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Abstract

Aumann (1976) derives his famous we cannot agree to disagree result under the

assumption that people are expected utility (=EU) decision makers. Motivated

by empirical evidence against EU theory, we study the possibility of agreeing

to disagree within the framework of Choquet expected utility (=CEU) theory

which generalizes EU theory by allowing for ambiguous beliefs. As our �rst main

contribution, we show that people may well agree to disagree if their Bayesian

updating of ambiguous beliefs is psychologically biased in our sense. Remarkably,

this �nding holds regardless of whether people with identical priors apply the

same psychologically biased Bayesian update rule or not. As our second main

contribution, we develop a formal model of Bayesian learning under ambiguity.

As a key feature of our approach the posterior subjective beliefs do, in general,

not converge to �true� probabilities which is in line with psychological evidence

against converging learning behavior. This �nding thus formally establishes that

CEU decision makers may even agree to disagree in the long-run despite the fact

that they always received the same information.
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1 Introduction

Aumann (1976) proves that �If two people have the same priors, and their posteriors

for an event A are common knowledge, then these posteriors are equal� (p. 1236).

This celebrated we cannot agree to disagree result has been derived under the implicit

assumption that people are subjective expected utility (EU) maximizers whose beliefs

are given as additive probability measures. While there exist several studies on the

possibility of agreeing-to-disagree in decision-theoretic frameworks that generalize EU

theory (cf. section 2 �Related literature� in this paper), to the best of our knowledge

none of these studies addresses the possibility that people may interpret information in

di¤erent ways.

The contributions of this paper are two-fold. As our �rst contribution, we demon-

strate that people may agree to disagree if their beliefs express ambiguity attitudes as,

e.g., elicited in paradoxes of the Ellsberg type. This result holds regardless of whether

people receive the same information or not since our decision theoretic framework allows

for the possibility that identical information may be interpreted di¤erently. More pre-

cisely, we di¤erentiate between optimistically, resp. pessimistically, Bayesian updating

of ambiguous beliefs. With these de�nitions we formally describe the di¤erence between

�half empty�versus �half full�attitudes in the context of interpreting new information.

In order to investigate the question whether agents may forever agree to disagree if they

are always fed the same information, we develop, as our second contribution, a formal

model of Bayesian learning with ambiguous beliefs.

Key to our analysis is the assumption that people are Choquet expected utility

(CEU) rather than EU decision-makers. CEU theory (Schmeidler 1989, Gilboa 1987) is

a generalization of EU theory that admits for the integration of a vNM function with

respect to non-additive probability measures (capacities). Properties of such capacities

are used for the formal description of ambiguity attitudes which may explain Ellsberg

(1961) paradoxes. Ellsberg paradoxes demonstrate systematic violations of Savage�s

(1954) �sure thing principle�. The sure thing principle, however, ensures that there is a

unique way of deriving ex-post preferences from ex-ante preferences, implying a unique

Bayesian update rule for the additive probabilities of subjective EU theory. The picture

is di¤erent for the non-additive probability measures of CEU theory for which several per-

ceivable Bayesian update rules exist (cf. Gilboa and Schmeidler 1993, Sarin and Wakker

(1998), Eichberger, Grant and Kelsey 2006, Siniscalchi 2001, 2006). Following Gilboa

and Schmeidler�s (1993) psychological interpretation we consider the extreme cases of

the optimistic, resp. pessimistic, update rule, which we apply to non-additive probabil-

ity measures de�ned as neo-additive capacities in the sense of Chateauneuf, Eichberger

and Grant (2006). Our resulting de�nition of optimistically, resp. pessimistically, biased
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agents combines the standard model of rational Bayesian learning with an optimistic,

resp. pessimistic, attitude towards the interpretation of new information.

We present two di¤erent results of the type that people may agree to disagree if their

update rules are psychologically biased. Our �rst result (proposition 1) shows that if two

people have the same prior, apply di¤erent updating rules, and their posteriors for an

event A =2 f?;
g are common knowledge, then these posteriors will be di¤erent even in
case they have identical information partitions. Within the appropriate framework this

result is easily derived. However, beyond the mere formal result our �nding addresses an

important behavioral issue. Aumann (1976) writes �In private conversation, Tversky has

suggested that people may also be biased because of psychological factors, that may make

them disregard information that is unpleasant or does not conform to previously formed

notions� (p. 1238). There is no way of describing such psychological biases of real-

life people within Aumann�s framework. Within our approach, however, the resulting

�myside bias�has a straightforward interpretation as people�s di¤erent attitudes towards

the interpretation of information due to psychological predispositions such as the �half-

empty glass�versus the �half-full glass�attitude.

Whereas our �rst result applies to people who use di¤erent rules of Bayesian up-

dating, our second result (proposition 2) refers to the case of identical updating rules.

We �nd that if two people have the same prior, apply the same learning rule, and their

posteriors for an event A =2 f?;
g are common knowledge, then these posteriors can
be di¤erent in case they have di¤erent information partitions. Thus, neither in the case

where people have the same information partitions nor in the case where people apply

the same update rule does Aumann�s conclusion obtain when Bayesian learning is psy-

chologically biased in our sense. To the contrary, according to our results a di¤erence in

posteriors that are common knowledge is the rule rather than the exception when people

are psychologically biased.

Standard models of Bayesian learning with additive beliefs show that people�s beliefs

must converge in the long-run to the same belief if they observe identical information

drawn from an i.i.d. stochastic process. If this convergence result also holds true in our

environment of CEU decision-makers, the relevance of proposition 1 would be restricted

to a short-run argument only. In order to investigate the long-run relevance of proposi-

tion 1 we therefore develop a model of Bayesian learning based on our decision-theoretic

framework. In contrast to the standard model of rational Bayesian learning (e.g., Tonks

1983, Viscusi and O�Connor 1984, Viscusi 1985), which obtains as a special case of our

model, the posterior beliefs of our learning model do in general not converge to �true�

probabilities. As a consequence, agreeing to disagree becomes possible in our framework

even in the long run. This �nding also contributes to the discussion about the plausibil-
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ity of the common priors assumption which typically presumes (cf. Aumann 1987, 1998,

Gul 1998) that common priors are justi�ed for agents with symmetric information. Our

�nding demonstrates that this is not necessarily the case for ambiguous beliefs.

Our model of Bayesian learning with respect to ambiguous beliefs is also in line with

several studies in the psychological literature which show that real-life agents�learning

behavior does not necessarily imply convergence since learning may be prone to e¤ects

such as �myside bias�or �irrational belief persistence�(cf., e.g., the references in chapter

9, Baron 2007). For example, in an early contribution to this literature, Lord, Ross,

and Lepper (1979) conduct an experiment in which agents�posteriors diverge despite

the fact that all agents have received the same information.1 Moreover, de�nitions of

several psychological phenomenons such as delusions, depressions etc. are based on

the observation that di¤erent subjects may interpret identical information in di¤erent

ways (cf. Beck 1976). We regard the �ndings in this psychological literature as further

evidence in support of this paper�s main theme; namely, that the interpretation of new

information may be prone to some psychological bias. If this is true, Aumann�s we cannot

agree to disagree result would apply to idealized rather than to real-life decision-makers

even in case the common priors assumption is satis�ed.

The subsequent analysis is structured as follows. Section 2 discusses the relationship

of our approach to the existing literature. In section 3 we describe our decision-theoretic

framework. Section 4 recalls Aumann�s (1976) epistemic framework and presents our

�rst agreeing to disagree result. A simple example in section 5 about the possibility

of ex-post asset trade illustrates this �rst result. In section 6 we introduce our model

of Bayesian learning under ambiguity which demonstrates that our �rst result is also

relevant in the long-run. Our second agreeing to disagree result is stated and proved in

section 7. Section 8 concludes.

2 Related literature

2.1 No-trade results

Combined with Harsanyi�s (1967) common priors doctrine Aumann�s we cannot agree

to disagree result has been very in�uential in information economics. Especially the

so-called no-trade theorems - basically stating that there should be no ex-post trade

1The subjects in this experiment were confronted with two purported statistical studies, one study

supporting the other study rejecting the claim that capital punishment has a crime deterrence e¤ect.

For analogous results in the context of Bayesian updating of subjective probabilities see Pitz, Downing,

and Reinhold (1967), Pitz (1969), and Chapman (1973).
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in �nancial assets if the agents are rational - are based on Aumann�s approach (cf.,

e.g., Milgrom 1981, Milgrom and Stokey 1982, Samet 1990, Morris 1994, Bonanno and

Nehring 1999). The connection between Aumann�s we cannot agree to disagree result

and the impossibility of ex-post trade in �nancial assets is straightforward. Under the

assumption that agents have di¤erent preferences for such assets if and only if they have

di¤erent beliefs about the assets�future returns, there are strict incentives for ex-post

trade if and only if the agents have di¤erent posterior beliefs. Since the market-price of

such assets is common knowledge between the trading agents, any trade would result in

the traders�common knowledge that their posteriors must be di¤erent.2

Since no trade-results are seemingly at odds with reality, there are several contri-

butions in the literature investigating the robustness of no-trade results with respect

to a weakening of Aumann�s assumptions. One line of research discusses concepts of

bounded rationality that weaken the rationality assumptions of Aumann�s epistemic

framework. For example, information structures have been considered that are non-

partitional (Bacharach 1985, Samet 1990, Geneakoplos 1992, Rubinstein and Wolinsky

1990) or concepts of �almost�common-knowledge have been introduced (Neeman 1996).

In contrast to this literature our approach fully adopts Aumann�s epistemic framework.

The agents of our model are boundedly rational not with respect to their logical capa-

bility but with respect to their psychological bias in interpreting new information.

Closer to our own approach is a second line of research on no-trade results that consid-

ers decision theoretic alternatives to EU theory. In an early contribution Dow, Madrigal

and Werlang (1990) already provide an example in which ex-post trading becomes pos-

sible because agents update their non-additive beliefs according to the Dempster-Shafer

rule which is at the heart of our de�nition of pessimistically biased Bayesian learning.3

Dow et al. thereby assume asymmetric information and common non-additive priors so

that their example can be regarded as an illustration of our proposition 2 for the special

case of pessimistically biased agents.

Halevy (1998, 2004) claims that the �nding of Dow et al. can be extended to the

case of symmetric information so that there might occur ex-post trading between agents

with common priors and identical information partitions if their beliefs are non-additive.

More precisely, Halevy writes:

�A similar result appears in Dow et al (1990). Their result, as noted by

Epstein and Le Breton (1993) and as our present example illustrates, relies

2Note that the typical assumption of �strictly risk averse�traders (e.g., Milgrom 1981, Milgrom and

Stokey 1982) is thus not necessary for obtaining �no-trade�results.
3Within the multiple prior framework Kajii and Ui (2007) show that full-Bayesian updating may

result (under asymmetric information) in di¤erent sets of posteriors whose intersection is non-empty.
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merely on dynamic inconsistency of the individual agents. Their claim that

trade is a result of asymmetric information is not accurate: we show below

that it could be reached with completely symmetric information and even

with a common prior.�(footnote 17, p. 20 in Halevy 1998)

In the light of our propositions 1 and 2, we take a somewhat di¤erent view from

Halevy. Namely, Dow et al.�s conclusion is indeed accurate under their assumption of

an identical update rule for all agents: our analysis demonstrates that agents with an

identical update rule cannot agree to disagree if they have identical information par-

titions. Our own asset-trade example in section 5 of this paper therefore establishes

the existence of ex-post trade between agents with symmetric information and common

priors if and only if the agents have di¤erent update rules. Since Halevy�s example does

not consider di¤erent update rules, his �nding appears to be at odds with our own re-

sults. As it turns out, however, the di¤erence between Dow et al. and our conclusion,

on the one hand, and Halevy�s conclusion, on the other hand, is only due to di¤erent

notions of beliefs arising from the fact that Halevy considers an environment with ob-

jective probability distributions, i.e., lotteries, whereas Dow et al. and our approach

work within the subjective Savage-framework.4 More speci�cally, Halevy�s example is

based on Yaari�s (1987) dual theory in which objective additive probabilities are trans-

formed into non-additive beliefs by some transformation function so that he can separate

between (objective) probabilities and ambiguity attitudes arising from the transforma-

tion. Halevy then speaks of common priors whenever his agents have common objective

probabilities. Since these agents apply di¤erent transformation functions, however, their

resulting non-additive priors are no longer identical with respect to our notion of sub-

jective beliefs which incorporates ambiguity attitudes. According to our and Dow et

al.�s notion of subjective beliefs the assumption of common priors would therefore be

violated in Halevy�s example.

Rubinstein and Wolinsky (1990, Remark p. 190) argue that Milgrom and Stokey�s

no-trade result applies to all decision theories under uncertainty which satisfy dynamic

consistency. Similarly, Ma (2001) (for general preferences over Savage-acts), Kajii and

Ui (2007) (for the multiple prior framework) andWakai (2001) (for the recursive multiple

prior framework) establish formal links between dynamic consistency and the impossi-

bility of speculative trade. Halevy (2004) reports the interesting fact that there might

even be ex-post trading between dynamically consistent agents if these agents violate

consequentialism. While EU decision-makers satisfy, by the sure-thing principle, dy-

namic consistency as well as consequentialism, the CEU decision-makers of our model

4I am grateful to an anonymous referee for pointing me to this interpretation of Halevy�s approach.
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only satisfy consequentialism and the possibility of agreeing to disagree exclusively re-

sults from their dynamically inconsistent preferences (cf. Epstein and Le Breton 1993,

Sarin and Wakker 1998).

2.2 Learning under ambiguity

Epstein and Schneider (2007) also consider a model of learning under ambiguity which

shares with our learning model the feature that ambiguity does not necessarily vanish

in the long run. Their learning model is based on the recursive multiple priors approach

(Epstein and Wang 1994; Epstein and Schneider 2003) which, basically, restricts condi-

tional max min expected utility (MMEU) preferences of Gilboa and Schmeidler (1989) in

such a way that dynamic consistency is satis�ed. While MMEU theory is closely related

to CEU theory restricted to convex capacities (e.g., neo-additive capacities for which the

degree of optimism is zero), the similarity between Epstein and Schneider�s approach

on the one hand and our learning model on the other hand ends here. Epstein and

Schneider establish ambiguity in the long run under the assumption that the decision-

maker permanently receives ambiguous signals, which they formalize via a multitude of

di¤erent likelihood functions at each information stage in addition to the existence of

multiple priors.5 This introduction of multiple likelihoods is rather ad hoc and it would

be interesting to see an axiomatic or/and psychological foundation of this approach

which goes beyond the mere technical property that multiple likelihoods can sustain

long-run ambiguity in the recursive multiple priors framework. In the meantime, our -

comparably simple - model of a Bayesian learner who is prone to psychological attitudes

in the interpretation of new information o¤ers a rather straightforward explanation for

biased long-run beliefs even in the case that the decision-maker receives signals that are

not ambiguous. Finally notice that the restriction of Epstein and Schneider�s approach

to dynamically consistent preferences excludes preferences that violate Savage�s sure-

thing principle as elicited in Ellsberg paradoxes. More speci�cally, by observation 2 in

this paper we show that any updating rule for preferences over Savage-acts must be dy-

namically inconsistent if the ex-ante preferences strictly violate the sure-thing principle.

Since our learning model does not exclude dynamically inconsistent decision behavior,

it can accommodate a broader notion of ambiguity attitudes than the Epstein-Schneider

approach, including ambiguity attitudes that are not compatible with the sure-thing

principle.

Marinachi (1999) studies a decision-maker who repeatedly observes an experiment

such that the outcomes at each trial are identically and independently distributed with

5In the case of learning from ambiguous urns without multiple likelihoods, ambiguity obviously

vanishes in the learning process; (for a formal result see Marinachi 2002).
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respect to the decision-maker�s non-additive belief; (Marinachi thereby de�nes indepen-

dent events as events such that the product of their marginal non-additive probabilities

coincides with the non-additive probability of their intersection.) For such i.i.d. random

variables with respect to non-additive beliefs Marinachi derives a law of large numbers

as counterpart to the additive case thereby admitting for the possibility that ambiguity

does not vanish in the long-run. While Marinachi�s approach may thus be regarded as a

Frequentist�s approach towards non-additive probabilities, our approach is a subjectivist

Bayesian one according to which an agent has a subjective prior belief over the whole

event space while she uses sample information from an (objective) i.i.d. process in order

to update her subjective belief. In contrast to Marinachi�s approach, the distributions

of outcomes in di¤erent Bernoulli trials are, in general, not i.i.d. with respect to the

non-additive posteriors of our Bayesian approach. Unlike in our approach the learning

behavior of di¤erent agents in Marinachi�s model must therefore converge to the same

limit if they have identical priors.

3 Preliminaries: The decision-theoretic framework

3.1 Choquet decision theory

As in Aumann (1976) we consider a measurable space (
;F) with F denoting a �-algebra
on the state space 
. As a generalization of Aumann�s assumption of EU decision-

makers, however, we consider a CEU rather than an EU decision-maker.6 In contrast

to EU theory, CEU theory admits for non-additive probability measures, i.e., capacities,

whereby a capacity � : F ! [0; 1] must satisfy

(i) � (;) = 0, � (
) = 1
(ii) A � B ) � (A) � � (B) for all A;B 2 F :
Additional properties of capacities are used in the literature for formal de�nitions of,

e.g., ambiguity and uncertainty attitudes (Schmeidler 1989, Epstein 1999, Ghirardato

and Marinacchi 2002), pessimism and optimism (Eichberger and Kelsey 1999, Wakker

2001), as well as sensitivity to changes in likelihood (Wakker, 2004).

6CEU theory was �rst axiomatized by Schmeidler (1986, 1989) within the Anscombe and Aumann

(1963) framework, which assumes preferences over objective probability distributions. Subsequently,

Gilboa (1987) as well as Sarin and Wakker (1992) have presented CEU axiomizations within the Savage

(1954) framework, assuming a purely subjective notion of likelihood. CEU theory is equivalent to

cumulative prospect theory (Tversky and Kahneman 1992, Wakker and Tversky 1993) restricted to the

domain of gains (compare Tversky and Wakker 1995). Moreover, as a representation of preferences

over lotteries, CEU theory coincides with rank dependent utility theory as introduced by Quiggin (1981,

1982).
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In our model of non-rational Bayesian learning we restrict attention to a class of

capacities that are de�ned as neo-additive capacities in the sense of Chateauneuf, Eich-

berger, and Grant (2006). Neo-additive capacities stand for deviations from additive

probabilities such that a parameter � (degree of ambiguity) measures the lack of con-

�dence the decision-maker has in some subjective additive probability measure �. In

addition, a second parameter � measures the degree of optimism versus pessimism by

which the decision-maker resolves his ambiguity.

De�nition: A neo-additive capacity, �, is de�ned, for some �; � 2 [0; 1], by

� (A) = � (�!o (A) + (1� �)!p (A)) + (1� �)� (A) (1)

for all A 2 F such that � is some additive probability measure and we have for

the non-additive capacities !o

!o (A) = 1 if A 6= ; (2)

!o (A) = 0 if A = ;

and !p respectively

!p (A) = 0 if A 6= 
 (3)

!p (A) = 1 if A = 
.

Recall that the Choquet integral of a bounded function f : 
 ! R with respect to
capacity � is de�ned as the following Riemann integral extended to domain
 (Schmeidler

1986):

E [f; �] =

Z 0

�1
(� (fs 2 
 j f (s) � zg)� 1) dz +

Z +1

0

� fs 2 
 j f (s) � zg dz. (4)

The following observation extends a result (Lemma 3.1) of Chateauneuf, Eichberger, and

Grant (2007) for �nite random variables to the more general case of random variables

with a closed and bounded range.

Observation 1. Let f be a real-valued function with closed and bounded range. Then
the Choquet expected value (4) of f with respect to a neo-additive capacity (1) is

given by

E [f; �] = � (�max f + (1� �)min f) + (1� �)E [f; �] . (5)
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Proof: Relegated to the appendix.

Let f denote a Savage-act, i.e., a mapping from the state space 
 into some set

of consequences X. The Choquet expected utility (Schmeidler 1989; Gilboa 1987) of a

bounded and closed Savage-act f with respect to a neo-additive capacity is

E [u (f) ; �] = �

�
�max
!2


u (f (!)) + (1� �)min
!2


u (f (!))

�
+ (1� �)E [u (f) ; �] , (6)

with u : X ! R denoting a von Neumann-Morgenstern utility function.7 Obviously, in
case there is no ambiguity, i.e., � = 0, (6) reduces to the standard subjective expected

utility representation of preferences over Savage-acts.

3.2 Bayesian updating of capacities

CEU theory has been developed in order to accommodate paradoxes of the Ellsberg

type which show that real-life decision-makers violate Savage�s sure-thing principle. In

this subsection we demonstrate that the abandoning of the sure-thing principle bears

two important implications for conditional CEU preferences over Savage-acts. Firstly,

in contrast to Bayesian updating of additive probability measures, there exist several

perceivable Bayesian update rules for non-additive probability measures (cf. Gilboa and

Schmeidler 1993, Sarin andWakker 1998, Pires 2002, Eichberger, Grant and Kelsey 2006,

Siniscalchi 2001, 2006). Secondly, any preferences that (strictly) violate the sure-thing

principle cannot be updated in a dynamically consistent way. That is, there does not

exist any updating rule for capacities such that ex-ante CEU preferences that (strictly)

violate the sure-thing principle are updated in a dynamically consistent manner to ex-

post CEU preferences.

To see this de�ne the Savage-act fBh : 
! X such that

fBh (!) =

(
f (!) for ! 2 B
h (!) for ! 2 :B

where B is some non-empty event. Recall that Savage�s sure-thing principle states that,

for all acts f; g; h; h0 and all events B 2 F ,
7Ludwig and Zimper (2006a) show that the CEU of an act with respect to a neo-additive capacity

can be equivalently described by the �-maxmin expected utility with respect to multiple priors (�-MEU)

of an act which encompasses the original multiple priors approach of Gilboa and Schmeidler (1989) as a

special case (see, e.g., Ghirardato et al., 1998; Ghirardato et al., 2004; Siniscalchi, 2005). In particular,

we have equivalence between the CEU with respect to neo-additive capacities and the �-MEU with

respect to so-called "-contaminated priors used in Bayesian statistics (Berger and Berliner, 1986) that

may be interpreted as neo-additive capacities.
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fBh � gBh implies fBh0 � gBh0. (7)

Let us interpret event B as new information received by the agent. The sure-thing princi-

ple then implies a straightforward way for deriving ex-post preferences �B, conditional
on the new information B, from the agent�s original preferences � over Savage-acts.

Namely, we have

f �B g if and only if fBh � gBh for any h, (8)

implying for a subjective EU decision-maker

f �B g , E [u (f) ; � (� j B)] � E [u (g) ; � (� j B)]

where � (� j B) is a conditional additive probability measure de�ned, for all A;B 2 F
such that � (B) > 0, by

� (A j B) = � (A \B)
� (B)

.

It is well known that the updating of EU preferences satis�es dynamic consistency,

which - informally - states that there are no strict ex-post incentives for deviating from

an ex-ante optimal plan of actions. Formally, we de�ne dynamic consistency in terms of

update rules, i.e., rules that derive conditional preferences, f�Bg for all events B, from
an ex-ante preference ordering �.

De�nition: Dynamic Consistency. We speak of a dynamically consistent update
rule if for all partitions P � F and all Savage-acts f; g, f �B g for all B 2 P
implies f � g.

Observation 2. There does not exist any dynamically consistent update rule for pref-
erences � that strictly violate the sure-thing principle.

Proof: For preferences that strictly violate the sure-thing principle we have, for
some f and g,

fBh � gBh and gBh0 � fBh0 for some h 6= h0 and some B.

Observe that any update rule for preferences must result in conditional preferences

f �B g or g �B f . Consider at �rst the case f �B g. Since h0 �:B h0, dynamic

consistency implies fBh0 � gBh
0, a contradiction to gBh0 � fBh

0 by the de�nition of a
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preference ordering. Now consider the case g �B f . Since h �:B h, dynamic consistency
implies gBh � fBh, a contradiction to fBh � gBh.�

In case the sure-thing principle does not hold, the speci�cation of act h in (8) is no

longer arbitrary so that there exist for CEU preferences several possibilities of deriving

ex post preferences from ex ante preferences. Following Gilboa and Schmeidler (1993)

we focus on so-called h-Bayesian update rules for preferences � over Savage acts. That
is, we consider some collection of conditional preference orderings,

�
�hB
	
for all events

B, such that for all acts f; g

g �hB h, fBh � gBh. (9)

In the light of observation 2, none of these h-update rules is dynamically consistent if the

ex-ante preferences strictly violate Savage�s sure-thing principle. Gilboa and Schmeidler

show that CEU preferences� on Savage acts are updated to conditional CEU preferences�
�hB
	
for all events B if and only if h is an act such that for some event E 2 F

h = (x�; E;x�;:E) ; (10)

where x� denotes the best and x� denotes the worst consequence possible. The di¤erent

possible speci�cations of E in (10) can result in a multitude of di¤erent h-Bayesian

update rules. For example, for the so-called optimistic update rule h is the constant

act where E = ;. That is, under the optimistic update rule the null-event becomes
associated with the worst consequence possible. Gilboa and Schmeidler (1993) o¤er the

following psychological motivation for this update rule:

�[...] when comparing two actions given a certain event A, the decision-maker implicitly

assumes that had A not occurred, the worst possible outcome [...] would have

resulted. In other words, the behavior given A [...] exhibits �happiness�that A

has occurred; the decisions are made as if we are always in �the best of all possible

worlds�.�

As corresponding optimistic Bayesian update rule for conditional beliefs of CEU

decision-makers obtains

�opt (A j B) = � (A \B)
� (B)

: (11)

For the pessimistic (=Dempster-Shafer) update rule h is the constant act where

E = 
, associating with the null-event the best consequence possible. Gilboa and

Schmeidler:
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�[...] we consider a �pessimistic�decision-maker, whose choices reveal the hidden as-

sumption that all the impossible worlds are the best conceivable ones.�

The corresponding pessimistic Bayesian update rule for CEU decision-makers is

�pess (A j B) = � (A [ :B)� � (:B)
1� � (:B) : (12)

Observation 3: Let A;B =2 f?;
g.

(i) An application of the optimistic update rule (11) to a prior belief (1) results in
the conditional belief

�opt (A j B) = �optB +
�
1� �optB

�
� � (A j B)

with

�optB =
� � �

� � �+ (1� �) � � (B) .

(ii) An application of the pessimistic update rule (12) to a prior belief (1) results
in the conditional belief

�pess (A j B) = (1� �pessB ) � � (A j B)

with

�pessB =
� � (1� �)

� � (1� �) + (1� �) � � (B) .

Proof: Relegated to the appendix.

Let A;B =2 f?;
g and observe that

�pess (A j B) < �opt (A j B) , (13)

if � > 0, and

�pess (A j B) < � (A j B) < �opt (A j B)

if � > 0, � 2 (0; 1), and � (A j B) 2 (0; 1). For the ex post evaluation of any Savage act
f we therefore have

E [u (f) ; �pess (A j B)] � E [u (f) ; � (A j B)] � E
�
u (f) ; �opt (A j B)

�
,

whereby these inequalities are strict in non-trivial cases.
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Remark: Observe that the optimistic and the pessimistic update rules are extreme
benchmark cases (e.g., compared against the so-called full Bayesian update rule) whose

application has a strong impact on the agents�ambiguity attitudes. Following Schmei-

dler (1989), ambiguity aversion (resp. proneness) of a CEU decision-maker (at least in

the Anscombe-Aumann framework) is usually associated with convex (resp. concave)

capacities, i.e., � (A [B) + � (A \B) � (resp. �) � (A) + � (B) for all events A;B.
While neo-additive capacities are neither convex nor concave for �; � 2 (0; 1), the result-
ing posteriors are convex (resp. concave) after an application of the pessimistic (resp.

optimistic) update rule. To see this, notice that �pess (� j B) is a convex combination of
the convex capacities � (� j B) and (2) whereas �opt (� j B) is a convex combination of
the concave capacities � (� j B) and (3).

4 A �rst result: Identical information partitions

Throughout this paper we adopt Aumann�s (1976) original epistemic framework. We

consider two partitions P1 and P2 of a non-empty state-space 
 which are interpreted
as the information space of agent 1, respectively 2. Denote by Pi (!), with i 2 f1; 2g,
the member of Pi that contains ! 2 
. We say that i knows event A 2 F in state !

i¤ Pi (!) � A. Moreover, let P1 ^ P2 denote the �nest partition of F that is coarser

than P1 and P2 (i.e., the meet of P1 and P2). Following Aumann�s de�nition, we say
that event A 2 F is common knowledge between agent 1 and 2 in state ! i¤ P (!) � A
whereby P (!) is the member of P1 ^ P2 containing ! 2 
.
Our �rst agreeing to disagree result considers the situation in which agents have

identical information partitions but apply di¤erent update rules.

Proposition 1: Consider the following assumptions:

(A1) The agents have identical neo-additive priors, i.e., �1 = �2 � �, such that

� > 0.

(A2) The agents have identical information partitions P1 = P2 6= f
g.

(A3) The agents� posteriors are common knowledge in some state of the world
!� 2 
 in the sense that it is common knowledge in !� that the agents

have neo-additive priors with parameter-values �; �; � and agent1 applies the

optimistic whereas agent 2 applies the pessimistic update rule.

Then the agents�posterior beliefs about any event A =2 f?;
g are di¤erent.

14



Proof: Suppose that the posteriors are common-knowledge in !� 2 
. By assump-
tion, agent 1 is optimistically and agent 2 is pessimistically biased, implying

�1 (A j P1 (!�)) = �opt (A j P1 (!�))
�2 (A j P2 (!�)) = �pess (A j P2 (!�)) .

Moreover, P1 = P2 implies P1 = P2 = P1 ^ P2 so that P (!�) = P1 (!�) = P2 (!�). By
inequality (13), the agents�posteriors �1 (A j P (!�)) and �2 (A j P (!�)) are therefore
di¤erent for every event A =2 f?;
g.�

Proposition 1 shows that, except for degenerate cases, optimistically and pessimisti-

cally biased agents have in the ex-post situation always strict incentives to bet with

each other. While the formal proof of proposition 1 is simple, it reveals a fundamental

di¤erence between Aumann�s concept of information and our approach. According to

Aumann, any di¤erences in the beliefs of di¤erent agents are caused by di¤erent infor-

mation received by the agents. According to our approach, di¤erences in the beliefs of

agents may also result because of di¤erent psychological attitudes with respect to the

interpretation of new information. That is, while one agent might have a �half-full�

attitude, another agent may have a �half-empty�attitude when interpreting the same

fact.

5 An illustrative example: Asset-trading

We illustrate proposition 1 by a simple example in which ex-post asset-trading happens

in every state of the world due to di¤erent ex-post evaluations of the asset. Moreover,

these di¤erent ex-post evaluations are common knowledge to the agents despite the fact

that their ex ante evaluations and their information partitions are identical.

Assume that agent 2 owns in period 1 a �nancial asset which gives vNM utility of 1

in case an investment project is successful and an utility of 0 in case it is not. Before it

will be revealed in period 3 whether the project is successful or not, there will be news

about the project�s progress, either good or bad, in period 2. Let the relevant state space

be given as


 = fSG; SB; FG; FBg

whereby the event G = fSG;FGg stands for good and the event B = fSB; FBg stands
for bad news in period 2. Accordingly, S = fSG; SBg is the event of success and F =

15



fFG;FBg is the event of failure. The information partitions P1 (t) ;P2 (t) , t 2 f1; 2g,
in period t = 1 are

P1 (1) = P2 (1) = f
g .

Under the assumption of identical neo-additive priors �1 = �2 = �, both agents therefore

(ex-ante) evaluate the Savage-act f of holding the asset by the same CEU (6), namely,

E1 [u (f) ; �] = E2 [u (f) ; �] = � � �+ (1� �) � � (S) .

As a consequence, there is no strict incentive for the agents to trade the asset in the

ex-ante situation.

Consider now the following information partitions at period 2

P1 (2) = P2 (2) = ffSG;FGg ; fSB; FBgg

and assume that agent 1 applies optimistically and agent 2 applies pessimistically biased

Bayesian learning upon learning the news x 2 fG;Bg. Agent 1, resp. 2, then evaluates
holding the asset in the ex-post situation as

E1
�
u (f) ; �opt (� j x)

�
= �opt (S j x) ,

resp.

E2 [u (f) ; �
pess (� j x)] = �pess (S j x) .

By (13), we have for �; � 2 (0; 1)

E2 [u (f) ; �
pess (� j x)] < � (S j x) < E1

�
u (f) ; �opt (� j x)

�
.

Thus, regardless of whether the news turn out good or bad agent 1 ex-post evaluates

the asset strictly higher than agent 2. As a consequence there will be ex-post trade

in the asset in every state of the world. For example, at price � (S j x) agent 2 would
strictly prefer to sell the asset while agent 1 would strictly prefer to buy it.

Remark. Observe that if both agents were EU decision-makers, i.e., � = 0, there

would be no strict incentive for ex-post trading if there is no strict incentive for ex-ante

trading. As this example shows, this is not necessarily true for CEU decision-makers

because of the possibility of dynamically inconsistent CEU preferences.8 According to

our concept of psychologically biased Bayesian learning, the incentive for ex-post trading

results in the example from the agents�di¤erent psychological attitudes with respect to

the interpretation of new information.
8Ludwig and Zimper (2006b) demonstrate that sophisticated (Strotz 1956, Pollak 1968) CEU decision

makers may have even stronger incentives for intrapersonal commitment than sophisticated hyperbolic

discounting decision makers in the sense of Laibson (1997) and Frederick, Loewenstein, and O�Donoghue

(2002).
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6 Psychologically biased Bayesian learning

According to Bayesian learning models with additive probability measures subjective

beliefs converge in the learning process towards objective probabilities if the agents

observe a stable stochastic process. The question thus arises whether the agents of

proposition 1 can agree to disagree in the long-run if they receive the same sample

information drawn from an i.i.d. process. Or put di¤erently: Is the di¤erence in posterior

beliefs according to proposition 1 only relevant in the short-run but vanishes in the long-

run? In order to address this question about the relevance of proposition 1 we apply in

this section our decision-theoretic framework to a formal model of Bayesian learning with

neo-additive capacities. Our main result will demonstrate that CEU decision-makers

may agree to disagree in the long-run even if they forever receive identical information.

Moreover, this �nding casts doubts on the standard argument that people with identical

information should have common priors (e.g., Aumann 1987, 1998, Gul 1998).

6.1 The benchmark case: Rational Bayesian learning

Consider the situation of an agent who is uncertain about the probability of an outcome,

H, but can observe a statistical experiment with n independent trials where H is a

possible outcome in each trial that occurs in every trail with identical probability. Let

S = �1i=0 fH;Tg

denote the experiment�s sample space. We consider the state space 
 = [0; 1] � S and
the event space F = B � S whereby B denotes the Borel �-algebra of the unit-interval
[0; 1] and S is the power-set of S. Let � denote the event in B � S that � 2 [0; 1] is the
probability of outcome H, i.e.,

� = f! 2 
 j ! = (�; :::)g .

Similarly, let Ikn denote the event in B � S that outcome H has occurred k-times in the

�rst n trials. In our framework � is the unknown parameter of a Binomial-distribution

that stands for the objective probability by which outcome H occurs. Let us suppose

that the agent has a subjective additive probability measure, �, de�ned on B�S whereby
we interpret �

�
[�;�] ; Ikn

�
as the agent�s subjective (joint) probability that the �true�

probability of outcome H lies in the interval [�;�] and that she observes information Ikn.

We further assume that the agent�s prior (marginal) distribution � (�) over the parameter
� is a Beta distribution so that her estimator for the �true�value of � is the expected

value of this Beta-distribution, i.e., E [�; � (�)] = �
�+�

for given distribution parameters
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�; � > 0. That is, the prior distribution over � is characterized by the probability

density9

� (�) =

(
K�;��

��1 (1� �)��1 for 0 � � � 1
0 else

(14)

where K�;� is a normalizing constant.10 Since the probability of receiving information

Ikn for a given � (=likelihood function) is, by the Binomial-assumption,

�
�
Ikn j �

�
=

�
n

k

�
�k (1� �)n�k ,

we obtain by Bayes�rule

�
�
� j Ikn

�
=

�
�
�; Ikn

�
� (Ikn)

=
�
�
Ikn j �

�
� (�)

� (Ikn)

= K�+k;�+n�k�
�+k�1 (1� �)�+n�k�1

whenever �
�
Ikn
�
=

Z
[0;1]

�
�
Ikn j �

�
� (�) d� > 0.

Observe that the agent�s subjective posterior distribution over � is a Beta-distribution

with parameters � + k; � + n � k. Accordingly, the agent�s posterior belief is given by
the expected value of the posterior distribution, E

�
�; �

�
� j Ikn

��
= �+k

�+�+n
, which, using

that the prior belief is E [�; � (�)] = �
�+�

, we can rewrite as

E
�
�; �

�
� j Ikn

��
=

�
�+ �

�+ � + n

�
E [�; � (�)] +

�
n

�+ � + n

�
k

n
(15)

where k
n
is the observed sample mean according to information Ikn. That is, the agent�s

posterior estimator about the probability of H is a weighted average of her prior esti-

mator and the sample mean whereby the weight attached to the sample mean increases

in the number of trials.11 Let �� denote the �true�probability of outcome H. Since,

for every c > 0, limn!1 prob
��� k
n
� ��

�� � c� = 1 we obtain the following result for this
standard model of rational Bayesian learning.

9For the ease of exposition we somewhat abuse notation in that we write � interchangeably for an

additive probability measure, which is a set function, and for a density function, which is de�ned on

the real line.

10In particular, K�;� =
�(�+�)
�(�)�(�) where � (y) =

1Z
0

xy�1e�xdx for y > 0.

11Tonks (1983) introduces a similar model of rational Bayesian learning in which the agent has a

normally distributed prior over the mean of some normal distribution and receives normally distributed

information.
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Observation 4: Under the assumption of �
�
Ikn
�
> 0 for all n the posterior estimator

E
�
�; �

�
� j Ikn

��
converges in probability to the true probability �� of outcome H if

the number of trials, n, approaches in�nity.

6.2 Learning with ambiguous beliefs

In this section we formally link the updating of ambiguous beliefs to Bayesian learn-

ing behavior. As a generalization of the Bayesian learning model discussed above, we

consider now a neo-additive prior about the unknown parameter �

� (�) =

(
��+ (1� �) �K�;��

��1 (1� �)��1 for 0 � � � 1
0 else

(16)

whereby the additive part is given by (14). Accordingly, the agent�s prior estimator for

the true value of � is now given as the Choquet expected value (6)

E [�; � (�)] = � (�max� + (1� �)min �) + (1� �)E [�; � (�)]
= ��+ (1� �)E [�; � (�)] .

The following lemma uses our general results on Bayesian updating of neo-additive

capacities (observation 3) in order to derive conditional neo-additive capacities for the

special case (16) and to characterize the corresponding conditional Choquet expected

values which stand for the agent�s posterior beliefs about the probability of outcome H.

Lemma. Suppose the agent receives information Ikn 2 B�S. Contingent on the applied
update rule we obtain the following conditional neo-additive beliefs and posterior

estimators about parameter �.

(i) Optimistic Bayesian updating.

�opt
�
� j Ikn

�
= �opt

Ikn
+
�
1� �opt

Ikn

�
�K�+k;�+n�k�

�+k�1 (1� �)�+n�k�1

with

�opt
Ikn
=

� � �
� � �+ (1� �) � � (Ikn)

so that

E
�
�; �opt

�
� j Ikn

��
= �opt

Ikn
+
�
1� �opt

Ikn

�
� E
�
�; �

�
� j Ikn

��
(ii) Pessimistic Bayesian updating.

�pess
�
� j Ikn

�
=
�
1� �pess

Ikn

�
�K�+k;�+n�k�

�+k�1 (1� �)�+n�k�1
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with

�pess
Ikn

=
� � (1� �)

� � (1� �) + (1� �) � � (Ikn)
so that

E
�
�; �pess

�
� j Ikn

��
=
�
1� �pess

Ikn

�
� E
�
�; �

�
� j Ikn

��

If the number of trials approaches in�nity, i.e., n ! 1, the sample information
Ikn converges in probability to the information I

� according to which outcome H has

occurred with frequency ��. In the limit of a Bayesian learning process the agent�s

posterior estimators about � will therefore converge to the belief E [�; � (� j I�)] which
depends on the applied Bayesian update rule. The following observation, which combines

the above lemma with observation 4, characterizes these limit beliefs.

Observation 5. Let n ! 1. Contingent on the applied update rule the agents limit
beliefs converge in probability to the following posteriors.

(i) Optimistic Bayesian learning.

E
�
�; �opt (� j I�)

�
= �optI� +

�
1� �optI�

�
� ��

such that

�optI� =
� � �

� � �+ (1� �) � � (I�)

(ii) Pessimistic Bayesian learning.

E [�; �pess (� j I�)] = (1� �pessI� ) � ��

such that

�pessI� =
� � (1� �)

� � (1� �) + (1� �) � � (I�)

Observation 5 demonstrates that psychologically biased Bayesian learning in our

sense violates the two standard paradigms of rational Bayesian learning. Firstly, the

posterior �subjective� beliefs do not converge to the �objective� probabilities in an

in�nite learning process. Secondly, since

E [�; �pess (� j I�)] < E
�
�; �opt (� j I�)

�
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for � 6= 0, the posterior estimators of two di¤erent agents do not converge to the same
limit belief if these agents receive the same information but interpret it di¤erently. Since

these posterior estimators of our learning model, can be interpreted - in the appropriate

event-space - as the agent�s neo-additive belief that some event H occurs, the agreeing

to disagree result of proposition 1 is not limited to the short-run but also holds in the

long-run for CEU decision-makers.

7 A second result: Identical learning rules

Our second agreeing to disagree result applies to people who use the same psychologically

biased learning rule but have di¤erent information partitions.

Proposition 2: Consider the following assumptions:

(A1�) The agents have identical neo-additive priors, i.e., �1 = �2 � �, such that
� > 1.

(A2�) The agents�posteriors are common knowledge in some state of the world
!� 2 
 in the sense that it is common knowledge in !� that the agents have
neo-additive priors with parameter-values �; �; � and both agents apply the

optimistic (resp. pessimistic) update rule.

(A3�) The agents�priors satisfy � (P1 (!�)) 6= � (P2 (!�)) whereby P1 (!�) ; P2 (!�) 6=

.

Then the agents�posterior beliefs about any event A =2 f?;
g are di¤erent.

Observe that assumption (A3�), i.e., � (P1 (!�)) 6= � (P2 (!
�)), cannot hold if the

agents have identical priors and identical information partitions. That is, the result of
proposition 2 only applies in situations of asymmetric information, i.e., P1 6= P2, such
that the two events P1 (!�) and P2 (!�) are not equally likely according to the agents�

common prior.

Before we turn to the proof of proposition 2 consider the following example which

illustrates the intuition behind our formal proof.

Example. Consider the following information structure

P1 = ff!1; !2g ; f!3; !4g ; :::g =
�
P 11 ; P

2
1 ; :::

	
,

P2 = ff!1; !2; !3; !4g ; :::g =
�
P 12 ; :::
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so that

P1 ^ P2 = ff!1; !2; !3; !4g ; :::g .

Suppose agent 1 and 2 have a common neo-additive prior � with � 2 (0; 1) such that

� (f!1g) = ::: = � (f!4g) > 0.

Further suppose that both agents are optimistically biased. Let

A = f!2; !3g

and observe that

�1
�
A j P 11

�
= �1

�
A j P 21

�
= �opt1 +

�
1� �opt1

�
� 1
2

(17)

with

�opt1 =
� � �

� � �+ (1� �) � � (f!1; !2g)
and

�2
�
A j P 12

�
= �opt2 +

�
1� �opt2

�
� 1
2

(18)

with

�opt2 =
� � �

� � �+ (1� �) � � (f!1; !2; !3; !4g)
.

Observe that the posterior of each agent is the same in every state belonging to P (!�) 2
P1 ^P2 with !� 2 f!1; !2; !3; !4g so that we can stipulate, in accordance with assump-
tion (A2�), that the agents�posteriors as well as their parameter values �; �; � are com-

mon knowledge in every state !� 2 f!1; !2; !3; !4g. Since � > 0, the posteriors (17) and
(18) coincide if and only if

�opt1 = �opt2 ,
� (f!1; !2g) = � (f!1; !2; !3; !4g),
� (P1 (!

�)) = � (P2 (!
�)) ,

which is not the case in this example. Thus, despite identical priors and identical

Bayesian learning rules, both agents have di¤erent posterior beliefs which are common

knowledge.

Proof of proposition 2. Our proof builds on Aumann�s (1976) original proof for
the case of an additive probability measure, i.e., � = 0.

Step 1. Aumann (1976): For an additive common prior � the agents�posteriors
must be identical when they are common knowledge at some state of the world.
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Suppose on the contrary that there is some !� 2 
 in which it is common knowledge
that

�1 (A j P1 (!�)) = q1 and �2 (A j P2 (!�)) = q2
such that q1 6= q2 for some event A 2 F . Then

�1
�
A j P j1

�
= q1; (19)

for all P j1 � P (!�) whereby P (!�) is the member of P1 ^ P2 containing !�. Denote by
P 11 ; :::; P

n
1 the members of P1 such that

P 11 [ ::: [ P n1 = P (!�) .

By additivity,

�
�
P 11
�
+ :::+ � (P n1 ) = � (P (!

�)) (20)

since P 11 ; :::; P
n
1 is a partition of P (!

�). Also by additivity,

�1
�
A j P j1

�
=
�
�
A \ P j1

�
�
�
P j1
� , j = 1; ::; n

so that, by (19),

�
�
P 11
�
+ :::+ � (P n1 ) =

� (A \ P 11 )
q1

+ :::+
� (A \ P n1 )

q1
:

Since, by additivity,

�
�
A \ P 11

�
+ :::+ � (A \ P n1 ) = � (A \ P (!�))

we have

�
�
P 11
�
+ :::� (P n1 ) =

� (A \ P (!�))
q1

:

Thus, by (20),
� (A \ P (!�))

q1
= � (P (!�)) .

An analogous argument for agent 2 results in

� (A \ P (!�))
q2

= � (P (!�))

implying the desired result q1 = q2.�

Step 2. Consider now the case of identical non-additive priors (1), i.e., � > 0. Let
A =2 f?;
g and suppose both agents are optimistically biased; (there is an analogous
argument for pessimistically biased agents). Then, for ! 2 
,

�opt1 (A j P1 (!)) = �opt1;B +
�
1� �opt1;B

�
� � (A j P1 (!)) (21)
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with

�opt1;B =
� � �

� � �+ (1� �) � � (P1 (!))
and

�opt2 (A j P2 (!)) = �opt2;B +
�
1� �opt2;B

�
� � (A j P2 (!)) (22)

with

�opt2;B =
� � �

� � �+ (1� �) � � (P2 (!))
:

Assume now that the posteriors (21) and (22) as well as their parameter values �; �; �

are common knowledge in some state !� 2 
 in accordance with assumption (A2�). By
the argument of step 1, the posteriors must coincide for the special case of � = 0. We

therefore have for the additive part of the posteriors

� (A j P1 (!�)) = � (A j P2 (!�)) ,

so that the agents�posteriors (21) and (22) are di¤erent if and only if

�opt1;B 6= �opt2;B ,
� (P1 (!

�)) 6= � (P2 (!
�)),

� (P1 (!
�)) 6= � (P2 (!

�)) .

This proves the proposition. ��

8 Concluding remarks and outlook

We consider CEU decision-makers who may interpret new information in an optimistic

or pessimistic way. As our �rst main contribution we apply these two benchmark cases of

psychologically biased Bayesian updating to the epistemic situation studied in Aumann

(1976). Two formal main results emerge:

1. Even if people receive the same information, they may agree to disagree if their

psychologically attitudes about the interpretation of new information are di¤erent.

2. Even if people have the same psychological attitudes, they may agree to disagree

if they receive di¤erent information.

Both results are in contrast to Aumann�s famous conclusion that agents cannot agree

to disagree regardless of whether they receive the same information or not. Our concept

of psychologically biased Bayesian learning can therefore o¤er a possible explanation for

the existence of ex-post trade in �nancial assets.
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As our second main contribution, we address the question in how far the �rst

agreeing-to-disagree result may be relevant in the long-run. To this end we introduce

a formal model of psychologically biased Bayesian learning based on optimistic respec-

tively pessimistic interpretation of new information which encompasses the standard

model of rational Bayesian learning with additive beliefs as a special case. According

to this standard model people�s posteriors coincide in the limit if they observe the same

sample information drawn from an i.i.d. process so that they cannot agree to disagree

forever. We demonstrate that the case is di¤erent for CEU decision-makers with non-

additive beliefs since their posteriors will not converge to the same limit beliefs if they

apply di¤erent update rules. While our learning model thus o¤ers a long-run justi�ca-

tion for our �rst agreeing-to-disagree result, it also shows that identical information does

not necessarily induce identical priors.

In order to provide straightforward psychological interpretations of our decision-

theoretic framework, we have restricted attention to the special case of CEU preferences

with neo-additive capacities. Especially with respect to updating and learning under

ambiguity, the assumption of neo-additive capacities turned out as formally and inter-

pretational extremely convenient. For the sake of mathematical generality, however,

it would be interesting to obtain similar results for more general classes of capacities.

This holds especially true since Aumann�s argument has been so far - with the notable

exception of Dow, Madrigal and Werlang (1990) - foremostly investigated within the

multiple-priors but not within the CEU framework. Another avenue for future research

would be to look into alternative updating rules for capacities and their empirical rel-

evance. The optimistic and the pessimistic update rule are, admittedly, very extreme

update rules whose main virtue is to capture the di¤erence between �half full�and �half

empty�attitudes in a clear-cut way. Less extreme update rules, such as the full-Bayesian

update rule, may be more appropriate for the description of real-life decision-makers�

updating and learning behavior.
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Appendix

Proof of observation 1: By an argument in Schmeidler (1986), it su¢ ces to restrict
attention to a non-negative valued function f so that

E [f; �] =

Z +1

0

� f! 2 
 j f (!) � zg dz, (23)

which is equivalent to

E [f; �] =

Z max f

min f

� f! 2 
 j f (!) � zg dz

since the range of f is closed and bounded. We consider a partition Pn, n = 1; 2; :::, of


 with members

Akn = f! 2 
 j ak;n < X (!) � bk;ng for k = 1; :::; 2n

such that

ak;n = [max f �min f ] � (k � 1)
2n

+min f

bk;n = [max f �min f ] � k
2n
+min f .

De�ne the step functions an : 
! R and bn : 
! R such that, for ! 2 Akn, k = 1; :::; 2n,

an (!) = ak;n

bn (!) = bk;n.

Obviously,

E [an; �] � E [f; �] � E [bn; �]

for all n and

lim
n!1

E [bn; �]� E [an; �] = 0.

That is, E [an; �] and E [bn; �] converge to E [f; �] for n ! 1. Furthermore, observe
that

min an = min f for all n, and

max bn = max f for all n.

Since limn!1min bn = limn!1min an and E [bn; �] is continuous in n, we have

lim
n!1

E [bn; �] = �
�
� lim
n!1

max bn + (1� �) lim
n!1

min bn

�
+ (1� �) lim

n!1
E [bn; �]

= � (�max f + (1� �)min f) + (1� �)E [f; �] .
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In order to prove proposition 3, it therefore remains to be shown that, for all n,

E [bn; �] = � (�max bn + (1� �)min bn) + (1� �)E [bn; �] .

Since bn is a step function, (23) becomes

E [bn; �] =
X
Akn2Pn

�
�
A2

n

n [ ::: [ Akn
�
� (bk;n � bk�1;n)

=
X
Akn2Pn

bk;n �
�
�
�
A2

n

n [ ::: [ Akn
�
� �

�
A2

n

n [ ::: [ Ak�1n

��
,

implying for a neo-additive capacity

E [bn; �] = max bn
�
��+ (1� �)�

�
A2

n

n

��
+
2n�1X
k=2

bk;n (1� �)�
�
Akn
�

+min bn

"
1� ��� (1� �)

2nX
k=2

�
�
Akn
�#

= ��max bn + (1� �)
2nX
k=1

bk;n�
�
Akn
�
+min bn [� � ��]

= � (�max bn + (1� �)min bn) + (1� �)E [bn; �] .

�

Proof of observation 3:
Applying the optimistic Bayesian update rule to a neo-additive capacity gives, for

A =2 f?;
g,

� (A j B) =
� � �+ (1� �) � � (A \B)
� � �+ (1� �) � � (B)

=
� � �

� � �+ (1� �) � � (B) +
(1� �) � � (B)

� � �+ (1� �) � � (B) � � (A j B)

= �optB +
�
1� �optB

�
� � (A j B)

such that

�optB =
� � �

� � �+ (1� �) � � (B) .
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Applying the pessimistic Bayesian update rule to a neo-additive capacity gives, for

A =2 f?;
g,

�pess (A j B) =
� (A [ :B)� � (:B)

1� � (:B)

=
� � �+ (1� �) � � (A [ :B)� � � �� (1� �) � � (:B)

1� � � �� (1� �) � � (:B)

=
(1� �) � � (A)

1� � � �� (1� �) � (� (:B)) �
(1� �)� (A \ :B)

1� � � �� (1� �) � (� (:B))

=
(1� �) � � (A)

1� � � �� (1� �) � (� (:B)) �
(1� �)� (:B)

1� � � �� (1� �) � (� (:B))� (A j :B)

=
(1� �) � � (A)

1� � � �� (1� �) � (� (:B))

� (1� �)� (:B)
1� � � �� (1� �) � (� (:B))

�
� (A)� � (A j B) � � (B)

� (:B)

�
=

(1� �) � � (B)
� � (1� �) + (1� �) � � (B) � � (A j B)

= (1� �pessB ) � � (A j B)

such that

�pessB =
� � (1� �)

(� � (1� �) + (1� �) � � (B)) .

�
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