
THE EVOLUTION OF TIME PREFERENCE

WITH AGGREGATE UNCERTAINTY

Arthur Robson Larry Samuelson
Department of Economics Department of Economics
Simon Fraser University Yale University

Burnaby, B. C. V5A 1S6 Canada New Haven, CT 06520-8281 USA
Robson@sfu.ca Larry.Samuelson@yale.edu

February 1, 2008

Abstract: We examine the evolutionary foundations of intertemporal preferences. When
all the risk affecting survival and reproduction is idiosyncratic, evolution selects for agents
who maximize the the discounted sum of expected utility, discounting at the sum of the
population growth rate and the mortality rate. Aggregate uncertainty concerning survival
rates leads to discount rates that exceed the sum of population growth rate and death
rate, and can push agents away from exponential discounting.
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THE EVOLUTION OF TIME PREFERENCE
WITH AGGREGATE UNCERTAINTY

1 Introduction

How much do people discount the future? How does their discounting change
as they consider events further in the future?1 Perhaps more fundamentally,
why do people discount at all?

Fisher’s [4, pp. 84–85] pioneering study of intertemporal tradeoffs called
attention to one reason future rewards are discounted—an intervening death
may prevent us from realizing such rewards. This reason has played a re-
curring role in discussions of discounting (e.g., Yaari [24]). Hansson and
Stuart [9] and Rogers [18] argue that evolution should select in favor of
people whose discounting reflects the growth rate of the population with
whom they are competing (see also Robson and Szentes [17]). Putting these
ideas together leads to models in which people discount at the sum of the
population growth rate and mortality rate.

One difficulty with this argument is that the numbers don’t obviously
match. Studies of contemporary subject rates of time preference yield esti-
mates as high as twelve to twenty percent per year (Lawrance [11]). Using
data from contemporary hunter-gatherers, Gurven and Kaplan [8] estimate
that annual mortality rates during our evolutionary history ranged from
one percent for ten-year-olds to four percent for sixty-year-olds, while the
average population growth rate over this two-million year period was ap-
proximately zero. A second cause for concern is the growing evidence that
intertemporal preferences exhibit a present bias not captured by the expo-
nential discounting of standard models.

This paper re-examines the foundations of intertemporal preferences.
Like Hansson and Stuart [9] and Rogers [18], we view peoples’ preferences
as having been shaped by biological evolution. We consider the evolution
of intertemporal preferences in age-structured populations, i.e., populations
in which each individual can reproduce at different ages, focussing on the
simplest question of how people discount future reproduction. When all the
risk affecting survival and reproduction is idiosyncratic, we find the standard
result that there is a close connection between the evolutionary criterion for
success and the simplest criterion for intertemporal choice—the discounted

1Recent policy discussions, especially those regarding global warming, have focussed
attention on the first question (e.g., Nordhaus [15]), while recent work in behavioral eco-
nomics has directed attention to the latter (Frederick, Loewenstein and O’Donoghue [5]).
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sum of expected utility. This result in turn generates the anticipated rate of
discount, namely the sum of the population growth rate and the mortality
rate.

Our contribution derives from the observation that the risks in our evo-
lutionary environment are unlikely to have been purely idiosyncratic. Fluc-
tuations in the weather, abundant predators, epidemics, and failures of food
sources are all bound to have a common effect on death rates. Such aggre-
gate uncertainty breaks the connection between discounting and the sum
of the growth and death rates. We first show that aggregate uncertainty
“generically” lowers the growth rate below that arising with comparable id-
iosyncratic uncertainty.2 In addition, if the environmental fluctuations have
a uniform effect on people of different ages, then future reproduction is dis-
counted at a rate exceeding the population growth rate plus the expected
mortality rate—aggregate risk may lie behind the gap between discount rates
and growth and mortality rates.3

What if the effects of aggregate uncertainty differ across ages? We find
that discount rates need no longer be constant, and we present natural (but
by no means universal) conditions under which the rate of discount falls as
a function of age. This “present bias” in discounting is reminiscent of the
present bias that has played a central role in behavioral economics. However,
the discount rates that emerge from our model are tied to age rather than
time, precluding preference reversals.4

Section 2 introduces the mechanics of age-structured populations for the
simpler case of an environment with only idiosyncratic uncertainty. Section
3 examines aggregate uncertainty. Section 4 discusses some of the many
features that are left out of our analysis. Proofs not contained in the body
of the paper are collected in Section 5.

2See Robson [16] for an analogous result for populations without an age structure.
3Section 3.4 explains how this model formalizes and generalizes the “sawtooth” explana-

tion sometimes advanced to reconcile an average growth rate near zero in our evolutionary
past with the higher growth rates often seen in contemporary hunter-gatherers. This saw-
tooth model couples long periods of sustained growth with rare, rapid and evolutionarily-
neutral population collapses.

4Dasgupta and Maskin [3] and Sozou [20] also present evolutionary foundations for
presently-biased preferences, including in Dasgupta and Maskin’s case the possibility of
preference reversals. We discuss these papers in Section 4.
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2 Idiosyncratic Uncertainty

It is helpful to first consider the more straightforward case of idiosyncratic
uncertainty, drawing on Charlesworth [1] and Houston and McNamara [10].

2.1 The model

Time is discrete, given by t = 0, 1, . . .. We take a census of a population at
the start of each period t, letting Nτ (t) be the number of agents then of age
τ ∈ {1, 2, . . . , T}.

The first event in period t is that each agent of age τ ∈ {1, 2, . . . , T}
has offspring, with xτ denoting the expected number of offspring born to an
age-τ parent. Each agent of each age τ ∈ {0, . . . , T − 1} then either dies
or survives, with S the probability of survival. Agents of age T disappear
from our system. This may reflect either death or a continuing life without
reproduction, essentially equivalent fates from a biological point of view.5

All surviving agents younger than T enter the next period one year older.
This brings us to the beginning of period t + 1, where we take the next
census, finding Nτ (t + 1) agents of age τ ∈ {1, 2, . . . , T}, and begin the
process anew with the next round of births.

Section 4 briefly discusses generalizations to the more realistic case of
age-dependent mean death rates. In the meantime, taking death rates to
be constant allows us to isolate other factors that may lie behind varying
discount rates. Depending on the magnitude of the survival rate S, the pop-
ulation may be exploding or shrinking to oblivion. None of the subsequent
analysis would be affected if the survival rate were modeled as reflecting
an environmental carrying capacity, as long as our S is then interpreted as
the endogenously-determined zero-population-growth steady-state survival
rate.

A reproduction profile in this environment is a T -tuple {xτ , τ ∈ {1, 2, . . . , T}}.
This profile is heritable. Our interest centers on which such profiles will be
selected by evolution. In particular, we will ask how evolution induces people
to trade off xτ and xτ ′ , effectively revealing the discounting that evolution
builds into preferences.

We are ultimately interested in people’s preferences over the wide vari-
ety of things they consume, rather than simply reproduction. We view the

5Continued life without reproduction scales up the population but does not affect its
growth rate. A mutation that increased one of {x1, . . . , xT } by even a very small amount,
while sacrificing all survival beyond age T , would increase the growth rate and hence
would be evolutionarily favored.
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fertility xτ as being a function of consumption of food, shelter, status, and
a host of other economic goods, with intertemporal preferences over these
goods induced by their implications for reproduction. We do not assert that
people explicitly consider the reproductive implications of each decision they
make. Evolution has instead doubtlessly found it more expedient to simply
endow us with preferences over economic goods. But these preferences were
originally shaped by the implications of the resulting decisions for reproduc-
tion. Identifying intertemporal tradeoffs over the xτ is thus the first step in
understanding discounting.6

We also recognize that our modern environment is quite different from
that in which we evolved. However, precisely because evolution found it
more expedient to simply give us preferences over economic goods rather
than make us relentless reproduction calculators, insight into the preferences
that shape behavior in our modern world is to be found by examining our
evolutionary past.

We follow the standard approach in assuming the population is large,
captured formally by viewing the set of agents as a continuum. This allows
us to construct a convenient deterministic model of the population. Each
agent faces idiosyncratic uncertainty, in the sense that the agent may have
more or fewer offspring in a given period and may or may not survive until
the next, but the average number of offspring born to agents of age τ can
be taken to be precisely xτ and the proportion of survivors can be taken to
be precisely S.7

6To be more precise, if fertility xτ were a function fτ of consumption at date τ , then
attitudes to intertemporal inequality in consumption would be affected by the properties
of fτ (its concavity, for example) as well as the way in which the xτ combined to yield
a growth rate. Since the first effect is relatively familiar, we concentrate here on the
derivation of the growth rate criterion from the xτ .

7Intuitively, each agent of age τ takes an independent (across agents and across pe-
riods) draw from an offspring lottery with mean xτ , determining the agent’s number of
offspring, and from a survival lottery that yields survival with probability S and death
with probability 1−S. The law of large numbers then ensures that realized and expected
numbers of offspring, as well as realized and expected numbers of total surviving agents,
coincide. More precisely, it is well known that one cannot appeal to such a law-of-large-
numbers result with a continuum of random variables (cf. Al-Najjar [14]). In our case,
as in many applications, independence is not necessary, allowing one to construct explicit
probability spaces yielding random variables with the properties that are important for
our results.
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The population evolves according to

[N1(t+ 1), . . . , NT (t+ 1)] = [N1(t), . . . , NT (t)]


Sx1 S 0 . . . 0
Sx2 0 S . . . 0

...
...

...
...

SxT−1 0 0 . . . S
SxT 0 0 . . . 0


(1)

≡ N ′(t)X, (2)

where ′ denotes transpose. The transition matrix X is the Leslie matrix
(Leslie [12, 13]). The population at time t is given by

N ′(t) = N ′(0)Xt,

The fate of the population thus hinges on the properties of Xt. We assume
that the Leslie matrix X is primitive, in that there exists some k > 0 for
which Xk is strictly positive.8 This allows us to bring standard results in
matrix theory to bear in examining Xt.

2.2 Discounted expected utility

The Perron-Frobenius theorem (Seneta [19, Theorem 1.1]) implies that the
Leslie matrix has a “dominant” eigenvalue φ that is real, positive, of mul-
tiplicity one, and that strictly exceeds the modulus of all other eigenvalues.
This eigenvalue is the population growth factor, and its log is the corre-
sponding growth rate, in that (Seneta [19, Theorem 1.2])

lim
t→∞

Xt

φt
= vu′ and hence lim

t→∞

N ′(t)
φt

= N ′(0)vu′,

where the vectors u and v are the strictly positive left (u′X = φu′) and right
(Xv = φv) eigenvectors associated with φ, normalized so that u′v = 1 and∑T

τ=1 uτ = 1. Regardless of the initial condition N ′(0), the proportion of
the population of each age τ approaches uτ . The vector u thus describes
the limiting age distribution of the population. The vector v then gives the

8A sufficient condition for this is that there exist two relatively prime ages τ and
τ ′ for which xτ and xτ ′ are both nonzero. It suffices, for example, that τ and τ ′ are
adjacent. Note that xT > 0 by assumption, since otherwise agents of age T would be past
reproductive age and removed from our consideration.
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“reproductive value” of an individual of each age, or the relative contribution
that each such individual makes to the long run population.

The long-run growth rate of the total reproductive value of the popula-
tion, can be obtained by premultiplying the first equation by the vector u′,
postmultiplying by v and then taking logs so that

lim
t→∞

1
t

ln(u′Xtv) = lnφ. (3)

Evolution must select for behavior that maximizes the eigenvalue φ, or equiv-
alently, that maximizes the long-run growth growth rate lnφ. This eigen-
value solves the characteristic equation9

Φ = x1 +
x2

Φ
+
x3

Φ2
+ . . .+

xT
ΦT−1

, (4)

where
Φ =

φ

S
.

Evolution would endow an agent with preferences (or more precisely,
would endow an agent with behavior consistent with such preferences) whose
indifference curves are described by the right side of (4). In particular,
choices (x1, . . . , xT ) that preserve the right side of (4) (given Φ) give rise
to this same value of Φ and hence the same growth rate lnφ, while choices
leading to smaller values of the right side lead to smaller growth rates.

We can readily derive marginal rates of substitution from (4) of the form:

dxτ+1

dxτ
= Φ. (5)

Marginal rates of substitution between xτ+1 and xτ are thus independent of
τ and independent of the magnitudes of xτ+1 and xτ . Equivalently, we can
capture the preferences represented by (4) in a utility function of the form:

U(x1, . . . , xT ) =
T∑
τ=1

Φ−(τ−1)xτ =
T∑
τ=1

e−(lnφ−lnS)(τ−1)xτ . (6)

9This is a rearrangement of∣∣∣∣∣∣∣∣∣∣∣

Sx1 − φ S 0 . . . 0
Sx2 −φ S . . . 0

...
...

...
...

SxT−1 0 0 . . . S
SxT 0 0 . . . −φ

∣∣∣∣∣∣∣∣∣∣∣
= 0.
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The agent thus discounts exponentially at the rate ln Φ, that is, at the sum
of the population growth rate (lnφ) and the death rate (− lnS).10 This
exponential discounting has an intuitive interpretation. As one delays a
birth, one falls behind the rest of the population at rate ln Φ, since one’s
death occurs at rate − lnS and the rest of the population is growing at
rate lnφ. The delay must then be compensated by an increment in births
sufficient to balance this loss. At the same time, notice that changes in
the death rate will have no effect on the discount rate, since they will be
matched by equivalent changes in the population growth rate that preserve
their sum.

In the environment described by this simple model, we would observe
only one equilibrium profile (x1, . . . , xT ), from which we could infer marginal
rates of substitution and hence discount factors (via (4) and (5)) and con-
clude that behavior is consistent with the utility function given in (6).
To generalize this result, suppose that newborn agents are independently
(across time and agents) assigned a feasible set XT ⊂ <T+ of possible re-
productive profiles. Some agents may find themselves in more favorable
circumstances than others, with more favorable prospects for reproduction.
We would then observe a potentially vast variety of choices, all consistent
with preferences that are again described by (4), with Φ now being the av-
erage population growth rate. We could again infer that marginal rates of
substitution are given by (5) and the utility function given by (6).

3 Aggregate Uncertainty

We now examine the case of aggregate uncertainty. There are a number
of ways such uncertainty might matter, but we focus on the particularly
salient possibility that death rates may have a common component across
individuals. Perhaps a particularly severe winter or dry summer decreases
all survival probabilities, or a good growing season for food or an epidemic
among predators increases them. On top of this, we will then also allow
these aggregate fluctuations to have varying effects on agents of different
ages. An infestation of predators may especially affect younger agents, for
example, or an epidemic may disproportionately affect older agents.

10We can write the survival probability from one period to the next as S = e−δ, where
δ is the continuously compounded death rate, and then take logs to express the death rate
as δ = − lnS.
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3.1 Why does aggregate uncertainty matter?

Why does it make a difference whether uncertainty is aggregate or idiosyn-
cratic? It is helpful here to consider the model of Robson [16], in which
the population has a trivial age structure. Agents survive from age zero to
age one with probability S. At age one they have x expected offspring and
then die. With purely idiosyncratic uncertainty, the population size N(t) in
period t is given by

N(t) = (Sx)N(t− 1) = (Sx)tN(0).

Hence the growth rate is lnSx (and Sx is the leading eigenvector φ of the
trivial Leslie matrix [Sx]).

Now suppose that instead of a fraction S of the agents surviving from
age zero to age one, an independent random draw in each period determines
whether all agents survive or all perish, with the probability of survival being
S. This shift from idiosyncratic to aggregate uncertainty leaves expected
survival rates untouched but has a profound effect on the population, whose
fate is now eventual extinction with probability one.

More generally, suppose that with probability p a fraction S1 > 0 of the
agents survive, while with probability 1 − p fraction S2 > 0 survive, where
pS1 +(1−p)S2 = S. The draws determining the fraction of surviving agents
are independent over time. It follows that the population size in period t is
given by

N(t) = (S1x)n(t)(S2x)t−n(t)N(0),

where n(t) is the random number of times that the environment is such that
fraction S1 survive. The asymptotic growth rate of the population is then,
almost surely,

lim
t→∞

1
t

lnN(t) = lim
t→∞

(
n(t)
t

ln(S1x) +
t− n(t)

t
ln(S2x) +

lnN(0)
t

)
= p ln(S1x) + (1− p) ln(S2x)
< ln(Sx).

The growth factor under idiosyncratic uncertainty is the arithmetic mean,
Sx, while the growth factor under comparable aggregate uncertainty is the
geometric mean, (S1x)p(S2x)1−p < Sx. This finding that the growth rate
in unstructured populations under aggregate uncertainty falls short of the
growth rate in the corresponding mean economy is general, depending on
none of the specific structure of this example.

8



3.2 Aggregate uncertainty in age-structured population

Our task now is to extend the model of aggregate uncertainty to age-
structured populations. Let S̃τ be a random variable giving the probability
that an agent of age τ ∈ {0, . . . , T − 1} survives until the next period, with
mean S. Hence, we think of each agent of age τ ∈ {1, . . . , T − 1} as first
receiving a common realization S̃τ with support in (0, 1], identifying the
probability that this agent will survive until the next period, from a distri-
bution with mean S. The agent then takes an idiosyncratic draw from a
Bernoulli random variable that gives survival with probability S̃τ and death
otherwise. Draws of S̃τ are independent over time.

The mean Leslie matrix is given by

X =


Sx1 S 0 . . . 0
Sx2 0 S . . . 0

...
...

...
...

SxT−1 0 0 . . . S
SxT 0 0 . . . 0

 , (7)

and we continue to let φ denote the leading eigenvalue of this matrix, so that
lnφ is the population growth rate that would prevail in a population with
the same mean behavior but no aggregate uncertainty. The Leslie matrix in
period t is a random variable denoted by

X̃(t) =


x1S̃0(t) S̃1(t) 0 . . . 0
x2S̃0(t) 0 S̃2(t) . . . 0

...
...

...
...

xT−1S̃0(t) 0 0 . . . S̃T−1(t)
xT S̃0(t) 0 0 . . . 0

 . (8)

Analogously to (3), we are interested in the growth rate

lim
t→∞

1
t

lnu′X̃(1) . . . X̃(t)v,

where u and v are the eigenvectors associated with the mean Leslie matrix
X. We can interpret this as the long-run growth rate of total reproductive
value, evaluated with the population proportions u and reproductive values
v from the mean Leslie matrix.11 This is now a product of random ma-
trices. Not only can we not apply the Perron-Frobenius theorem, but it is

11No difficulty arises out of using the eigenvectors u and v from the mean Leslie matrix
in forming this measure of the growth rate. Proposition 1 below holds for any norm
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no longer obvious that the limit exists. Fortunately, we have the following
remarkable result (first established by Furstenberg and Kesten [6, Theorem
2] and extended in Tanny [21, Theorem 7.1]):12

Proposition 1 If E lnu′X̃v < ∞, then there exists a finite λ ∈ <++ such
that, almost surely,

lim
t→∞

1
t

lnu′X̃(1) . . . X̃(t)v = lnλ.

We refer to lnλ as the growth rate under aggregate uncertainty.

3.3 Aggregate uncertainty slows growth

Our first result is a generalization to age-structured populations of the find-
ing that aggregate uncertainty slows the population’s growth rate.13 Section
5.1 proves:

Proposition 2
λ ≤ φ.

Hence, aggregate uncertainty can only reduce the growth rate.14 “Generi-
cally,” it does so strictly, in the sense that the growth rate is lower under
aggregate uncertainty unless all of the possible realized Leslie matrices hap-
pen to have the same leading eigenvalue and associated left eigenvector. The
following example illustrates this latter possibility.

||X̃(1) . . . X̃(t)|| (indeed for any positive submultiplicative function of X̃(1) . . . X̃(t)). We
retain our assumption that the mean Leslie matrix X is primitive. Together with the
restriction S̃ > 0 ( the population avoids extinction), this ensures that asymptotically, all
elements of X̃(1) . . . X̃(t) grow at the same rate.

12Taking each S̃τ = 1 gives us an upper bound an u′X̃v, ensuring that we satisfy the
sufficient condition E lnu′X̃v <∞.

13This result depends on the assumption that the idiosyncratic uncertainty is indepen-
dent across periods. For example, a stochastic environment in which the Leslie matrices
X1 and X2 alternate gives a higher population growth rate than does the mean Leslie
matrix X, where

X1 =

[
0 1
8 0

]
X2 =

[
0 1
0 0

]
X =

[
0 1
4 0

]
.

14See Curry [2], Gillespie [7], and Houston and McNamara [10, Chapter 10] (as well as
Robson [16]) for similar results for the case of T = 1.
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Example 1 Suppose there are two equally likely Leslie matrices, X ′ and
X ′′, with mean matrix X, given by

X ′ =
[
x 0
0 0

]
X ′′ =

[
0 0
x2 0

]
X =

[ x
2 1
x2

2 0

]
.

In each period, the realized Leslie matrix is independently drawn to be ei-
ther X ′ or X ′′. The mean matrix X has leading eigenvalue x (and hence
growth rate lnx), left eigenvector u′ =

[
x

1+x ,
1

1+x

]
, and right eigenvector

v =
[

2(1+x)
3x , 1+x

3

]
. The matrices X ′ and X ′′ each have the same lead-

ing eigenvalue and left eigenvector. For any t, any product of the form
u′X(1)X(2) . . . X(t)v, where each X(t′) is either X ′ or X ′′, gives the same
outcome. As a result, the growth rate without aggregate uncertainty (i.e.,
with X(t′) = X for all t′) matches that with aggregate uncertainty.

3.4 Common survival rates

Perhaps the most natural case to consider is that in which the aggregate
shocks affect the survival rates of all ages equally.

Proposition 3 Let the random variables S̃0, . . . , S̃T−1 be identical. Then
evolution selects for preferences under which

dxτ+1

dxτ
= Φ =

φ

S
. (9)

As before, φ and S are the leading eigenvalue and mean death rate associated
with the mean Leslie matrix (7). Comparing with (5), we thus see that
aggregate uncertainty has no effect on marginal rates of substitution, and
hence discounting. At the same time, it decreases the growth rate if the
random variables S̃τ are nondegenerate (to lnλ < lnφ; cf. Proposition 2).
Under aggregate uncertainty, the discount rate will thus exceed the sum of
the actual growth rate and the mean death rate.
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Proof. Let S̃(t) denote the common realization in period t of the random
variables S̃0, . . . , S̃T−1. Then, almost surely

lnλ = lim
t→∞

1
t

ln
(
u′X̃(1) . . . X̃(t)v

)
= lim

t→∞

1
t

ln

(
S̃(1)
S

. . .
S̃(t)
S

u′Xtv

)

= lnφ + lim
t→∞

1
t

ln

(
S̃(1)
S

. . .
S̃(t)
S

)
= lnφ+ E ln S̃ − lnS
< lnφ,

where the inequality follows from the fact that ES̃ = S and hence E ln S̃ <
lnS. Since the fertilities (x1, . . . , xT ) appear only in lnφ, the arguments of
Section 2.2 ensure that evolution will select for marginal rates of substitution
given by (9).

Intuitively, shocks that are common across ages distort none of the in-
tertemporal trade-offs captured by the marginal rate of substitution. The
marginal rate of substitution and hence the discount rate is then fixed at
the specification appropriate for the mean Leslie matrix. If the aggregate
uncertainty is severe, the growth rate λ may fall well short of φ, giving
us discounting at a rate significantly exceeding the the sum of the growth
rate and the mean death rate. Hence, as long as our ancestral environment
featured aggregate uncertainty, there is no puzzle in our having evolved to
have discount rates higher than can be justified on the basis of the long-run
average population growth rate and mean death rates.

Gurven and Kaplan [8, pp. 346–348] note that contemporary hunter-
gatherer groups often exhibit annual growth rates in excess of two percent,
considerably higher than the approximately zero growth rate that prevailed
over the vast bulk of our evolutionary history. They suggest two explana-
tions. First, contemporary hunter-gatherers may not reflect our evolutionary
past. Second, population dynamics may exhibit a saw-tooth pattern, with
intermixed periods of relatively strong growth and occasional and perhaps
quite rapid population crashes, and with the former bound to be dispropor-
tionately represented among contemporary data. As long as the population
crashes are evolutionarily neutral, in that they do not change the popula-
tion age structure, this argument is formalized and generalized by the model
presented in this section. The rare and rapid population crashes could keep
long-term growth rates hovering near zero, while the marginal rate of sub-
stitution would be adapted to the (possibly much higher) growth rate of the
mean Leslie matrix.
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3.5 Imperfectly correlated survival rates

We now turn to the case in which fluctuations in the aggregate environment
have potentially different effects on the survival of different ages. In doing
so, our attention turns from the level to the pattern of discounting. Our
general finding is that imperfectly correlated survival rates push marginal
rates of substitution away from exponential discounting. The nature of the
departure from exponential discounting depends on the precise nature of the
aggregate uncertainty. We explore here a plausible case that gives rise to a
present bias.

We model survival rates as being affected by relatively small age-specific
perturbations around a age-independent common shock. This allows envi-
ronmental fluctuations to have different effects on agents of different ages,
while still capturing our intuition that there will be considerable common-
ality across ages in survival rates. Our focus on small age-specific pertur-
bations also allows us to use a convenient approximation method for the
analysis.

As before, a random variable S̃(t) is drawn in each period t, identically
and independently distributed over time, with mean S. In the proportion
1− ε of the population, each individual then receives an idiosyncratic draw
giving a survival with probability S̃ and death otherwise. In addition, ran-
dom variables (Ŝ0, . . . , ŜT−1) are also drawn each period, again identically
and independently distributed over time, each with mean 0. For the re-
maining ε proportion of the population, each agent of age τ then obtains an
idiosyncratic draw giving survival with probability S̃ + Ŝτ and death other-
wise (with S̃ + Ŝτ having support in (0, 1]). The larger is ε, the greater is
the variation across ages in the aggregate death rate. We consider the case
of small ε.

3.5.1 An approximation

To introduce the approximation method with which we work,15 it is useful
to return to the case of a trivial age structure presented in Section 3.1.
Suppose the survival proportion in period t is given by

(1− ε)S + εŜ(t), (10)
15Proposition 2 assures us that the limit of the product of random Leslie matrices

describing the population exists, but there are no general methods for calculating this
limit and characterizing its dependence on the elements of the Leslie matrix or parameters
describing the stochastic process.
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where S is the mean survival rate (i.e., S̃(t) is degenerate) and Ŝ(t) is a
random variable drawn independently across periods and (for the purposes
of this example only) equally likely to take the values S+ δ or S− δ. Hence,
over the course of many periods, the realized survival proportion will be
S− εδ about half the time and S+ εδ about half the time. The counterpart
of (3) is then

lim
t→∞

1
t

ln
N(t)
N(0)

=
1
2

ln((S − εδ)x) +
1
2

ln((S + εδ)x). (11)

We can take a Taylor expansion of the right side of (11) around ε = 0 to
obtain

lim
t→∞

1
t

ln
N(t)
N(0)

=
1
2

(
ln(Sx)− ε δx

Sx
− ε2

2
(δx)2

(Sx)2

)
+

1
2

(
ln(Sx) + ε

δx

Sx
− ε2

2
(δx)2

(Sx)2

)
+O(ε3)

= lnφ− ε2

2φ2x
2V +O(ε3), (12)

where V = δ2 is the variance of Ŝ(t) and hence x2V is the variance of the
growth factor. The growth rate of the population under aggregate uncer-
tainty thus falls short of the corresponding “idiosyncratic” growth rate lnφ
by a term that is proportional to the variance of the aggregate survival
factor. Increasing x increases the idiosyncratic growth rate lnφ, but also
increases the relevant variance and hence increases the extent to which the
actual growth rate falls short of lnφ.

Because the age structure in this example is trivial, we could just as
well have worked with an explicit solution such as (11) and avoided the
approximation altogether. However, a similar approximation is vital to our
consideration of nontrivial age structures.

To examine age-structured populations, we can write the realized Leslie
matrix for period t as

Z̃(t) = X̃(t) + εH̃(t), (13)

where X̃(t) is the commonly perturbed Leslie matrix as in (8), under the
assumption that the S̃τ are identical, and H̃(t) is the perturbation matrix

H̃(t) =


x1Ŝ0(t) Ŝ1(t) 0 . . . 0
x2Ŝ0(t) 0 Ŝ2(t) . . . 0

...
...

...
...

xT−1Ŝ0(t) 0 0 . . . ŜT−1(t)
xT Ŝ0(t) 0 0 . . . 0

 .
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Each of the random variables in the matrix H̃(t) has a zero mean. We use
the following generalization (cf. Tuljapurkar [22, Chapter 12]) of (12) to
age-structured populations (with the proof in Section 5):

Proposition 4 Suppose the matrices H̃(t) in (13) are independent across
periods and have a zero expected value. Then, almost surely,

lim
t→∞

1
t

lnu′Z̃(1) . . . Z̃(t)v

= lnφ+ E ln S̃ − lnS − ε2

2φ2E

(
S

S̃

)2

E{(u′H̃v)2}+O(ε3). (14)

The term E{(u′H̃v)2} is the variance of the growth factor of total repro-
ductive value, evaluated in the long run using the population proportions u
and reproductive values v derived from the mean Leslie matrix.

Revisiting some previous points, it is immediate that E{(u′H̃v)2} ≥ 0,
and hence that introducing variation in the effects of aggregate uncertainty
across ages cannot increase the population growth rate. Independence across
the various components of H̃ is one formulation ensuring that E{(u′H̃v)2} >
0 and hence that variation in aggregate uncertainty slows growth. In Ex-
ample 1, we have X̃(t) = X for all t, H(t) equals either X ′ or X ′′, ε = 1,
E ln S̃ − lnS = 0 and E{(u′Hv)2} = 0.

3.5.2 Marginal rates of substitution

When aggregate effects on survival vary across ages in a symmetric way,
marginal rates of substitution fall short of their value without such variance
(while still exceeding the sum of the growth rate and the mean mortality
rate, if ε is small) and now also decline over time:

Proposition 5 Suppose the random variables (Ŝ0, . . . ŜT−1) share common
variance V and common covariances C. Then for sufficiently small ε, the
marginal rate of substitution falls short of the value Φ it would take aggregate
shocks were identical across ages and is decreasing in τ , i.e.,

dxτ+1

dxτ
≤ dxτ+2

dxτ+1
≤ Φ

both strictly so if xτ+1 > 0 and C < V .
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The random shocks Ŝτ to the survival probabilities may range from being
independent across agents (C = 0) to being perfectly correlated (C = V )
(notice that, necessarily, C ≤ V ). As long as the aggregate shocks are not
perfectly correlated across ages, marginal rates of substitution are decreasing
in τ , i.e., intertemporal preferences exhibit a present bias.

The common-variance and common-covariance assumptions are sufficient
but not necessary for this result. It is clear that this present bias will con-
tinue to obtain as long as the distributions of the various aggregate shocks
are not too dissimilar. Indeed, the method of proof can be applied to as-
certain the implications of any configuration of distributions, though with
possibly much more tedious calculations.

3.5.3 Why not exponential?

What lies behind these results? As in the one-dimensional case in (12), the
growth rate under aggregate uncertainty is given by the growth rate under
certainty minus a term reflecting the variance of the long run growth factor
of total reproductive value (cf. (14)). The issue then becomes how the
variances of the shocks to the survival rates of various ages combine to yield
the variance of this growth factor.

To provide the simplest illustration of these complex variance effects, let
T = 3 and let S̃ = S ∈ (0, 1) with probability one, so there is no com-
mon component to the aggregate shocks to survival and Φ = φ/S̃. Assume
also that the age-dependent aggregate shocks are contemporaneously inde-
pendent and share common variances V0 = V1 = V2 = V . The variance
component {(u′H̃v)} in (14) is then16

u′H̃v = [u1, u2, u3]

 Ŝ0x1 Ŝ1 0
Ŝ0x2 0 Ŝ2

Ŝ0x2 0 0

 v1

v2

v3


= v1

3∑
τ=1

uτxτ Ŝ0 + v2u1Ŝ1 + v3u2Ŝ2

= v1u1ΦŜ0 + v2u1Ŝ1 + v3u2Ŝ2

Squaring and taking the expectation, using the independence of the aggre-
16The last equality uses (4) and uτ = Φuτ+1.
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gate shocks across ages, we have17

E(u′H̃v)2 = v2
1u

2
1Φ2V + v2

2u
2
1V + v2

3u
2
2V

= V u2
1Φ2

[
v2

1 +
v2

2

Φ2
+
v2

3

Φ4

]
(15)

If we convert the reproductive values v2 and v3 to their age-one equivalents,
we find18

v2 =
(x2

Φ
+
x3

Φ2

)
v1, v3 =

x3

Φ
v1, (16)

so that

E(u′H̃v)2 = V u2
1v

2
1Φ2

[
1 +

1
Φ2

(x2

Φ
+
x3

Φ2

)2
+

1
Φ4

(x3

Φ

)2
]
.

This expression immediately suggests that we should expect to be pushed
away from exponential discounting. We have values of x2 and x3 discounted
by a variety of powers of φ in addition to the exponential discounting ap-
pearing in (4). To pursue the details, note that the long run growth rate is
given by the expression

Λ = lnλ = lnφ−ε
2

2
E
(
u′H̃v

)2
= lnφ−ε

2V u2
1v

2
1

2S2

[
1 +

1
Φ2

(x2

Φ
+
x3

Φ2

)2
+

1
Φ4

(x3

Φ

)2
]
.

We have a present bias if and only if (letting dΛ/dxτ = Λτ )

Λ1

Λ2
>

Λ2

Λ3
or Λ2

2 < Λ1Λ3.

In order to find complete expressions for these derivatives, we must account
for the dependence of the endogenous variables Φ, u1, and v1 on x1 x2 and
x3. However, it is only the explicit dependence of Λ on x2 and x3 that
introduces a distortion away from exponential discounting. In addition, this
explicit dependence affects only the term of order ε2. Letting φ = 1 for
simplicity, this allows us to calculate that we have a present bias if and only
if

d

dx2

[
1 + (x2 + x3)2 + (x3)2

]
>

1
2
d

dx3

[
1 + (x2 + x3)2 + (x3)2

]
From (16), this condition is equivalent to v2 > v3, which holds as long as
x2 > 0 (and thus the condition xτ+1 > 0 in the statement of Proposition

17The second equality uses uτ = Φuτ+1.
18For example, 1-period-olds produce a total of x1 1-period-olds one period later (worth

v1Φ), x2 one-period-olds two periods later (worth v1/Φ
2), and x3 1-period-olds two periods

later (worth v1Φ3).
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5). Hence, when Φ = 1, the presence of a present bias is equivalent to the
condition that reproductive values decline with age. This decline in turn
reflects the fertility x2 available to a two-period-old agent that is lost to a
three-period-old agent. An analogous but slightly more complex argument
yields a similarly unambiguous result when Φ 6= 1.

3.6 Infant mortality varying by parental age

Our first message was that aggregate uncertainty drives a wedge between
discount rates and the sum of the population growth and mortality rates.
On top of this, we have now seen that aggregate uncertainty can push dis-
counting away from the exponential pattern of discounted expected utility.
We view the conditions under which we have obtained a present bias (Propo-
sition 5) as being quite plausible, but we offer here a demonstration that
there are clearly limitations to the generality of this result.

Suppose that newborns whose parents are of different ages have different
infant mortality rates. For example, older parents may be larger and bet-
ter able to nourish themselves, in turn allowing them to produce larger or
better-nourished offspring (cf. Charlesworth [1, Chapter 5]). If these infant
mortality rates were idiosyncratic, there would be no difficulty in simply
folding them into the values xτ , with no other change in the analysis. How-
ever, the case that these newborn survival rates are subject to aggregate
uncertainty requires a new analysis.

To isolate the effects of this uncertainty, we assume that S̃(t) is degener-
ate, that there is no aggregate randomness in other survival rates, and that
parent age has no impact lasting beyond infant mortality. These are clearly
restrictive assumptions. Our purpose is to illustrate that the structure of
discounting depends on the underlying stochastic specification, rather than
to advance the model being developed here (and its attendant future-biased
discounting) as being realistic.

We can again write the realized Leslie matrix for period t as in (13),
with X̃(t) given by X from (7) for each t and with the perturbation matrix
H̃(t) now given by 

x1Ŝ1(t) 0 0 . . . 0
x2Ŝ2(t) 0 0 . . . 0

...
...

...
...

xT−1ŜT−1(t) 0 0 . . . 0
xT ŜT (t) 0 0 . . . 0

 , (17)
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where each of the random variables Sτ in the matrix H̃(t) again has a zero
mean. We have:19

Proposition 6 Let x1 = x2 = . . . = xT ≡ x. Let (Ŝ1(t), . . . , ŜT (t)) share
common variance V and common covariances C. Then for small ε

dxτ+1

dxτ

is increasing in τ , strictly so if Φ 6= 1 (i.e. the mean Leslie matrix gives rise
to nontrivial discounting) and C < V .

4 Discussion

We have framed our discussion in terms of marginal rates of substitution,
and hence discount rates, over fertility at different ages. In practice, we are
interested in the intertemporal tradeoffs involved in all sorts of consumption
decisions, only a few of them explicitly involving the timing of births. Our
view here is that reproduction is the currency of evolution, and hence the
foundation for evolved preferences. The next step is to consider how fertility
xτ is determined by consumption at age τ and previous ages, with these con-
sumption decisions inheriting the discounting induced by their implications
for reproduction. Again, there is no reason to believe that people explicitly
calculate the implications for reproduction when deciding whether to con-
sume now or later, but there is good reason to believe that their preferences
over such trade-offs are shaped by evolutionary forces ultimately rooted in
reproduction. Extending the analysis from reproduction to consumption is
straightforward if reproduction at age τ is primarily a function of consump-
tion at age τ and becomes more complicated as we move away from this
simple case.

We have found that evolutionarily-induced intertemporal preferences
may exhibit a present bias. However, this present bias does not lead to
preference reversals. The marginal rate of substitution between xτ+1 and
xτ may decline in τ , but this decline is linked to age and not to time relative
to the present. A tradeoff between x9 and x10 that confers evolutionary
advantages when made at age 1 will still confer such advantages when made

19This result examines a symmetric setting in which x1 = x2 = . . . = xT ≡ x. When
uncertainty is idiosyncratic, the marginal rate of substitution between xτ and xτ ′ is in-
dependent of the levels of xτ and xτ ′ (cf. (5)), but this need no longer be the case with
aggregate uncertainty. Setting x1 = x2 = . . . = xT ≡ x is the obvious way to isolate
systematic preferences over timing.
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at age 5 or at age 9. A 1-period-old will accordingly make intertemporal
choices that cannot be rationalized by exponential discounting, but will not
reverse those choices later.

Dasgupta and Maskin [3] and Sozou [20] also present evolutionary models
leading to a present bias in discounting, including in Dasgupta and Maskin’s
case the prospect of preference reversals. The force driving discounting in
both models is the prospect that an opportunity for future consumption may
disappear before it can be realized. A source of future food may be seized
by a hungry rival or access blocked by a predator.20 We have no doubt that
uncertainty is an important element of intertemporal decision making, but
have two compelling reasons for not proceeding in a similar fashion. First,
these models assume that the basic evolutionary goal is to maximize total
undiscounted consumption. In contrast, we derive the appropriate basic
goal from a more primitive analysis of population growth rates. Indeed, our
analysis implies that future consumption will be discounted even if there
is no uncertainty at all. Second, we wish to maintain the conventional di-
viding line between our preferences and the feasible sets over which these
preferences are defined. Dasgupta and Maskin suppose, on the other hand,
that evolutionarily important feasibility considerations were built into our
preferences, so that contemporary choices between goods are evaluated as
if they are choices between their uncertainty-adjusted evolutionary equiva-
lents. Evolution may have have endowed us with such preferences, but it is
important to check whether such a hypothesis is necessary in explaining our
intertemporal behavior. Our inclination is accordingly to begin by examin-
ing discounting over consumption opportunities that are not subject to risk,
allowing us to isolate rates of time preference.

Our analysis is based on an age-independent mortality rate, best inter-
preted as the “background” death risk that is relatively constant throughout
our adult lives.21 However, we would expect discounting to vary systemati-
cally over one’s life span, especially near the beginning and end. We would
then expect discount rates to be relatively high among the young children—
who act as if there is no tomorrow—and the elderly, reflecting then the typi-
cal human U-shaped mortality pattern. However, intergenerational transfers

20Discounting is then pushed toward a present bias by the prospect of learning about
the hazard rate at which the consumption opportunity disappears (in Sozou [20]) or by
the prospect that the consumption opportunity may arrive early (in Dasgupta and Maskin
[3]).

21Wilson and Daly [23] report that women in Chicago neighborhoods with higher mor-
tality rates tend to reproduce earlier, consistent with the higher discount rates that such
mortality rates may induce.
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may well blunt the increases in discounting that would otherwise appear once
one passes reproductive age, by allowing indirect ways of enhancing effective
reproduction by pushing resources into the future. There is thus consider-
able scope for pushing our model beyond its current narrow focus to capture
other considerations.

5 Proofs

5.1 Proof of Proposition 2

Let X be the mean Leslie matrix and let N(t) be the associated popula-
tion process. Let X̃(t) be the period-t matrix under aggregate uncertainty,
drawn independently across periods according to a measure µ satisfying
E lnu′X̃v <∞, with ∫

X̃(t)dµ = X.

Let Ñ ′(t) be a random vector describing the size of each age class in the
population at time t under aggregate uncertainty and N ′(t) its counterpart
under the mean Leslie matrix X.

Our first observation is that

E{Ñ(t)} = N(t).

To see this, notice first that we have

EÑ ′(1) = EN ′(0)X̃(1) = N ′(0)X = N ′(1),

with the penultimate inequality following from the fact that each element
of X is the expected value of the corresponding element in X̃. Now we
construct an argument by induction. Suppose EN ′(0)X̃(1) · · · X̃(t − 1) =
N ′(0)Xt−1. Then

EÑ ′(t) = EN ′(0)X̃(1) · · · X̃(t) = EN ′(0)Xt−1X̃(t) = N ′(0)Xt = N ′(t),

where the second equality follows from the induction hypothesis and the fact
that every random variable in the period-t Leslie matrix X̃ is independent
of the random variable in the Leslie matrices for periods 1, . . . , t − 1, and
the next equality again follows from the fact that each term in X is the
expected value of the corresponding term in X̃.

This gives E{Ñ(t)} = N(t) and hence EÑ(t) = N(t), where the latter are
the period-t total population sizes under aggregate uncertainty and under
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the mean matrix, respectively. We can then apply Jensen’s inequality to
show that this expectation is never higher under aggregate uncertainty than
under the corresponding deterministic process:

ln N(t)
t

=
lnE{Ñ(t)}

t
≥ E{ln Ñ(t)}

t
.

The inequality is strict if the distribution of X̃(t) is nondegenerate, in the
sense that different realizations of X̃ have different left eigenvectors or dif-
ferent eigenvalues. The argument is completed by noting that the long-run
average growth rate under under the mean matrix is limlimt→∞

N(t)
t and

under aggregate uncertainty is limt→∞{ln Ñ(t)}/t, and that almost surely
limt→∞

ln Ñ(t)
t = limt→∞

E ln Ñ(t)
t .

5.2 Proof of Proposition 4

Define,

F (t, ε) = E ln
[
u′(X(1) + εH(1))...(X(t) + εH(t))v

]
.

We then have

dF (t, ε)
dε

= E

[ ∑t
i=1 u

′ [...H(i)...] v
[u′(X(1) + εH(1))...(X(t) + εH(t))v]

]

where u′ [...H(i)...] v is given by

u′(X(t) + εH(1))× . . .×H(i)× . . .× (X(t) + εH(t))v.

Hence,
∑t

i=1 u
′ [...H(i)...] v is the sum of t terms of the form u′ [...H(i)...] v,

each of which is in turn the product of t matrices, the ith of which is the
perturbation matrix H(i), and the remainder of which are realized Leslie
matrices of the form X(j) + εH(j) for j 6= i. Similarly,

d2F (t, ε)
dε2

= 2E

[ ∑
j>i u

′ [...H(i)...H(j)...] v
[u′(X(1) + εH(1))...(X(t) + εH(t))v])

]
− E

[
(
∑

i u
′ [...H(i)...] v)2

([u′(X(1) + εH(1))...(X(t) + εH(t))v])2

]
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with analogous notation. Then, using the facts that u′X = u′φ, Xv = φv
and EH(t) = 0, we have

lim
t→∞

1
t
F (t, 0) = lnφ+ E ln S̃ − lnS

dF (t, 0)
dε

= 0

lim
t→∞

1
t

d2F (t, 0)
dε2

= −E (u′H(1)v)2

φ2 E

(
S

S̃

)2

.

A Taylor expansion then gives

lim
t→∞

1
t
F (T, ε) = lim

t→∞

1
t
E ln

[
u′X(1) . . . X(t)v

]
= lnφ+ E ln S̃ − lnS − ε2

2
E

(
S

S̃

)2 E (u′H(1)v)2

φ2 +O(ε3).

The proof is now completed by noting that, almost surely (Tuljapurkar [22,
Chapter 12]),

lim
t→∞

1
t

ln
[
u′Z(1) . . . Z(t)v

]
= lim

t→∞

1
t
E ln

[
u′Z(1) . . . Z(t)v

]
.

5.3 Proof of Propositions 5 and 6

We begin with a more general structure that provides the foundation for the
proof of Propositions 5 and 6. Let the perturbation matrix H(t) be given
by 

x1Ŝ1(t) Ŝ1 0 . . . 0
x2Ŝ2(t) 0 Ŝ2 . . . 0

...
...

...
...

xT−1ŜT−1(t) 0 0 . . . ŜT−1

xT ŜT (t) 0 0 . . . 0

 .

Let Γ = limt→∞
1
t lnu′Z(1) . . . Z(t)v. Let Cττ ′ denote the covariance be-

tween Ŝτ and Ŝτ ′ , let Cττ ′ denote the covariance between Ŝτ and Ŝτ ′ , and
let Cττ ′ denote the covariance between Ŝτ and Ŝτ ′ . To make the notation
more compact, let

xτ Ŝτ ≡ Ẑτ
Ŝτ = Ẑτ .
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Expanding (14), define Γ to equal

lnφ+ E ln S̃ − lnS − ε2

2φ2E

(
S

S̃

)2

E


([

T∑
i=1

uiẐi, u1Ẑ1, u2Ẑ2, . . . , uT−1ẐT−1

]
v

)2
+O(ε3)

= lnφ+ E ln S̃ − lnS − ε2

2φ2E

(
S

S̃

)2

E


(
v1

T∑
i=1

uiẐi +
T−1∑
i=1

vi+1uiẐi

)2
+O(ε3)

= lnφ+ E ln S̃ − lnS

− ε2

2φ2E

(
S

S̃

)2
v2

1

T∑
i=1

T∑
j=1

uiujxixjCij +
T−1∑
i=1

T−1∑
j=1

vi+1vj+1uiujCij + v1

T∑
i=1

T−1∑
j=1

xiuiujvj+1Cij


+O(ε3). (18)

5.3.1 Proof of Proposition 6

The proof of Proposition 6 is notationally less involved, and so we present
this argument first. From (18), we have

Γ = lnφ+ E ln S̃ − lnSφ− ε2

2φ2E

(
S

S̃

)2
v2

1

T∑
i=1

T∑
j=1

uiujxixjCij

+O(ε3)

= lnφ+ E ln S̃ − lnS − ε2
u2
T v

2
1

2φ2 E

(
S

S̃

)2
 T∑
i=1

T∑
j=1

Φ2T−i−jxixjCij

+O(ε3),

where the final equality uses the fact that

u1 =
ΦT−1

ΦT−1 + . . .+ Φ + 1

u2 =
ΦT−2

ΦT−1 + . . .+ Φ + 1
...

uT =
1

ΦT−1 + . . .+ Φ + 1
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Now let

DΓ
Dφ

=
1
φ
− ε2E

(
S

S̃

)2 [uT v2
1

φ2

duT
dφ

+
u2
T v1

φ2

dv1

dφ
−
u2
T v

2
1

φ3

] T∑
i=1

T∑
j=1

Φ2T−i−juiujxixjCij


− ε2

u2
T v

2
1

2φ2S
E

(
S

S̃

)2
 T∑
i=1

T∑
j=1

(2T − i− j)Φ2T−i−j−1uiujxixjCij

 .
Then we can take the derivatives

dΓ
dxτ

=
DΓ
Dφ

dφ

dxτ
+
dΓ
dv1

dv1

dxτ
+

dΓ
dxτ

. (19)

This formulation recognizes that uT depends only on φ, while v1 is given by,

v1 =
∑T

τ=1 Φτ

ΦT +
∑T

τ=2(τ − 1)xτΦT−τ
=
(x1

Φ
+
x2

Φ2
+
x3

Φ3
. . .+

xT−1

ΦT−1
+
xT
ΦT

)
v1(20)

v2 =
(x2

Φ
+
x3

Φ2
+ . . .+

xT−1

ΦT−2
+

xT
ΦT−1

)
v1

...
vT−1 =

(xT−1

Φ
+
xT
Φ2

)
v1

vT =
(xT

Φ

)
v1. (21)

and hence depends both on φ and (x1, . . . , xT ).22 We can calculate:

dΓ
dx1

=
DΓ
Dφ

ΦT−1 dφ

dxT
− ε2

u2
T v

2
1

2φ2 E

(
S

S̃

)2
2

T∑
j=1

Φ2T−1−jxjC1j

+O(ε3)

...

dΓ
dxτ

=
DΓ
Dφ

ΦT−τ dφ

dxT
− ε2

(
dΓ
dv1

1
ε2

)
(τ − 1)ΦT−τ∑T

τ=1 Φτ

[ΦT +
∑T

τ=2(τ − 1)xτΦT−τ ]2

− ε2
u2
T v

2
1

2φ2 E

(
S

S̃

)2
2

T∑
j=1

Φ2T−τ−jxjCτj

+O(ε3)

22The expressions for v2, . . . , vT in terms of v1 follow from the fact that v is a right
eigenvector of the Leslie matrix. The expression for v1 then follows from the normalization
v′u = 1.
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...

dΓ
dxT

=
DΓ
Dφ

dφ

dxT
− ε2

(
dΓ
dv1

1
ε2

)
(T − 1)

∑T
τ=1 Φτ

[ΦT +
∑T

τ=2(τ − 1)xτΦT−τ ]2

− ε2
u2
T v

2
1

2φ2 E

(
S

S̃

)2
2

T∑
j=1

Φ2T−T−jxjCTj

+O(ε3),

where we write this so as to take advantage of the fact that
(
dΓ
dv1

1
ε2

)
is of

order zero. Notice that there is some asymmetry between DΓ/dx1 and the
remaining terms, arising out of the fact that v1 does not directly depend on
x1. Let us now suppose x1 = x2 = . . . = xT ≡ x, and let

α =
DΓ
Dφ

dφ

dxT
> 0.

β = −
(
dΓ
dv1

1
ε2

) ∑T
τ=1 Φτ

[ΦT +
∑T

τ=2(τ − 1)xτΦT−τ ]2
> 0

γ = x
u2
T v

2
1

2φ2 E

(
S

S̃

)2

> 0.

Then each of these terms is of order ε0. Let

Kτ = 2
T∑
j=1

Φ2T−τ−jCτj .

We then have

dΓ
dx1

= αΦT−1 − ε2γK1 +O(ε3)

dΓ
dx2

= αΦT−2 + ε2βΦT−2 − ε2γK2 +O(ε3)

...
dΓ
dxτ

= αΦT−τ + ε2β(τ − 1)ΦT−τ − ε2γKτ +O(ε3)

...
dΓ
dxT

= α+ ε2β(T − 1)− ε2γKT +O(ε3).
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and hence, for τ ∈ 2, . . . , T − 1,

−dx2

dx1
=

dΓ
dx1

dΓ
dx2

=
αΦT−1 − ε2γK1 +O(ε3)

αΦT−2 + ε2βΦT−2 − ε2γK2 +O(ε3)
(22)

−dxτ+1

dxτ
=

dΓ
dxτ
dΓ

dxτ+1

=
αΦT−τ + ε2β(τ − 1)ΦT−τ − ε2γKτ +O(ε3)
αΦT−τ−1 + ε2βτΦT−τ−1 − ε2γKτ+1 +O(ε3)

.(23)

We have increasing marginal rates of substitution if, for τ = 2, . . . , T − 2

−dx2

dx1
< −dx3

dx2
and − dxτ+1

dxτ
< −dxτ+2

dxτ+1
, (24)

which can be verified by a straightforward but tedious calculation (details
available in the technical appendix).

5.3.2 Proof of Proposition 5

From (18), using (20)–(21), we now have (hereafter omitting the O(ε3) term)

Γ = lnφ+ E ln S̃ − lnS

− ε
2u2
T v

2
1

2φ2 E

(
S

S̃

)2
[
T∑
i=1

T∑
j=1

Φ2T−i−jxixjCij +

T−1∑
i=1

T−1∑
j=1

Φ2T−i−jkikjCij +

T∑
i=1

T−1∑
j=1

Φ2T−i−jxikjCij

]
,

where
ki =

xi+1

Φ
+
xi+2

Φ2
+
xi+3

Φ3
+ . . .+

xT

φT−i+1
. (25)

We conserve on notation by letting K denote the term in square brackets
and hence writing Γ as

Γ = lnφ+ ES̃ − lnS −
ε2u2

T v
2
1

2φ2 E

(
S

S̃

)2

K. (26)

The derivation of decreasing marginal rates of substitution then follows lines
similar to the proof of Proposition 6, revolving around a straightforward but
tedious calculation and comparisons of the derivatives of Γ, presented in the
technical appendix.
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