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Abstract

This paper studies determinants of household portfolio decisions using recent data

from Australia. A flexible econometric approach based on the finite mixture of normals

sample selection model is used to analyze jointly the decision to participate in the mar-

ket for risky assets and how much to invest in such assets. To study factors influencing

these decisions the paper derives expressions for marginal effects of covariates in the

mixture of normals sample selection model and evaluates their posterior distributions.

We find that in our sample the mixture model outperforms normal model according

to the marginal likelihood criterion, and that up to five mixture components are re-

quired to approximate the joint distribution of errors in the sample selection model.

Results based on the preferred mixture model show that household characteristics and

background risk variables have significant effect on participation decision, while having

moderate predictive power with respect to the share of wealth invested in risky assets.

The paper also demonstrates that relatively modest participation cost can rationalize

prevalence of non-participation in the market for risky assets, with the cost in the range

of 500-700 dollars explaining 90% of non-participation in our sample.
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1 Introduction

Portfolio choices made over the lifecycle of a household determine the rate of growth of

personal wealth and household’s standard of living after retirement. Empirical studies of

household financial behavior typically document stock market participation rates below 50

percent (Bertaut (1998); Guiso, Haliassos, and Jappelli (2002)) and considerable hetero-

geneity in the share of wealth invested in stocks among participating households (Heaton

and Lucas (2000)). These findings are at odds with the standard portfolio choice theory

which predicts that, given the historical equity premium, all households should be willing to

invest at least some part of their wealth in the stock market (Merton (1969)), and that the

optimal mix of the risky and safe assets in an individual portfolio should be independent of

the risk aversion and wealth level (Tobin (1958)). Moreover, estimates based on the cali-

brated lifecycle models of consumption and portfolio choice imply that welfare loss due to

non-participation is equivalent to the 2% reduction in the annual consumption (Cocco et al.

(2005)).

Literature on portfolio choice points to fixed participation cost and various sources of non-

diversifiable background risk such as business equity and volatile labour income as possible

explanations for the low participation rates and cross-sectional variation in the shares of risky

assets. Several studies found that foregone earnings of the households which do not hold

public equity are relatively small, suggesting that a moderate fixed cost can explain some of

the variation in participation rates (Vissing-Jorgensen (2004) (2004), Paliela (2007)). Other

studies suggest that households differ in their degree of exposure to the background risk

(arising because of the uncertainty about future returns to human capital, business equity,

real estate investments and other factors) and that high exposure is associated with lower

share of risky assets in household portfolios. For example, Guiso et al. (1996) have shown that

subjective expectation of future borrowing constraints and negative income shocks decreases

the willingness to hold risky assets among Italian households. Heaton and Lucas (2000b)

find that variability of business income reduces the share of risky assets in total wealth

among business owners, and that exposure to the employer stock reduces the share of other

risky assets for non-entrepreneurs. Hochguertel (2003) documents that Dutch households

with higher uncertainty about future labour income tend to tilt their portfolios towards safe

assets.

This paper studies the effects of fixed cost, background risk and other characteristics on

stock market participation and household exposure to risky assets (public equity) using data

from a representative survey of Australian households. The active privatization policy of the
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1990s and introduction of the system of mandatory retirement contributions (Superannuation

Guarantee) have significantly expanded the ranks of Australian shareholders in the last

two decades, resulting in one of the highest stock market participation rates in the world

(Giannetti and Koskinen (2007)). At the same time, there has been little systematic analysis

of the determinants of the stock market participation in Australia. In this paper we use

data from the Household Income and Labour Dynamics in Australia (HILDA) survey to

construct household level measures of background risk, planning horizon, risk attitudes and

other characteristics and study their impact on the structure of household portfolios. We find

that controlling for wealth level and demographic characteristics, households in which head

has higher subjective risk of a job loss are less likely to participate in the stock market and,

conditional on participation, tend to invest a smaller share of their liquid financial wealth

in the common stock. These findings confirm the results obtained by Guiso, Jappelli and

Terlizzese (1996) and Hochguertel (2003) who studied the effect of subjective expectations

about such risk on portfolio choice. Similar to other studies we also document strong impact

of education, age, risk attitudes and net worth levels on decision to hold public equity.

The methodological novelty of the paper consists in addressing important properties of

the household portfolio data in a systematic fashion. Guiso et al (2002) point out that the

sample selection model provides a convenient reduced form framework to study household

portfolio choices: it allows treating participation and allocation as two distinct decisions

while simultaneously controlling for the unobserved factors which might affect both choices.

However, it is well know that inference in the normal sample selection model is unreliable

when the assumption of normality is violated. In our data the conditional distribution of the

share of wealth invested in stocks among participating households is bimodal and platykurtic,

which suggests that the normality assumption may not be satisfied. Hence, we employ the

discrete mixture of normals selection model, which is flexible enough to accommodate any

deviation from normality in the data (Ferguson, 1983). The paper takes Bayesian approach

to inference and employs Markov Chain Monte Carlo simulation algorithm to access the

joint posterior distribution of the parameters of the model. The method proposed by Chib

(1995) is used to evaluate model’s marginal likelihood and select the number of components

in the mixture distribution. This selection procedure favors the five-component mixture of

normals model.

The paper also uses data on individual financial wealth to obtain the posterior distribu-

tion of the magnitude of forgone earnings from non-participation in the stock market using

method similar to that proposed by Vissing-Jorgensen (2004). With some additional as-
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sumptions we use this posterior distribution to construct the distribution of the fixed cost of

stock market participation for non-participating households. The posterior distribution of

the participation cost obtained from the five-component mixture model differs substantially

from the posterior distribution generated by the normal model. In particular, normal model

systematically predicts lower participation costs than five-component mixture model. These

results show the importance of accommodating non-normality in the data for drawing reliable

conclusion about household behavior. Results from our preferred mixture specification sug-

gest that relatively modest participation cost can rationalize prevalence of non-participation

in the market for risky assets in Australia, with the per-period cost in the range of 500-700

dollars explaining 90% of non-participation in our sample.

The rest of the paper is organized as follows. The data used in the paper is described in

the next section. Section 3 presents the sample selection models with normal and mixture of

normals disturbances and develops the MCMC algorithm for the Bayesian inference in these

models. Section 4 derives expressions for marginal effects. Section 5 discusses the empirical

results, section 6 presents and implements the method for calculation of the cost of stock

market participation and section 7 concludes.

2 Data and Sample Construction

The data used in this paper comes from the Household Income and Labour Dynamics in Aus-

tralia (HILDA) survey (Wooden and Watson (2007)). HILDA is a nationally representative

longitudinal survey of Australian households. This paper uses data from the second wave of

HILDA administered in 2002, which contains a wealth module with detailed information on

the composition of household’s asset and liabilities in that year. In total, wave 2 of HILDA

contains data on 7245 households. We restrict our sample to single-family households which

do not include other related or unrelated members, except children.

The paper focuses on the portfolio decisions of the working age households. This restric-

tion is needed to properly account for the influence of retirement assets (superannuation)

in household financial decisions. Personal retirement assets in Australia are generally not

accessible before the age of 65, and thus should be excluded from the definition of liquid

financial wealth for workers under 65 years old. On the other hand, for households with

heads over 65 years old, superannuation assets are properly classified as liquid wealth. To

avoid complications created by the changing nature of superannuation funds we restrict our

sample by eliminating households in which head is over 65 years old.
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The data at our disposal provides information on the value of the shares held by household

either directly or through a mutual fund, which we take as our measure of risky asset holdings.

Financial wealth is defined as a sum of bank accounts, cash investments, public equity

investments, trust funds and life insurance. The two dependent variables in our analysis

are the binary indicator of stock market participation and the share of public equity in the

financial wealth.

Asset variables which control for background risk faced by a household include retirement

wealth (superannuation) and business equity. Superannuation assets in Australia can be

invested in stock market, property or safe assets. Because we don’t observe the composition

of the superannuation portfolio held by a given households and its correlation with the stock

market returns it is difficult to predict a priori how superannuation assets should affect

participation and allocation decisions. Substantial holdings of business equity, on the other

hand, are generally found to reduce household exposure to stock market risk. Following Guiso

et al. (1996) and Hochguertel (2003) we use subjective expectations of becoming unemployed

as measure of background risk stemming from the uncertainty about labor income. In the

previous studies similar measures were found to have statistically significant but relatively

small effects on participation and share of risky assets in financial portfolios.

Following other studies of household portfolios this paper models decisions whether to

invest in risky assets and how much to invest conditional on the set of household’s demo-

graphic characteristics, employment status, income, risk attitudes, planning horizon and

measures of background risk. We further include indicators for non-English speaking back-

ground, urban and state residence as predictors of the stock market participation, but not

of the share of risky asset in household portfolios. The assumption here is that these vari-

ables are likely to influence amount of information about the stock market available to the

household and hence the magnitude of the fixed cost of participating in the market for risky

assets (Campbell (2006)). At the same time these variables can be expected to have little

influence, conditional on other controls, on the share of wealth invested in stocks.

In the empirical implementation we will use flexible functional forms to accommodate

potential non-linear effects of age, net worth, income and superannuation assets on partic-

ipation and allocation decisions. After eliminating households for which data for at least

one variable used in the analysis is missing the final sample consists of 4110 households, of

which 1698 or 41% hold some part of their wealth in risky assets. Variable definitions and

summary statistics are given in Table 1.
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Table 1: Variable definition and summary statistics (number of observations: 4110 )

Variable Definition Mean SD
Financial variables
equity =1 if holds public equity 0.41 0.49
fw Financial Wealth/10000 63.4 204.6
share share of risky assets in financial wealth 0.53 0.32
nw Net Worth/10000 38.9 61.0
income Household Income/10000 5.0 5.0
super Superannuation/10000 8.7 15.7
bizeq Business Equity/10000 4.0 26.6

Household Characteristics
age age of household head (HH) 43.1 11.7
edub =1 if HH has bachelor qualification 0.23 0.42
edud =1 if HH has advanced diploma 0.37 0.48
edus =1 if HH is high school graduate 0.11 0.32
olf =1 if HH is out of labor force 0.18 0.38
unemployed =1 if HH is unemployed 0.03 0.18
liq1 =1 if household is experiencing liquidity constraints 0.23 0.42
prob =1 if HH is uncertain about the future of his/her a job 0.30 0.46
lone =1 if lone parent 0.11 0.32
couple =1 if couple 0.63 0.48
children04 number of children under age of 4 0.21 0.52
children415 number of children between ages of 4 and 15 0.46 0.86
horizon1 =1 if planning horizon is next 2-4 years 0.13 0.33
horizon2 =1 if planning horizon is next 5-10 years 0.23 0.42
risk =1 if HH is willing to take high risks 0.11 0.31
nesb =1 if HH comes form non-English speaking background 0.12 0.32
urban =1 if household resides in urban area 0.61 0.49
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3 Normal and Mixture of Normals Sample Selection

Models

This section defines the sample selection models with normal and mixture of normals dis-

turbances which will be used to study portfolio choices of Australian households. It also

describes the Markov Chain Monte Carlo algorithms which is used to conduct inference in

the two models.

Let I∗i denote the latent utility that an individual derives from stock market participation,

let S∗i denote the potential proportion of wealth he would be willing to invest in the stock-

market. The model for the vector [I∗i , S
∗
i ]
′ can be specified as follows:

S∗i = α′xi + ε1i (1)

I∗i = β′zi + ε2i (2)

In (1) and (2) the vector of covariates zi includes xi as well as covariates that belong to the

participation equation (2) only (instruments). Without loss of generality we assume that

zi = [x′i, z
′
2i]
′ where z′2i is a vector of covariates not included in the share equation (1). In

the normal sample selection model the vector of disturbances εi = [ε1i, ε2i]
′ has a bivariate

normal distribution with zero mean and variance-covariance matrix Σ:

Σ =

 σ2
1 σ12

σ12 σ2
2

 .
In the sample selection model with mixture of normals disturbances the vector εi follows

a discrete mixture of bivariate normal distributions:

f(εi|θ) =
m∑
j=1

πjφ2(εi|µj,Σj),

where θ denotes the vector of parameters, φ2(.|a,B) denotes probability density function of a

bivariate normal distribution with mean a and variance-covariance matrix B, πj denotes the

probability of mixture component j, m denotes the number of components in the mixture,

Σm
j=1πj = 1, and

µj =

 µ1j

µ2j

 ,
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Σj =

 σ2
1j σ12j

σ12j σ2
2j


for j = 1, ...,m. In this setup mixture components have no structural interpretation because

component labels are not identifies without prior restrictions. This however is not a concern

here because we are using mixture model as a convenient way to relax the normality assump-

tion (Geweke (2007)) and focus only on the permutation invariant functions of interest, such

as marginal effects.

Let Ii denote the binary variable which is equal to one if individual i participates in the

stock market, and is equal to zero otherwise and assume that Ii = 0 if I∗i < 0 and Ii = 1

if I∗i >= 0. Note that the potential proportion of wealth invested in stocks, S∗i , is only

observed when individual actually participates in the stock market, i.e. when Ii = 1. Let Si

denote the actual proportion of wealth invested in the stock market. Then Si = S∗i if Ii = 1

and Si = 0 otherwise. Using marginal-conditional decomposition the likelihood function of

the sample selection model with normal disturbances L(θ|Data, N) can be written as:

L(θ|Data, N) =1− Φ

β′zi√
σ2

2

1−Ii

·
〈

Φ

β′zi + σ12(Si −α′xi)/σ2
1√

σ2
2 − σ2

12/σ
2
1

 · 1√
2πσ1

exp

(
−(Si −α′xi)2

2σ2
1

)〉Ii
,

and that of a sample selection model with mixture of normals disturbances L(θ|Data,M)

can be expressed as follows:

L(θ|Data,M) = ΠN
i=1Σm

j=1πj

1− Φ

µ2j + β′zi√
σ

2
2j

1−Ii

·
〈

Φ

µ2j + β′zi + σ12j(Si − µ1j −α′xi)/σ2
1j√

σ2
2j − σ2

12j/σ
2
1j

 · 1√
2πσ1j

exp

(
−(Si − µ1j −α′xi)2

2σ2
1j

)〉Ii
,

where Φ(a) denotes standard normal cdf evaluated at a. It is easy to see that the variance

σ2
2 in the sample selection model is not identified separately from σ12 and β in the sense that

if we multiply σ2, σ12 and β by the same constant, the likelihood function would not change.

Similarly, in the sample selection model with mixture of normals disturbances the variance

terms σ2
2j are not identified separately from σ12j, µ2j and β. The identification in the normal

sample selection model is achieved by the normalization σ2
2 = 1. In the similar fashion, the

identification on the sample selection model with mixture of normals disturbances is achieved
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by the normalization σ2
2j = 1 for j = 1, ..,m.

The Bayesian inference in the sample selection model with normal disturbances is facili-

tated by augmenting the vector of data [Si, Ii]
′ by the latent utility of stock market participa-

tion I∗i and the potential proportion of wealth invested in the stock market S∗i , for i = 1, ..., N .

The joint probability density function of the augmented data y∗ = [S∗1 , ..., S
∗
N , I

∗
1 , ..., I

∗
N ]′,

S = [S1, ..., SN ]′ and I = [I1, ..., IN ]′ conditional on the exogenous variables Z = [z′1, ..., z
′
N ]

and the vector of parameters θ can be written:

P (y∗, I,S|Z,θ) = |H|N/2 exp (−(y∗ −Wγ)′(H ⊗DN)(y∗ −Wγ)/2)

· ΠN
i=1(ι(Si = S∗i )ι(Ii = 1)ι(I∗i ≥ 0) + ι(Si = 0)ι(Ii = 0)ι(I∗i < 0)), (3)

where H = Σ−1, γ = [α′,β]′,

W =

 X 0

0 Z

 ,
X = [x′1, ...,x

′
N ] and DN is an identity matrix of size N ×N .

The model must be completed with the specification of prior distribution of parameters

P (θ). The collection of parameters θ in the normal sample selection model consists of H

and γ. We specify conjugate prior distributions for γ and H, and assume that γ and H are

independent in the prior:

P (θ) = P (γ) · P (H), (4)

where

• γ ∼ N(γ, Hγ)

• H ∼ Wishart(S, ν) · ι(σ2
2 = 1).

Note, that the prior distribution of H is truncated so that σ2
2 = 1 to satisfy the normalization

constraints.

The joint posterior distribution of θ is proportional to the product of (3) and (4). To

approximate the posterior distribution of θ we construct the Gibbs sampling algorithm which

iterates between the following three blocks:

1. Sample [S∗i , I
∗
i ]′|Si, Ii, zi,θ for i = 1, ..., N . When Ii = 1, the conditional posterior

distribution of S∗i is degenerate at Si, so we set S∗i = Si and draw I∗i |(S∗i , Si, Ii, zi,θ) ∼
N(β′zi + σ12

σ2
1

(S∗i −α′xi), 1−
σ2
12

σ2
1

) truncated to I∗i > 0;
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When Ii = 0, [I∗i , S
∗
i ]
′|Si, Ii, zi,θ) ∼ N

 α′zi

β′zi
,Σ

 truncated to I∗i < 0. To sam-

ple from this joint distribution we first draw from the marginal-conditional posterior

I∗i |(Si, Ii, zi,θ) ∼ N(β′zi, 1) truncated to I∗i < 0, and then draw from the conditional

posterior S∗i |(Si, I∗i , Ii, zi, si,θ) ∼ N(α′xi + σ12(I∗i − β′zi), σ11 − σ2
12). This algorithm

for drawing from the joint posterior conditional distribution [S∗i , I
∗
i ]′|Si, Ii, zi,θ is due

to van Hasselt (2007).

2. γ|(y∗,S, I,Z, H) ∼ N(γ, Hγ) where Hγ = Hγ+W′HW and γ = H
−1

γ (Hγγ+W′Hy∗).

3. H|(y∗,S, I,Z,γ) ∼ Wishart(S, ν) · ι(σ2
2 = 1) where

S = S +
N∑
i=1

 (S∗i −α′xi)2 (S∗i −α′xi)(I∗i − β′zi)
(S∗i −α′xi)(I∗i − β′zi) (I∗i − β′zi)2


and ν = ν+N . The draws from this truncated Wishart distribution are obtained using

the algorithm proposed in Nobile (2000).

Similar to the normal model, Bayesian inference in the sample selection model with

mixture of normals disturbances can be conducted by augmenting the observable vector

[Si, Ii]
′ by the latent utility of stock market participation I∗i , the potential proportion of

wealth invested in the stock market S∗i and the latent indicator of mixture component si.

The latent indicator of mixture component si takes on one of the values 1, ...,m, and P (si =

j|xi,xi1, xi2,θ) = πj for j = 1, ...,m. The distribution of the disturbances εi conditional on

the latent indicator of mixture component si is normal:

εi|(si = j,θ) ∼ N(µj,Σj).

The following notation will be useful for the presentation of the posterior simulation

algorithm in the sample selection model with mixture of normals disturbances. Define C =

[c1, ..., cN ]′ = [ι(si = j)], so that the jth row of the m×1 vector ci is equal to one if si = j and

is equal to zero otherwise. Also, define W =

 W1 0

0 W2

 where W1 = [C,X] and W2 =

[C,Z], and define γ = [µ11, ..., µ1m,α
′, µ21, ..., µ2m,β

′]′. Then the joint probability density

function of the augmented data s = [s1, ..., sN ]′, y∗ = [S∗1 , ..., S
∗
N , I

∗
1 , ..., I

∗
N ]′, S = [S1, ..., SN ]′

and I = [I1, ..., IN ]′ conditional on exogenous variables Z and the vector of parameters θ can
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be written:

P (y∗, I,S, s|Z,θ) =
m∏
j=1

π
Nj

j |Hj|Nj/2 exp (−(y∗ −Wγ)′H(y∗ −Wγ)/2)

· ΠN
i=1(ι(Si = S∗i )ι(Ii = 1)ι(I∗i ≥ 0) + ι(Si = 0)ι(Ii = 0)ι(I∗i < 0)), (5)

where Nj is the number of observations such that si = j,

H =

 H11 H12

H21 H22


and Hkl = diag(Σkl

s1
, ...,Σkl

sN
) where Σkl

j is kl’th element of Σ−1
j for k = 1, 2, l = 1, 2,

j = 1, ...,m.

The model must be completed with the specification of prior distribution of parameters

P (θ). The collection of parameters θ consists of γ, H1, ..., Hm and π, where Hj ≡ Σ−1
j for

j = 1, ...,m. We specify conjugate prior distributions for α, H1, ..., Hm,π and assume that

α, H1, ..., Hm,π are independent in the prior:

P (θ) = P (γ) ·
m∏
j=1

P (Hj) · P (π), (6)

where

• γ ∼ N(γ, Hγ)

• Hj ∼ Wishart(Sj, νj) · ι(σ2
2j = 1) for j = 1, ...,m

• π ∼ Dirichlet(r)

Note, that the prior distribution of Hj is truncated so that σ2
2j = 1 to satisfy the normaliza-

tion constraints.

The joint posterior distribution of θ is proportional to the product of (5) and (6). To

approximate the posterior distribution of θ we construct the Gibbs sampler which iterates

between the following five blocks:

1. Sample [S∗i , I
∗
i ]′|Si, Ii, zi, si,θ for i = 1, ..., N . When Ii = 1, set S∗i = Si and draw

I∗i |(S∗i , Si, Ii, zi, si,θ) ∼ N(µ2si
+ β′zi +

σ12si

σ2
1si

(S∗i − µ1si
−α′xi), 1−

σ2
12si

σ2
1si

) truncated to

I∗i > 0;

When Ii = 0, draw I∗i |(Si, Ii, zi, si,θ) ∼ N(µ2si
+β′zi, 1) truncated to I∗i < 0 and then

draw S∗i |(Si, I∗i , Ii, zi, si,θ) ∼ N(µ1si
+α′xi + σ12si

(I∗i − µ2si
− β′zi), σ11si

− σ2
12si

);
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2. P (si = j|S∗i , Si, I∗i , Ii, zi,θ) ∝ πjφ(

 S∗i

I∗i

 ;µj +

 α′xi
β′zi

 ,Σj) where φ(a,B) denotes

probability density function of a bivariate normal distribution with mean a and variance-

covariance matrix B.

3. γ|(y∗,S, I,Z, s,θ−γ) ∼ N(γ, Hγ) where Hγ = Hγ + W′HW and γ = H
−1
γ (Hγγ +

W′Hy∗).

4. Hj|(y∗,S, I,Z, s,θ−Hj
) ∼ Wishart(Sj, νj) · ι(σ2

2j = 1) where

Sj = Sj+
N∑
i=1

ι(si = j)

 (S∗i − µ1ji −α′xi)2 (S∗i − µ1ji −α′xi)(I∗i − µ2ji − β′zi)
(S∗i − µ1ji −α′xi)(I∗i − µ2ji − β′zi) (I∗i − µ2ji − β′zi)2


and νj = νj + Nj. The draws from this truncated Wishart distribution are obtained

using the algorithm proposed in Nobile (2000).

6. π|(y∗,S, I,Z,θ−π) ∼ Dirichlet(r +N1, ..., r +Nm).

The Matlab codes for these two algorithms have passed the joint distribution test suggested

in Geweke (2004). Next we discuss posterior distributions of marginal effects in the sample

selection models with normal and mixture of normals disturbances.

4 Marginal Effects

Results of the normal and mixture of normals sample selection models can be interpreted

by computing marginal effects of covariates on the outcome variables. For each model we

compute posterior distributions of the following three sets of marginal effects:

1. The marginal effect of the variable zki on probability of stock market participation

of individual i. For continuous zki this effect is computed as the derivative of the

probability of stock market participation of individual i with respect to zki:

MEPzc
ki
|zi,θ, A ≡

∂Prob(I∗i > 0|zi,θ, A)

∂zki
, (7)

where superscript c indicates that the marginal effect MEPzc
ki
|zi,θ is that of a continu-

ous zki, and A in the conditioning set indicates model for which the effect is computed,

i.e. A = N for sample selection model with normal disturbances and A = M for sample

selection model with mixture of normals disturbances.
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For discrete zki the effect is computed as the difference in probabilities of stock market

participation of individual i evaluated at adjacent values of zki:

MEPzd
ki
|zi,θ, A ≡ Prob(I∗i > 0|z−zki,i, zki = a+1,θ, A)−Prob(I∗i > 0|z−zki,i, zki = a,θ, A),

(8)

where superscript d indicates that the marginal effect MEPzd
ki
|zi,θ is that of a discrete

zki.

2. The marginal effect of the variable xki on expectation of fraction of wealth invested in

shares of individual i conditional on participation in the stock market. For continuous

xki this effect is computed as the derivative of the expectation of fraction of wealth

invested in stock market of individual i conditional on participation with respect to

xki:

MESCxc
ki
|zi,θ, A ≡

∂E(S∗i |I∗i > 0, zi,θ, A)

∂xki
. (9)

For discrete xki the effect is computed as the difference in the expectations of fraction

of wealth invested in shares of individual i conditional on participation evaluated at

adjacent values of xki:

MESCxd
ki
|zi,θ, A ≡ E(S∗i |I∗i > 0, z−xki,i, xki = a+1,θ, A)−E(S∗i |I∗i > 0, z−xki,i, xki = a,θ, A).

(10)

3. The effect of the variable xki on unconditional expectation of observed fraction of wealth

invested in shares of individual i. This unconditional expectation can be expressed:

E(Si|zi,θ, A) = E(Si|I∗i > 0, zi,θ, A) · Prob(I∗i > 0|zi,θ, A)

+ E(Si|I∗i ≤ 0, zi,θ, A) · Prob(I∗i ≤ 0|zi,θ, A).

Because the observed fraction of wealth invested in shares is zero for individuals who

do not participate in the stock market, and the observed fraction Si is equal to the po-

tential fraction S∗i for individuals who participate in the stock market, the expectation

E(Si|zi,θ, A) reduces to:

E(Si|zi,θ, A) = E(S∗i |I∗i > 0, zi,θ, A) · Prob(I∗i > 0|zi,θ, A). (11)

Then the marginal effect of a continuous variable xki is computed as the derivative of
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this unconditional expectation with respect to xki:

MESUxc
ki
|zi,θ, A ≡

∂E(S∗i |I∗i > 0, zi,θ, A)Prob(I∗i > 0|zi,θ, A)

∂xki
. (12)

The marginal effect of a discrete xki is computed as the difference in the unconditional

expectations evaluated at adjacent values of xki:

MESUxd
ki
|zi,θ,A ≡

E(S∗i |I∗i > 0, z−xki,i, xki = a+ 1,θ, A)Prob(I∗i > 0|z−xki,i, xki = a+ 1,θ, A)−

E(S∗i |I∗i > 0, z−xki,i, xki = a,θ, A)Prob(I∗i > 0|z−xki,i, xki = a,θ, A). (13)

Now we will derive the expressions for the marginal effects (7)-(13) in sample selection

models with normal and mixture of normals disturbances. In the sample selection model

with normal disturbances the conditional probability of stock market participation Prob(I∗i >

0|zi,θ, N) is equal to the standard normal cdf evaluated at marginal expectation of I∗i |zi,θ, N
β′zi:

Prob(I∗i > 0|zi,θ, N) = Φ(β′zi) (14)

where Φ(a) denotes the standard normal cdf evaluated at a. Then the marginal effect of a

continuous variable zki on probability of stock market participation of individual i is:

MEPzc
ki
|zi,θ, N =

∂Φ(β′zi)

∂zki
= βk · φ(β′zi), (15)

where φ(a) denotes standard normal pdf evaluated at a. The marginal effect of a discrete

zki on probability of stock market participation of individual i is:

MEPzd
ki
|zi,θ, N = Φ(βk(zki + 1) + β−βk

z−zki
)− Φ(β′zi)

= Φ(βk + β′zi)− Φ(β′zi). (16)

To obtain expressions for marginal effects of covariates on fraction of wealth invested in

shares we first derive the expected value of fraction of wealth invested in shares conditional

on participation E(S∗i |I∗i > 0, zi,θ, N). The expression for this conditional expectation can

be obtained using standard results about moments of incidentally truncated bivariate normal

14



distribution (e.g. Greene, Theorem 22.5):

E(S∗i |I∗i > 0, zi,θ, N) = α′xi + σ12
φ(β′zi)

Φ(β′zi)
, (17)

where φ(β′zi)

Φ(β′zi)
is the inverse Mills ratio. Then the marginal effect of a continuous xki on this

conditional expectation is given by:

MESxc
ki
|zi,θ, N =

∂E(S∗i |I∗i > 0, zi,θ)

∂xki
= αk−βk ·σ12 ·

(
φ(β′zi)

Φ(β′zi)

(
φ(β′zi)

Φ(β′zi)
+ β′zi

))
. (18)

The marginal effect of a discrete xki on the conditional expectation E(S∗i |I∗i > 0, zi,θ, N) is

given by:

MESxd
ki
|zi,θ, N = αk +α′xi + σ12

φ(βk + β′zi)

Φ(βk + β′zi)
−α′xi − σ12

φ(β′zi)

Φ(β′zi)
=

αk + σ12

(
φ(βk + β′zi)

Φ(βk + β′zi)
− φ(β′zi)

Φ(β′zi)

)
. (19)

Finally, the unconditional expectation of the observed fraction of wealth invested in shares

in the normal sample selection model E(Si|zi,θ, N) is given by

E(Si|zi,θ, N) = (α′xi + σ12
φ(β′zi)

Φ(β′zi)
) · Φ(β′zi). (20)

Then the marginal effect of a continuous xki on this expected value is given by:

MESUxc
ki
|zi,θ, N =

∂E(Si|zi,θ)

∂xki
= βk · φ(β′zi) · (x′iα+ σ12

φ(z′iβ)

Φ(z′iβ)
) +

Φ(z′iβ) · (αk − βk · σ12 ·
(
φ(z′iβ)

Φ(z′iβ)

(
φ(z′iβ)

Φ(z′iβ)
+ z′iβ

))
), (21)

and the marginal effect of a discrete xki on this expected value is given by:

MESUxd
ki
|zi,θ, N = (αk +α′xi + σ12

φ(βk + β′zi)

Φ(βk + β′zi)
) · Φ(βk + β′zi)−

(α′xi + σ12
φ(β′zi)

Φ(β′zi)
) · Φ(β′zi). (22)
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Now we will derive expressions for the marginal effects (7)-(13) in the sample selection

model with mixture of normals disturbances. In this model the probability of stock market

participation of individual i Prob(I∗i > 0|zi,θ,M) is equal to the sum of mixture-component

specific probabilities of participation weighted by the marginal probabilities of these compo-

nents:

Prob(I∗i > 0|zi,θ,M) =
m∑
j=1

πjProb(I
∗
i > 0|zi,θ, si = j,M) =

m∑
j=1

πjΦ(µ2i + β′zi). (23)

Hence, the marginal effect of zki on probability of stock market participation of individual i

is equal to the mixture-component specific marginal effects weighted by the marginal prob-

abilities of these components. In particular, the marginal effect of a continuous zki is given

by:

MEPzc
ki
|zi,θ,M =

m∑
i=1

πi
∂Φ(µ2i + β′zi)

∂zki
= βk ·

m∑
i=1

πi · φ(µ2i + β′zi), (24)

and that of a discrete zki is given by:

MEPzd
ki
|zi,θ,M =

m∑
j=1

πj(Φ(µ2j + βk + β′zi)− Φ(µ2j + β′zi)). (25)

To obtain the expression for the marginal effects of xki on expected fraction of wealth

invested in shares conditional on participation E(S∗i |I∗i > 0,θ, zi,M) we first derive the

expression for this conditional expectation as follows:

E(S∗i |I∗i > 0,θ, zi,M) =
∫ ∫ ∞

0
S∗i · p(S∗i , I∗i |I∗i > 0,θ, zi,M)dI∗i dS

∗
i

=
∫ ∫ ∞

0
S∗i

∑m
j=1 πjp(S

∗
i , I
∗
i |θ, si = j, zi)∑m

j=1 πjProb(I
∗
i > 0|θ, si = j, zi)

dI∗i dS
∗
i

=

∑m
j=1 πjProb(I

∗
i > 0|θ, si = j, zi) ·

∫ ∫∞
0 S∗i

p(S∗i ,I
∗
i |θ,si=j,zi)

Prob(I∗i >0|θ,si=j,zi)
dI∗i dS

∗
i∑m

j=1 πjProb(I
∗
i > 0|θ, si = j, zi)

=

∑m
j=1 πjProb(I

∗
i > 0|θ, si = j, zi) · E(S∗i |I∗i > 0,θ, si = j, zi)∑m
i=1 πjProb(I

∗
i > 0|θ, si = j, zi)

=

∑m
j=1 πjΦ(µ2j + z′iβ) ·

(
µ1j + x′iα+ σ12j

φ(µ2j+z′iβ)

Φ(µ2j+z′iβ)

)
∑m
j=1 πjΦ(µ2j + z′iβ)

. (26)

Hence, the conditional expectation E(S∗i |I∗i > 0,θ, zi,M) is equal to the weighted average

of the mixture-component specific conditional expectations E(S∗i |I∗i > 0,θ, si = j, zi) with
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weights equal to the probabilities of mixture components conditional on participation p(si =

j|I∗i > 0,θ, zi) =
p(I∗i >0|zi,θ,si=j)p(si=j|zi,θ)

p(I∗i >0|zi,θ)
=

πjΦ(µ2j+z′iβ)∑m

j=1
πjΦ(µ2j+z′iβ)

. Then the marginal effect of

a continuous variable xki on the expected fraction of wealth invested in shares among those

who participate in the stock market is given by:

MESxc
ki
|zi,θ,M =

∂E(S∗i |I∗i > 0, zi,θ)

∂xki

=
(
∑m
j=1 πj(βkφjEj + ΦjE

′
kj)) · (

∑m
j=1 πjΦj)− (βk

∑m
j=1 πjφj) · (

∑m
j=1 πjΦjEj)

(
∑m
j=1 πjΦj)2

, (27)

where φj ≡ φ(µ2j + z′β), Φj ≡ Φ(µ2j + z′β),

Ej ≡ E(S∗i |I∗i > 0, zi,θ, si = j)

= µ1j + x′α+ σ12j
φ(µ2j + z′β)

Φ(µ2j + z′β)
,

E ′kj ≡
∂E(S∗i |I∗i > 0, zi,θ, si = j)

∂xki

= αk − βk · σ12j ·
(
φ(µ2j + z′β)

Φ(µ2j + z′β)

(
φ(µ2i + z′β)

Φ(µ2i + z′β)
+ µ2i + z′β

))
.

The marginal effect of a discrete xki on the expected fraction of wealth invested in stock

market conditional on participation is given by:

MESxd
ki
|zi,θ,M =

=

∑m
j=1 πjΦ(µ2j + βk + β′zi) ·

(
µ1j + αk +α′xi + σ12j

φ(µ2j+βk+β′zi)

Φ(µ2j+βk+β′zi)

)
∑m
j=1 πjΦ(µ2j + βk + β′zi)

−

∑m
j=1 πjΦ(µ2j + z′iβ) ·

(
µ1j +α′xi + σ12j

φ(µ2j+β′zi)

Φ(µ2j+β′zi)

)
∑m
j=1 πjΦ(µ2j + β′zi)

. (28)

The unconditional expectation of the observed fraction of wealth invested in shares in

the sample selection model with mixture of normals disturbances E(Si|θ, zi,M) can be

expressed:

E(Si|θ, zi,M) = Prob(I∗i > 0|θ, zi) ·
∫ ∫ ∞

0
S∗i · p(S∗i , I∗i |I∗i > 0,θ, zi)dI

∗
i dS

∗
i

=
∫ ∫ ∞

0
S∗i

m∑
j=1

πjp(S
∗
i , I
∗
i |θ, si = j, zi)dI

∗
i dS

∗
i
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=
m∑
j=1

πjProb(I
∗
i > 0|θ, si = j, zi) ·

∫ ∫ ∞
0

S∗i
p(S∗i , I

∗
i |θ, si = j, zi)

Prob(I∗i > 0|θ, si = j, zi)
dI∗i dS

∗
i

=
m∑
j=1

πjProb(I
∗
i > 0|θ, si = j, zi) · E(S∗i |I∗i > 0,θ, si = j, zi)

=
m∑
j=1

πjΦ(µ2j + β′zi) ·
(
µ1j +α′xi + σ12j

φ(µ2j + β′zi)

Φ(µ2j + β′zi)

)

Then the marginal effect of a continuous xki on this unconditional expectation is given

by:

MESUxc
ki
|zi,θ,M =

m∑
j=1

πj(φ(µ2j + β′zi)

(
µ1j +α′xi + σ12j

φ(µ2j + β′zi)

Φ(µ2j + β′zi)

)

+ Φ(µ2j + β′zi)(αk − βk · σ12j ·
(
φ(µ2j + β′zi)

Φ(µ2j + β′zi)

(
φ(µ2i + β′zi)

Φ(µ2i + β′zi)
+ µ2i + β′zi

))
), (29)

and that of a discrete xki is given by:

MESUxd
ki
|zi,θ =

m∑
j=1

πjΦ(µ2j + βk + β′zi) ·
(
µ1j + αk +α′xi + σ12j

φ(µ2j + βk + β′zi)

Φ(µ2j + βk + β′zi)

)
−

m∑
j=1

πjΦ(µ2j + β′zi) ·
(
µ1j +α′xi + σ12j

φ(µ2j + β′zi)

Φ(µ2j + β′zi)

)
. (30)

The conditional marginal effects in (15)-(30) all depends of the vector of covariates zi, so

in general for a given θ there will be as many marginal effects of the variable zki as there are

individuals in the sample. It has become a standard practice to evaluate marginal effects at

sample means or medians of the covariates, and we will follow this convention hereafter. In

particular, we evaluate marginal effects for a representative Australian household, which we

define as a couple household whose continuous covariates (household head’s age, net worth,

income, business equity) are equal to their sample medians, with no children younger than

16 years old, not liquidity constrained, living in urban area of New South Wales and whose

household head has a job, is not willing to take risks, has advanced diploma as the highest

educational qualification, is not uncertain about the future of his job, comes from English-

speaking background and has planning horizon less or equal to one year. To obtain the

posterior distribution of the marginal effects we evaluate expressions (15)-(30) for a range of

parameters representative of their posterior distribution, i.e. we use draws from the posterior

distribution of parameters p(θ|Data) to approximate the following posterior distributions
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of marginal effects:

p(MEfzh
ki
|zi = z,Data, A) =

∫
p(MEfzh

ki
|zi = z,θ, A)p(θ|Data)dθ, (31)

where f = {P, S, SU}, h = {c, d} and z denotes the vector of covariates zi of a representative

Australian household. To summarize these posterior distributions, for every marginal effect

we report posterior mean, posterior standard deviation and posterior probability that the

effect is positive.

5 Empirical results

The main goal of the paper is to answer two related questions: first, which household charac-

teristics have significant influence on the decision to hold public equity in Australia? Second,

what are the main determinants of the share of financial wealth invested in the stock market?

The sample selection model is well suited for answering both of these questions in a unified

framework. It allows to model separately decisions whether to invest in the stock market

and how much to invest, while simultaneously controlling for potential non-random selection

into stock ownership. Employing the mixture of normals sample selection model allows us

to relax normality assumption of the standard model and to avoid problems which model

misspecification can potentially cause.

We specify the following hyper-parameters of the prior distribution of θ in the normal

model:

1. The mean of the prior distribution of the vector of coefficients γ, γ = [α′,β′]′ and the

precision of this distribution Hγ are specified as follows:

α = [.53,0′Kx×1]′,

β = [−.23,0′Kz×1]′,

Hγ =

 Hα 0

0 Hβ

 ,
Hα = (1/50)IKx×Kx and Hβ = (1/50)IKz×Kz . The priors of α and β are diffuse and

are specified so that the prior distributions p(S∗i |xi) and p(Ii|zi) for i = 1, ..., N are

centered at sample means of Si|Ii = 1 and Ii respectively.

2. The hyper-parameters which govern the prior distribution of the parameters of the
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distribution of vector εi, S and ν are specified as follows:

S =

 1.9 0

0 19


ν = 20

This prior distribution implies independence between ε1i and ε1i and centers variance

of S∗i |xi,θ around sample variance of Si|Ii = 1, and that of I∗i |xi,θ around sample

variance of Ii.

In the mixture of normals sample selection model the following hyper-parameters of the

prior distribution of θ are used:

1. The mean of the prior distribution of the vector of coefficients γ, γ = [µ′
1
,α′,µ′

2
,β′]′

and the precision of this distribution Hγ are specified as follows:

µ
1

= 0m×1,

α = [.53,0′Kx×1]′,

µ
2

= 0m×1,

β = [−.23,0′Kz×1]′,

Hγ =


Hµ1

0 0 0

0 Hα 0 0

0 0 Hµ2
0

0 0 0 Hβ

 ,

where Hµ1
= .1Im×M , Hα = (1/50)IKx×Kx , Hµ2

= Im×M , Hβ = (1/50)IKz×Kz . In

this prior, low precision of µ1 implies substantial probability of multimodality in the

conditional on parameters and xi distribution of S∗i . The priors of α and β are diffuse

and are specified so that the prior distributions p(S∗i |xi) and p(Ii|zi) for i = 1, ..., N

are centered at sample means of Si|Ii = 1 and Ii respectively.

2. The hyper-parameters which govern the prior distribution of the parameters of the

distribution of vector εi, Sj and νj, j = 1, ...,m, are specified as follows:

Sj =

 1.9 0

0 19


νj = 20
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This prior distribution implies independence between ε1i and ε1i conditional on the

component of the mixture and centers variance of S∗i |xi,θ, si = j around sample vari-

ance of Si|Ii = 1 for j = 1, ...,m, and that of I∗i |xi,θ, si = j around sample variance of

Ii.

3. The parameters of the prior distribution of the marginal probabilities of mixture com-

ponents π, r1, ..., rm are all set to 1.

We fit models with up to five components in the mixture of normals sample selection

model, assuming that five component mixture should be general enough to accommodate

most of the important features of the data. Model selection is based on the comparison log

marginal likelihoods which are computed using the method proposed by Chib (1995). As

shown in table 2, the data favors the 5 component mixture over all other specifications. The

Table 2: Log Marginal Likelihood Comparison

Model Log of Marginal Likelihood
Normal -2780.2
Mixture of 2 Normals -2757.8
Mixture of 3 Normals -2748.9
Mixture of 4 Normals -2705.4
Mixture of 5 Normals -2247.4

normal model is strongly rejected by the data and ranks last in terms of marginal likelihood

comparison. In what follows we treat the five component mixture as our preferred model

and compare its performance to the normal model.

Empirical results for the five component mixture model are presented in tables 3, 5

and 7. Table 3 presents posterior moments of the coefficients and marginal effects in the

participation equation. Table 5 contains posterior moments of the coefficients in the share

equation and posterior moments of the marginal effect of covariates on the share of risky

assets conditional on participation. Posterior moments of the unconditional marginal effects

of covariates on the observed share of risky assets are given in Table 7. The results from the

normal model are reported in tables 4, 6 and 8. Table 4 contains coefficients and marginal

effects in the participation equation, and tables 6 and 8 present posterior moments of the

coefficients and conditional and unconditional marginal effects in the share equation. All

marginal effects are evaluated for a representative household as defined in section 4.

21



As discussed in section 2, the identification strategy assumes that such variables as non-

English speaking background, urban residence and state of residence are assumed to influence

only participation decision and therefore can be excluded from the share equation. We

hypothesize that these variables will have a significant impact on the participation decision

because all of them are likely to influence the information about opportunities of investing

in the stock market available to a household, while having no influence on the share of risky

assets in household portfolios. Consistent with our hypothesis, results presented in Table

3 imply that non-native speaker indicator has a strong negative impact on participation:

people with non-English language background are 11% less likely to invest in stocks. We do

not find any significant effect of being urban resident on the probability to participate in the

stock market. Finally, there exist significant differences in participation rates across states,

with residents of Queensland, Tasmania and Western Australia being 6%, 6% and 7.5% less

likely to hold stocks respectively.

As can be seen in Table 3, households with higher net worth and income are more likely

to invest in stocks, although the effects of these variables is modest, i.e. increase in net

worth or income by 10000 dollars increases participation by about 0.01%. Participation is

also increasing with the level of education: households headed by persons with 12 years

of schooling are 11% more likely to hold public equity compared to those with 9 years of

schooling. Interestingly, additional education beyond 12 years does not seem to increase the

probability of participation. The median of the age profile of stock market participation for

a representative Australian household as implied by the model is presented in Figure 1. The

effect of age is found to be non-linear: participation is increasing between ages of 20 and 35,

remains relatively constant until the age of 53, and then again is rapidly increasing until the

age of 65.

Table 3 also implies that planning horizon and attitude towards risk have strong effects

on the stock market participation. Effect of risk preferences is especially strong: respondents

who report willingness to take high and moderate risks in order to earn a higher return are

20% more likely to hold risky assets. Households with unemployed head are 10% less likely

to participate in the stock market, while for those experiencing liquidity constraints this

probability is reduced by 13%. The magnitudes of marginal effects of planning horizon, risk

attitude, being unemployed and liquidity constrained are quite large, given that only about

40% of households in our sample participate in the stock market. These results allow us

to conclude that these variables are the most significant determinants of the participation

decision besides age and wealth.
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Figure 1: Age profile of the probability to hold stocks

Finally, variables measuring background risk have expected effects on the stock market

participation. For example, those who report large subjective uncertainty about the future

of their job in the next year are almost 3% less likely to hold shares. Effect of business equity

is also negative, but rather small. Increasing superannuation assets by $10,000 results in 1%

increase in participation probability, which implies that households in general do not view

their pension wealth as a substitute for direct investments in the public equity.

Turning to the share equation we observe that effects of explanatory variables on the

share of risky assets conditional on participation are in general quite small, with most of

the effects close to zero. This implies that while observed variables seem to have large

explanatory power with respect to participation decision, they have modest predictive power

with respect to share of wealth invested in risky assets conditional on participation. This

result is similar to the findings of several studies of household portfolios in other countries

(e.g. Vissing-Jorgenson, 2004). The median of the age profile for the share of wealth invested

in stocks conditional on participation is shown in Figure 2. The normal model systematically

underpredicts the share of risky assets at all ages and exhibits larger variability across age

groups compared to the mixture model.

Increase in net worth and income have small positive effects of the share variable, but

conditional on participation these effects are negative. While the negative marginal effects
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Figure 2: Age profile of the fraction of wealth invested in shares conditional on participation

of net worth conditional on participation might seem surprising, it can be rationalized by

the presence of unobserved heterogeneity in the data. For example, Gomes and Michaelides

(2006) show in the context of the life-cycle asset allocation model that in presence of fixed cost

preference heterogeneity can generate endogenous selection of more risk averse households

into stock market participation. Because the degree of risk aversion determines prudence,

more risk averse households will accumulate more wealth and, as a result, will be more willing

to pay the fixed cost of stock market participation. Therefore, stock market participants will

tend to be both wealthier and more risk averse at the same time which explains why they

might invest a smaller fraction of their wealth in stocks.

In general all unconditional marginal effects of covariates on the share variable in Table

5 have expected signs. Education dummies have positive effect on the share of risky assets,

increasing it by 3% to 5%, while being unemployed or out of labor force reduces share by

2% to 4%. Planning horizon and risk attitudes have strong positive effects, while subjective

probability of losing a job and liquidity constraints reduce the share of risky assets in financial

wealth. Comparing these results to the results of the normal model (Table 6) we observe

that normal model eliminates the effect of the out of labor force dummy (posterior mean is

positive but close to zero), and there substantial differences in the magnitudes of some of

the marginal effects.
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6 Measuring stock market participation cost

Existence of fixed cost is generally accepted as one of the main reasons for low stock market

participation rates typically observed in the data. The goal of this section is to evaluate

the extent of these costs in Australia using an approach similar to the one suggested by

Vissing-Jorgensen (2004). In order to achieve this goal we postulate a simplified model of

portfolio choice and use its predictions to construct a lower bound of the per-period costs of

stock market participation.

Suppose that each household must allocate its wealth Wi between a risky asset (common

stocks) with net stochastic return ri and a riskless asset with constant return which is

normalized to zero. Let αi denote the optimal share of financial wealth invested in the risky

asset and Fi denote the stock market participation cost. The participation costs measure here

is intended to include both the monetary cost of participation (e.g. mutual fund fees) and

the opportunity cost of time and effort devoted to understanding and processing information

about the stock market (Campbell, 2006). Household i will hold a positive amount of risky

asset if

EU [(1 + αir)(Wi − Fi)] > U(Wi) (32)

We can also define the certainty equivalent return to the risky asset rce by the following

equality

EU [(1 + αir)(Wi − Fi)] = U [(1 + αir
ce)(Wi − Fi)].

Then we can use (32) to write the stock market participation condition as

(αir
ce + 1)(Wi − Fi) > Wi,

or

B(αi,Wi) =
αir

ceWi

1 + αirce
> Fi. (33)

Conversely, for non-participating households it must be the case that B(αi,Wi) < Fi. In

other words,the benefit of stock market participation, B(αi,Wi), defines the lower bound on

the magnitude of the participation cost of a non-participating household. In order to evaluate

B(αi,Wi) we need to assume what value rce is likely to take. In our computations we follow

Vissing-Jorgensen (2004) and set rce = 0.04. The sample selection model is then used to

predict the optimal share of financial wealth invested in stocks, αi, for each non-participating

household.

We plot the median and the 90% confidence bounds of the empirical cdf of the expected
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Figure 3: CDF of the lower bound on the stock market participation cost, Blue - Normal
model, Red - Five-component mixture model.

lower bound on the cost of stock market participation below. These quantities were computed

as follows:

1. Construct a grid of points from 0 to 2000;

2. For every draw from the posterior distribution of the parameters predict lower bound

on the cost of stock market participation using expression (33) for individuals who

have zero fraction of financial wealth invested in shares;

3. For every draw from the posterior distribution of the parameters compute proportion

of individuals whose predicted cost of participation are less than the value of the grid

point, for every grid point. This way for every grid point we obtain the posterior

distribution of the proportion of individuals whose lower bound on the stock market

participation cost is less than the value of the grid point;

4. For every point of the grid compute 10th, 50th and 90th percentiles of the posterior

distribution of the proportion of individuals whose lower bound on the stock market

participation cost is less than the value of the grid point. Plot the grid points against

these 10th, 50th and 90th percentiles to obtain Figure 1.
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Figure 3 plots the 10th, 50th and 90th of the empirical cdf of B(αi,Wi) for both normal

and five component mixture models. As can be seen in the figure, the normal model system-

atically underpredicts the magnitude of the fixed cost compared to the mixture specification.

Results based on our preferred mixture model imply that participation costs needed to ra-

tionalize the fact that many household in our sample do not hold public equity need to not

be very high. In particular, the cost in the region of $500-$700 will explain non-participation

of 90% of the households. On the other hand, the higher percentiles of the cost distribution

are quite large, which implies that factors other than the stock market participation costs

might be needed to fully explain non-participation of the households in the upper right tail

of the wealth distribution.

7 Conclusion

This paper contributes to the literature on household financial behavior by studying the fac-

tors which affect stock market participation and share of risky assets in household portfolios

using recent data from Australia. The two decisions are modeled jointly in the framework of

a generalized sample selection model. The joint distribution of error terms is modeled as a

finite mixture of normals thus accommodating possible departures from normality. MCMC

methods are used to obtain posterior distribution of the parameters and of marginal effects

of explanatory variables on the participation and allocation decisions. We find that the data

favors the generalized mixture model over the standard normal selection model, with the

five-component mixture being the preferred model according to the log marginal likelihood

criterion.

Results based on five-component mixture model imply that in addition to education,

risk aversion, planning horizon and other household characteristics, such background risk

measures as business equity and uncertainty about future labor income have significant

effect on stock market participation and share of wealth invested in stocks. Compared to

normal model, mixture specification produces different marginal effects of many variables as

well as different age profile for participation rate. This shows that when applied to the data

on household financial behavior normality assumption can be too restrictive and might lead

to unreliable results. Similar to other empirical studies of household portfolios, we find that,

conditional on participation, household characteristics and background risk variables have

little effect on the share of wealth invested in stocks.

The paper also uses the predicted share of risky asset in total portfolio for non-participating
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households to construct the posterior distribution of the cost of stock market participation.

We find that the normal model tends to systematically underpredict the magnitude of the

fixed cost of stock market participation compared to the mixture specification. Results of the

mixture model imply that a relatively modest participation cost (between $500 and $700)

can explain non-participation of up to 90% of households in our sample.
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Table 3: Coefficients and Marginal Effects for Participation, Mixture Model
Mean Cf Std.Cf Pr(Cf>0|D) Mean ME Std. ME Pr(ME>0|D)

const 1 -1.2466 0.9288 0.09
const 2 0.6818 1.5438 0.69
const 3 1.933 0.6092 1
const 4 -1.2506 0.9672 0.10
const 5 -0.2552 1.6567 0.41
const -7.3221 1.2835 0
age 0.3249 0.0862 1 -0.0025 0.0019 0.1
age2 -0.7741 0.2067 0
age3 0.602 0.1588 1
nw 0.0277 0.0028 1 0.0082 0.0007 1
nw2 -0.012 0.002 0
nw3 0.0016 0.0003 1
income 0.0248 0.014 0.96 0.0072 0.0037 0.97
income2 -0.0006 0.0005 0.15
edub 0.314 0.0761 1 0.11 0.0266 1
edud 0.2111 0.0634 1 0.0729 0.0217 1
eduhs 0.3122 0.0944 1 0.1094 0.0336 1
olf -0.2051 0.0909 0.01 -0.0705 0.0305 0.01
unemployed -0.3246 0.17 0.02 -0.1076 0.0523 0.02
liq1 -0.3831 0.0729 0 -0.1275 0.0235 0
lone -0.0762 0.0987 0.22 -0.0271 0.0352 0.22
couple -0.0636 0.0719 0.19 -0.0228 0.0258 0.19
children04 0.0621 0.054 0.88 0.0223 0.0194 0.88
children514 0.0048 0.0339 0.56 0.0016 0.012 0.56
prob -0.0772 0.0564 0.08 -0.0272 0.0198 0.08
horizon1 0.2692 0.0784 1 0.0977 0.028 1
horizon2 0.2527 0.0653 1 0.0918 0.0235 1
risk 0.5597 0.0935 1 0.202 0.0314 1
bizeq -0.0044 0.0019 0 -0.0016 0.0007 0
super 0.0289 0.0085 1 0.0086 0.0025 1
super2 -0.084 0.024 0
super3 0.0497 0.0154 1
nesb -0.3264 0.081 0 -0.1098 0.0261 0
urban 0.0222 0.0556 0.65 0.0079 0.0198 0.65
st vic -0.0827 0.0702 0.12 -0.0291 0.0247 0.12
st qld -0.1783 0.0742 0.01 -0.0619 0.0255 0.01
st sa 0.0001 0.0934 0.50 0.0002 0.0332 0.5
st wa -0.1633 0.0915 0.04 -0.0567 0.0314 0.04
st act 0.0842 0.2051 0.66 0.0313 0.073 0.66
st tas -0.223 0.1456 0.06 -0.0757 0.0483 0.06
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Table 4: Coefficients and Marginal Effects for Participation, Normal Model
Mean Cf Std.Cf Pr(Cf>0|D) Mean ME Std. ME Pr(ME>0|D)

const -2.6503 0.7012 0
age 0.1101 0.0535 0.98 0.0009 0.0016 0.72
age2 -0.2706 0.1308 0.02
age3 0.2252 0.103 0.99
nw 0.0252 0.0022 1 0.0078 0.0006 1
nw2 -0.0114 0.0016 0
nw3 0.0015 0.0003 1
income 0.0277 0.0118 0.99 0.0078 0.0034 0.99
income2 -0.0008 0.0004 0.02 0 0 0
edub 0.2966 0.0685 1 0.1089 0.0254 1
edud 0.2043 0.0584 1 0.0736 0.0209 1
eduhs 0.2791 0.0843 1 0.1023 0.0316 1
olf -0.1579 0.0795 0.02 -0.0572 0.0283 0.02
unemployed -0.3335 0.15 0.01 -0.1143 0.0482 0.01
liq1 -0.3773 0.0678 0 -0.1299 0.0225 0
lone -0.0735 0.0904 0.21 -0.0276 0.034 0.21
couple -0.0638 0.0641 0.16 -0.0242 0.0243 0.16
children04 0.0812 0.0487 0.95 0.031 0.0186 0.95
children514 0.0133 0.0292 0.68 0.005 0.011 0.68
prob -0.073 0.051 0.08 -0.027 0.0189 0.08
horizon1 0.2364 0.068 1 0.0917 0.0267 1
horizon2 0.2316 0.0568 1 0.0897 0.0222 1
risk 0.489 0.075 1 1 0.0294 1
bizeq -0.003 0.0011 0 -0.0011 0.0004 0
super 0.0258 0.0071 1 0.0082 0.0023 1
super2 -0.0702 0.0185 0
super3 0.04 0.0106 1
nesb -0.2722 0.0751 0 -0.0962 0.0255 0
urban 0.0091 0.0508 0.57 0.0034 0.0191 0.57
st vic -0.0904 0.0626 0.07 -0.0334 0.0231 0.07
st qld -0.1748 0.0668 0.01 -0.0634 0.0241 0.01
st sa 0.009 0.0822 .55 0.0035 0.0309 0.55
st wa -0.1568 0.0799 0.02 -0.0569 0.0288 0.02
st act 0.0721 0.17 .66 0.0286 0.0646 0.66
st tas -0.2026 0.1294 0.06 -0.0718 0.0447 0.06
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Table 5: Coefficients and Conditional Marginal Effects, Share of Risky Assets, Mixture
Model

Mean Cf Std.Cf Pr(Cf>0|D) Mean ME Std. ME Pr(ME>0|D)
const 1 -0.1203 2.5956 0.49
const 2 0.0909 1.9966 0.53
const 3 0.59 1.785 0.63
const 4 0.0245 2.6557 0.5
const 5 -0.588 2.4692 0.43
const -0.3109 1.7851 0.42
age 0.0398 0.0228 0.97 -0.0018 0.0013 0.08
age2 -0.0991 0.0529 0.03
age3 0.0782 0.0395 0.97
nw 0.0006 0.0006 0.86 -0.0003 0.0005 0.24
nw2 -0.0004 0.0004 0.11
nw3 0.0001 0.0001 0.9
income -0.003 0.0026 0.12 -0.0026 0.002 0.1
income2 0.0001 0.0001 0.95
edub 0.0217 0.0174 0.89 0.0104 0.0173 0.73
edud 0.0083 0.0164 0.7 0.0005 0.0164 0.52
eduhs 0.0126 0.0221 0.73 0.0013 0.0221 0.52
olf 0.0192 0.0201 0.83 0.0268 0.0202 0.92
unemployed 0.0243 0.0409 0.72 0.0365 0.0415 0.82
liq1 0.0388 0.0219 0.96 0.0532 0.0216 0.99
lone -0.0569 0.0266 0.02 -0.054 0.0264 0.02
couple -0.0422 0.0158 0.01 -0.04 0.016 0.01
children04 0.0222 0.0114 0.98 0.02 0.0116 0.96
children514 -0.0021 0.0077 0.4 -0.0023 0.0077 0.38
prob -0.0073 0.0121 0.26 -0.0046 0.0121 0.34
horizon1 -0.0195 0.0151 0.1 -0.0289 0.0151 0.02
horizon2 0.008 0.0131 0.72 -0.0007 0.013 0.48
risk 0.0704 0.0149 1 0.0521 0.0155 1
bizeq -0.0004 0.0002 0.02 -0.0002 0.0002 0.16
super 0.0006 0.0015 0.67 -0.0002 0.0013 0.45
super2 0.0006 0.0037 0.57
super3 -0.0006 0.0021 0.38
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Table 6: Coefficients and Conditional Marginal Effects, Share of Risky Assets, Normal
Model

Mean Cf Std.Cf Pr(Cf>0|D) Mean ME Std. ME Pr(ME>0|D)
const -0.1387 0.433 0.36
age 0.0429 0.0294 0.93 -0.0032 0.0017 0.03
age2 -0.1174 0.0684 0.05
age3 0.0993 0.0513 0.97
nw 0.0015 0.0013 0.89 -0.0006 0.0006 0.13
nw2 -0.0009 0.0007 0.1
nw3 0.0001 0.0001 0.91
income -0.0018 0.0038 0.32 -0.0031 0.0028 0.13
income2 0.0001 0.0001 0.72
edub 0.0654 0.0269 0.99 0.0401 0.0239 0.95
edud 0.0219 0.0241 0.82 0.0041 0.0221 0.58
eduhs 0.0691 0.0332 0.98 0.0451 0.0304 0.93
olf 0.0754 0.0295 0.99 0.0887 0.0284 1
unemployed 0.0125 0.0681 0.57 0.0421 0.0648 0.75
liq1 0.0662 0.041 0.96 0.0996 0.0306 1
lone -0.0557 0.0362 0.06 -0.0492 0.0352 0.08
couple -0.064 0.0231 0 -0.0583 0.0221 0
children04 0.0214 0.0172 0.9 0.0145 0.0166 0.81
children514 0.0193 0.0103 0.97 0.0181 0.0099 0.96
prob -0.009 0.018 0.32 -0.0027 0.0176 0.44
horizon1 -0.0324 0.0245 0.1 -0.052 0.0229 0.02
horizon2 0.0264 0.0204 0.9 0.0073 0.0183 0.66
risk 0.1408 0.0266 1 0.102 0.0226 1
bizeq -0.0006 0.0003 0.02 -0.0003 0.0003 0.13
super 0.0047 0.0024 0.97 0.0025 0.0018 0.91
super2 -0.0071 0.0059 0.11
super3 0.0028 0.0032 0.82
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Table 7: Coefficients and Unconditional Marginal Effects, Share of Risky Assets, Mixture
Model

Mean Cf Std.Cf Pr(Cf>0|D) Mean ME Std. ME Pr(ME>0|D)
const 1 -0.1203 2.5956 0.49
const 2 0.0909 1.9966 0.53
const 3 0.59 1.785 0.63
const 4 0.0245 2.6557 0.5
const 5 -0.588 2.4692 0.43
const -0.3109 1.7851 0.42
age 0.0398 0.0228 0.97 -0.0019 0.0011 0.03
age2 -0.0991 0.0529 0.03
age3 0.0782 0.0395 0.97
nw 0.0006 0.0006 0.86 0.004 0.0004 1
nw2 -0.0004 0.0004 0.11
nw3 0.0001 0.0001 0.9
income -0.003 0.0026 0.12 0.0026 0.0019 0.9
income2 0.0001 0.0001 0.95
edub 0.0217 0.0174 0.89 0.0598 0.0146 1
edud 0.0083 0.0164 0.7 0.0369 0.0118 1
eduhs 0.0126 0.0221 0.73 0.0559 0.0185 1
olf 0.0192 0.0201 0.83 -0.0272 0.0165 0.05
unemployed 0.0243 0.0409 0.72 -0.0449 0.029 0.07
liq1 0.0388 0.0219 0.96 -0.0512 0.013 0
lone -0.0569 0.0266 0.02 -0.0351 0.0196 0.03
couple -0.0422 0.0158 0.01 -0.0272 0.014 0.03
children04 0.0222 0.0114 0.98 0.0193 0.0103 0.97
children514 -0.0021 0.0077 0.4 -0.0001 0.0063 0.51
prob -0.0073 0.0121 0.26 -0.015 0.0106 0.07
horizon1 -0.0195 0.0151 0.1 0.0354 0.0142 1
horizon2 0.008 0.0131 0.72 0.0457 0.0127 1
risk 0.0704 0.0149 1 0.1324 0.0185 1
bizeq -0.0004 0.0002 0.02 -0.0009 0.0003 0
super 0.0006 0.0015 0.67 0.0042 0.0013 1
super2 0.0006 0.0037 0.57
super3 -0.0006 0.0021 0.38
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Table 8: Coefficients and Unconditional Marginal Effects, Share of Risky Assets, Normal
Model

Mean Cf Std.Cf Pr(Cf>0|D) Mean ME Std. ME Pr(ME>0|D)
const -0.1387 0.433 0.36
age 0.0429 0.0294 0.93 -0.0008 0.0009 0.18
age2 -0.1174 0.0684 0.05
age3 0.0993 0.0513 0.97
nw 0.0015 0.0013 0.89 0.0032 0.0004 1
nw2 -0.0009 0.0007 0.1
nw3 0.0001 0.0001 0.91
income -0.0018 0.0038 0.32 0.0023 0.0017 0.92
income2 0.0001 0.0001 0.72
edub 0.0654 0.0269 0.99 0.0637 0.0144 1
edud 0.0219 0.0241 0.82 0.0334 0.0115 1
eduhs 0.0691 0.0332 0.98 0.0626 0.0189 1
olf 0.0754 0.0295 0.99 0.003 0.0166 0.57
unemployed 0.0125 0.0681 0.57 -0.0394 0.029 0.1
liq1 0.0662 0.041 0.96 -0.0334 0.0137 0.01
lone -0.0557 0.0362 0.06 -0.0317 0.02 0.06
couple -0.064 0.0231 0 -0.0332 0.0144 0.01
children04 0.0214 0.0172 0.9 0.0193 0.0102 0.97
children514 0.0193 0.0103 0.97 0.0091 0.0059 0.93
prob -0.009 0.018 0.32 -0.0129 0.0099 0.09
horizon1 -0.0324 0.0245 0.1 0.0165 0.0144 0.88
horizon2 0.0264 0.0204 0.9 0.0427 0.0123 1
risk 0.1408 0.0266 1 0.1417 0.0204 1
bizeq -0.0006 0.0003 0.02 -0.0006 0.0002 0
super 0.0047 0.0024 0.97 0.0045 0.0012 1
super2 -0.0071 0.0059 0.11
super3 0.0028 0.0032 0.82
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