, the p-value

has been derived using Monte Carlo procedure. This testing procedure is conducted through the

bootstrapping procedure of Horowitz (1994).

The proposed form of information matrix test (IMP ) is then compared with the well-known

Lancaster’s version of information matrix test (IML).

The simulation studies have shown that the sizes derived through IMP test are very close

to the corresponding nominal sizes, whereas, the sizes obtained through IML test have mixed

behavior. At 1% level, the sizes seems to be over rejecting the null hypothesis, while at 5% and

10%, levels, the sizes are close to their nominal sizes. The power of IMP test is better than the

IML test in almost all the cases. Moreover, the probability values obtained through one-regressor

model are smaller than those derived through the two-regressors model for almost all sample sizes

and all nominal sizes, except for sample size 50.
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Table 1: Estimated sizes of the IM test through bootstrapping.
IM test Sample One regressor Two regressor

size 0.01 0.05 0.10 0.01 0.05 0.10
xi ∼ N(0, 1)

50 0.011 0.055 0.109 0.009 0.049 0.104
IMP 100 0.009 0.048 0.097 0.009 0.055 0.112

200 0.011 0.057 0.106 0.012 0.046 0.098
300 0.013 0.047 0.087 0.011 0.054 0.107

50 0.018 0.058 0.105 0.012 0.047 0.089
IML 100 0.016 0.056 0.108 0.015 0.051 0.092

200 0.016 0.052 0.100 0.013 0.049 0.098
300 0.014 0.049 0.100 0.017 0.065 0.124

xi ∼ U(−1, 1)
50 0.011 0.048 0.092 0.011 0.048 0.100

IMP 100 0.007 0.049 0.097 0.011 0.054 0.103
200 0.007 0.050 0.097 0.014 0.051 0.106
300 0.011 0.054 0.098 0.011 0.046 0.096

50 0.017 0.058 0.109 0.015 0.051 0.099
IML 100 0.018 0.051 0.097 0.018 0.059 0.109

200 0.013 0.051 0.098 0.020 0.064 0.114
300 0.015 0.054 0.100 0.020 0.059 0.100
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Table 2: Estimated powers of the IM test through bootstrapping with H1 specified by model 5.
IM test Sample One regressor Two regressor

size 0.01 0.05 0.10 0.01 0.05 0.10
xi ∼ N(0, 1)

50 0.171 0.400 0.532 0.135 0.320 0.455
IMP 100 0.268 0.539 0.682 0.356 0.610 0.736

200 0.531 0.796 0.886 0.743 0.917 0.953
300 0.744 0.930 0.965 0.924 0.985 0.992

50 0.035 0.112 0.183 0.039 0.093 0.173
IML 100 0.056 0.183 0.285 0.067 0.186 0.314

200 0.152 0.389 0.557 0.318 0.589 0.720
300 0.329 0.631 0.780 0.661 0.872 0.932

xi ∼ U(−1, 1)
50 0.047 0.168 0.281 0.077 0.210 0.315

IMP 100 0.091 0.247 0.363 0.128 0.311 0.438
200 0.187 0.440 0.581 0.268 0.522 0.648
300 0.274 0.562 0.692 0.424 0.697 0.790

50 0.024 0.074 0.132 0.024 0.060 0.118
IML 100 0.030 0.088 0.158 0.036 0.114 0.195

200 0.068 0.175 0.293 0.084 0.214 0.330
300 0.100 0.251 0.403 0.172 0.371 0.536
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