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Abstract

This paper studies the asymptotic distributions of partial sums of fraction-

ally integrated processes which are long memory. The required moment

conditions on the innovations of the processes are weak. We also discuss the

asymptotic properties of least squares estimators and related test statistics

in some spurious regression models that are generated by stationary or non-

stationary fractionally integrated processes. We show that even when the

fractionally integrated processes are long-range dependent, the asymptotic

distributions of the least squares statistics, after appropriately rescaling and

normalizing, are functionals of standard Brownian motions rather than of

fractional Brownian motions.
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1 Introduction

Suppose that yt and xt are generated by the independent random walks

yt = yt−1 + vt, xt = xt−1 + wt, t = 1, 2, . . . . (1)

Consider the ordinary least squares (OLS) regression

yt = α̂ + β̂xt + ût, t = 1, . . . , n. (2)

Assuming that vt and wt are independent and identically distributed (iid)

random variables, Granger and Newbold (1974) showed by simulations that

the OLS estimates α̂ and β̂ are frequently found to be significant, that the

coefficient of determination R2 from the regression is often high and that the

Durbin-Watson (DW ) statistic is close to zero. This is one of the situations

in which we have a nonsense or spurious regression. Phillips (1986) extended

(1) to the case that both vt and wt are strong mixing random processes, and

provided a very elegant asymptotic theory that gives a better understanding

of the simulation results. Phillips’ results were further extended by Marmol

(1995, 1996) to integrated processes of higher integer orders. Up to now, it

has been known that the phenomenon of spurious regression also occurs in

a wider class of stochastic processes, such as random walk processes with

drifts (Molinas, 1986; Entorf, 1997), some particular types of stationary

processes (Tsay and Chung, 2000; Granger et al., 2001; Kim et al., 2004)

and nonstationary fractionally integrated processes (Cappuccio and Lubian,

1997; Marmol, 1998; Marmol and Reboredo, 1999; Tsay and Chung, 2000).
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The fractionally integrated processes were introduced by Granger and

Joyeux (1980) and Hosking (1981). Since then, they have become increas-

ingly popular in recent years due to their considerable empirical success

in macroeconomics and finance (see, for examples, Robinson, 1994; Baillie,

1996; Henry and Zaffaroni, 2003). For some recent contributions, we refer

to excellent books of Doukhan et al. (2003) and Robinson (2003). The main

aim of the present paper is to deal with the problem of spurious regression

under situations where the underlying processes are driven by nonstationary

or stationary fractionally integrated processes. The problem has been exten-

sively studied in Cappuccio and Lubian (1997) and Tsay and Chung (2000).

Instead of using the functional central limit theorem for mixing processes

used by Phillips (1986), Cappuccio and Lubian (1997) and Tsay and Chung

(2000) applied the invariance principle established by Davydov (1970, The-

orem 2) to derive the asymptotic distributions of various OLS statistics in

the spurious regression models involving fractionally integrated processes.

In contrast with the three papers just cited, in this paper we use the invari-

ance principle of Csörgő et al. (2003), i.e., a self-normalized version of weak

invariance principle, to re-examine spurious regressions between fractionally

integrated processes. The reason we do so is that self-normalization can

eliminate or weaken moment assumptions such that the limit theorems for

the self-normalized sums and associated test statistics hold under weaker

conditions than those required in the classical limit theorems.
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In the present paper we are interested in the asymptotic behavior of the

regression coefficients and related test statistics from the spurious regression

models. The underlying stochastic processes we consider are fractionally in-

tegrated processes which are assumed to be long memory (or, say, long-range

dependent). In the long memory literature, finite fourth moment conditions

on the innovations in the underlying processes are generally required. Such

conditions, however, are really restrictive to model either financial or some

macroeconomic variables. Instead of using this rather strict assumption,

we assume that the innovations can be either iid, martingale-difference or

mixing sequence and that their second moments are finite. This extends

and generalizes previous work by Cappuccio and Lubian (1997) and Tsay

and Chung (2000). We show that the asymptotic distributions of the coef-

ficient estimators and associated test statistics have more interesting struc-

ture which appear rather atypical in the sense that they may no longer be

functionals of fractional Brownian motions. Instead, the asymptotic distri-

butions we obtain are functionals of standard Brownian motions. From the

theoretical point of view, this result in itself is rather interesting and very

important.

The paper is organized as follows. Section II presents asymptotic results

of self-normalized partial sums of long memory fractionally integrated pro-

cesses. Applications to the spurious regression problems are made in Section

III. In the same section, we make comparisons with related work. The proofs
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are given in Section IV, and Section V concludes the paper.

Throughout the paper, we use the following notations. →a.s., →p, and

⇒ denote convergence almost surely, convergence in probability, and weak

convergence of probability measures on D[0, 1] under the Skorokhod topol-

ogy, respectively. Op(1) (op(1)) stands for a sequence of random variables

that is bounded (converges to zero) in probability. For two sequences of

real numbers {rn} and {sn}, we write rn ∼ sn if limn→∞ rn/sn = 1, and

rn = O(sn)(o(sn)) if the ratio |rn/sn| is bounded (converges to zero) for

large n. The indicator of a set A is denoted by 1(A). Symbol =: means

equality by definition, and [x] denotes the largest integer less than or equal

to x.

2 Long memory fractionally integrated processes

Let {Xt}t∈Z be a sequence of iid random variables with zero mean. Let

SX,n =
∑n

t=1 Xt and V 2
X,n =

∑n
t=1 X2

t , n ∈ N, then the quotient SX,n/VX,n

is the so-called self-normalized sum. Recently, Csörgő et al. (2003, Theorem

1) proved that

SX,[nr]

VX,n
⇒ W (r), 0 ≤ r ≤ 1, (3)

if and only if

lim
x→∞

x2P(|Xt| > x)
E(X2

t 1(|Xt|≤x))
= 0 (4)
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or, equivalently, if and only if E(X2
t 1(|Xt|≤x)) is slowly varying at infinity,

where W (r) is a standard Brownian motion. The condition in (4) is equiv-

alent to saying that the distribution of Xt lies in the domain of attraction

of the normal law. This is the case whenever Xt have finite variance. For

further definitions and details, see Gnedenko and Kolmogorov (1968, p.172),

Feller (1971, p.578) and Araujo and Gińe (1980, Theorem 6.17).

Moreover, the asymptotic result (3) also holds in the following two im-

portant cases. First, let {SX,t,Ft} be a square-integrable martingale whose

differences Xt form a stationary ergodic sequence with zero mean and fi-

nite variance σ2
X , where Ft is an increasing sequence of σ-field generated

by {Xs : s ≤ t}. Then, SX,[nr]/VX,n ⇒ W (r), 0 ≤ r ≤ 1 (see, Hall and

Heyde, 1980, Theorem 4.1, p.99). Otherwise, let {Xt}t∈Z be a strictly mix-

ing sequence of random variables with zero mean and finite variance σ2
X .

Suppose

0 < lim
n→∞

σ2
Xn

E(S2
X,n)

= κ2 < ∞.

Then, under appropriate regularity conditions, it is well known from Davy-

dov (1968) and Peligrad (1982, Section 2) that

SX,[nr]√
E(S2

X,n)
⇒ W (r), 0 ≤ r ≤ 1.

It is also easy to show that V 2
X,n/(σ2

Xn) →p 1. Putting these facts together

yields

SX,[nr]/
√
E(S2

X,n)

VX,n/(σX
√

n)
= κ

SX,[nr]

VX,n
⇒ W (r), 0 ≤ r ≤ 1.
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In what follows, for simplicity, we assume σ2
X < ∞ and then focus our

attention on the long memory properties of fractionally integrated processes.

Let {Yt} be a fractionally integrated process of order d given by (1 −

L)dYt = Xt, d ∈ (−0.5, 0.5), where L is the backshift operator. Then {Yt}

is stationary and invertible, and has the representation

Yt = (1− L)−dXt =
∞∑

j=0

θjXt−j , (5)

θj =
Γ(j + d)

Γ(j + 1)Γ(d)
∼ j−(1−d)

Γ(d)
as j →∞, (6)

where Γ(·) denotes the gamma function. If 0 < d < 0.5, the coefficients θj

are positive and square summable but not summable (i.e.,
∑∞

j=0 θ2
j < ∞

but
∑∞

j=0 θj = ∞) and then we say that the {Yt} process is long memory or

long-range dependent. Whereas, if −0.5 < d ≤ 0,
∑∞

j=0 |θj | < ∞ and then

we say that the {Yt} process is short memory or short-range dependent. See,

Hosking (1981, p.169) and Hall (1992, p.118).

Throughout the paper, we focus on the long memory case (i.e., 0 < d <

0.5), and assume that

E(X2
t ) +

∞∑
j=0

θ2
j < ∞. (7)

This condition guarantees that the {Yt} process defined in (5)–(6) is well-

defined (see, Doukhan, 2003, p.47).

Let SY,n =
∑n

t=1 Yt and V 2
Y,n =

∑n
t=1 Y 2

t . Define Θs,j =
∑j

k=1 θ(s+1)n+1−k

for 1 ≤ j ≤ n and s ≥ 0, and Υ2
d =

∑∞
s=0[(s+1)d−sd]2. Note that Θs,n ↑ ∞

as n →∞ for every s ≥ 0 and that Υ2
d < ∞ (see Lemma 1 below). We are
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now ready to state the first result, which is useful in deriving the asymptotic

properties of some spurious regression models, discussed in the next section.

Theorem 1. Let {Yt} satisfy (5) and (6) with d ∈ (0, 0.5), and let {Xt} be a

sequence of iid random variables with zero mean. Suppose that the condition

in (7) holds. Then, as n →∞,

(a)

SY,[nr]

kd,nVX,n
⇒ W (r), 0 ≤ r ≤ 1,

where kd,n = Θ0,nΥd;

(b)

V 2
Y,n

V 2
X,n

→a.s.

∞∑
j=0

θ2
j ;

(c)

(
∑∞

j=0 θ2
j )

1/2

kd,n

SY,[nr]

VY,n
⇒ W (r), 0 ≤ r ≤ 1.

Theorem 1(a) indicates that the asymptotic distribution of the partial

sums of long memory frationally integrated processes SY,[nr], after normal-

izing by random variables kd,nVX,n, is a standard Brownian motion, which

differs sharply from the well-known fractional Brownian motions proposed

by previous studies in the long memory literature. We will further discuss

this point in the next section. In addition, as shown in Theorem 1(c), the

self-normalized partial sums of long memory processes SY,[nr]/VY,n, after
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appropriately rescaling, also converge weakly as n → ∞ to the standard

Brownian motion.

It is remarkable here that Theorem 1 holds true even when {Xt}t∈Z

is either a stationary ergodic martingale difference sequence or a strictly

stationary mixing sequence (if we assume, without loss of generality, that

κ = 1); see the discussion above in this section. Moreover, our moment

conditions are weaker than those in Davydov (1970), Cappuccio and Lubian

(1997) and Tsay and Chung (2000).

In the next section, we will use Theorem 1 to study the asymptotic

behavior of OLS estimators and associated test statistics in some spurious

regression models.

3 Spurious regressions with long memory

Let {at}t∈Z and {bt}t∈Z be two sequences of iid random variables with zero

means and finite variances σ2
a and σ2

b . Assume that yt and xt are mutually

independent for all t and generated, respectively, from the following data

generating processes:

yt = yt−1 + vt, (1− L)d1vt = at, d1 ∈ (0, 0.5), (8)

xt = xt−1 + wt, (1− L)d2wt = bt, d2 ∈ (0, 0.5). (9)
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Similar to (5) and (6), the {vt} and {wt} processes are stationary and in-

vertible, and have the representations

vt =
∞∑

j=0

θa,jat−j , θa,j =
Γ(j + d1)

Γ(j + 1)Γ(d1)
∼ j−(1−d1)

Γ(d1)
as j →∞,(10)

wt =
∞∑

j=0

θb,jbt−j , θb,j =
Γ(j + d2)

Γ(j + 1)Γ(d2)
∼ j−(1−d2)

Γ(d2)
as j →∞.(11)

Similar to (7), assume the following conditions hold:

E(a2
t ) +

∞∑
j=0

θ2
a,j < ∞ and E(b2

t ) +
∞∑

j=0

θ2
b,j < ∞. (12)

Note also that if d1, d2 ∈ (0, 0.5), then
∑∞

j=0 θa,j = ∞ and
∑∞

j=0 θb,j = ∞.

Let Sv,n =
∑n

t=1 vt, V 2
a,n =

∑n
t=1 a2

t , Sw,n =
∑n

t=1 wt, and V 2
b,n =∑n

t=1 b2
t . Define Θa,s,j =

∑j
k=1 θa,(s+1)n+1−k and Θb,s,j =

∑j
k=1 θb,(s+1)n+1−k

for 1 ≤ j ≤ n and s ≥ 0. Also define Υ2
d1

=
∑∞

s=0[(s+1)d1−sd1 ]2 and Υ2
d2

=∑∞
s=0[(s + 1)d2 − sd2 ]2. Now let kd1,n = Θa,0,nΥd1 and kd2,n = Θb,0,nΥd2 .

Then by Theorem 1(a), we immediately have that as n →∞,

Sv,[nr]

kd1,nVa,n
⇒ Wa(r),

Sw,[nr]

kd2,nVb,n
⇒ Wb(r), 0 ≤ r ≤ 1, (13)

where Wa(r) and Wb(r) are two independent standard Brownian motions.

We now consider the OLS regression (2). Throughout the paper, we

denote by ŝ2, R2, DW , tα and tβ the estimated variance of the OLS residuals

ût, the coefficient of determination, the Durbin-Watson statistic and the

conventional t-ratios for the intercept estimator α̂ and the slope estimator

β̂. These notations will be used repeatedly in the rest of the paper without

further reference.
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Theorem 2. Suppose that yt and xt are generated by (8) and (9) with

coefficients θa,j and θb,j satisfying (10) and (11), respectively. Assume that

the conditions in (12) hold. If the regression (2) is estimated by OLS, then

as n →∞,

(a)

kd2,nVb,n

kd1,nVa,n
β̂ ⇒

∫ 1
0 Wa(r)Wb(r)dr −

[∫ 1
0 Wa(r)dr

] [∫ 1
0 Wb(r)dr

]
∫ 1
0 W 2

b (r)dr −
[∫ 1

0 Wb(r)dr
]2 =: ξT2,β ;

(b)

α̂

kd1,nVa,n
⇒
∫ 1

0
Wa(r)dr − ξT2,β

∫ 1

0
Wb(r)dr =: ξT2,α;

(c)

ŝ2

k2
d1,nV 2

a,n

⇒
∫ 1

0
W 2

a (r)dr −
[∫ 1

0
Wa(r)dr

]2

−ξ2
T2,β

{∫ 1

0
W 2

b (r)dr −
[∫ 1

0
Wb(r)dr

]2
}

=: ξT2,s2 ;

(d)

tβ√
n
⇒

ξT2,β

ξ
1/2
T2,s2

{∫ 1

0
W 2

b (r)dr −
[∫ 1

0
Wb(r)dr

]2
}1/2

;

(e)

tα√
n
⇒

ξT2,α

ξ
1/2
T2,s2


∫ 1
0 W 2

b (r)dr −
[∫ 1

0 Wb(r)dr
]2

∫ 1
0 W 2

b (r)dr


1/2

;

(f)

R2 ⇒ ξ2
T2,β

∫ 1
0 W 2

b (r)dr −
[∫ 1

0 Wb(r)dr
]2

∫ 1
0 W 2

a (r)dr −
[∫ 1

0 Wa(r)dr
]2 ;
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(g)

DW →p 0.

Theorem 2 shows three important features. First, as remarked above,

Theorem 2 holds true even when at and bt, t ∈ Z, are either stationary er-

godic martingale difference sequences or strictly stationary mixing sequences

(if κ = 1). Second, it shows that the asymptotic distributions of the OLS

estimators and related test statistics from the spurious regression model are

functionals of standard Brownian motions rather than the ones of fractional

Brownian motions. As a consequence, our results are closer to those in

Phillips (1986) than the ones in Cappuccio and Lubian (1997) and Tsay and

Chung (2000). Third, the orders of β̂, α̂, ŝ2, tβ, tα, R2 and DW are identi-

cal to what they are in Tsay and Chung (2000, Theorem 1), but, again, the

asymptotic distributions are different and the required moment conditions

are weak.

The following corollary is a special case of Theorem 2 and is quite similar

to the case studied in Cappuccio and Lubian (1997).

Corollary 1. Under the same conditions as in Theorem 2, suppose in ad-

dition that d1 = d2 = d. If the regression (2) is estimated by OLS, then, as

n →∞, the asymptotic distributions of β̂, tβ/
√

n, tα/
√

n, R2 and DW are

the same as the corresponding ones in Phillips (1986, Theorem 1).

Again, the sharp differences between the results of Corollary 1 and of
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Theorem 2.3 in Cappuccio and Lubian (1997) are similar to those described

below Theorem 2.

We now consider two spurious regression models as follows:

yt = α̂ + β̂wt + ût, (14)

vt = α̂ + β̂xt + ût. (15)

The asymptotics of these two regression models have been studied in Theo-

rem 3 and Theorem 4 of Tsay and Chung (2000), respectively. A comparison

with their work is given in the following two corollaries.

Corollary 2. Suppose that yt and wt are generated by (8) and (9) with

coefficients θa,j and θb,j satisfying (10) and (11), respectively. Assume that

the conditions in (12) hold. If the regression (14) is estimated by OLS, then,

as n →∞,
(a)

Vb,n
∑∞

j=0 θ2
b,j

Va,nkd1,nkd2,n
β̂ ⇒

∫ 1

0
Wa(r)dWb(r)−Wb(1)

∫ 1

0
Wa(r)dr =: ξC2,β ;

(b)

α̂

kd1,nVa,n
⇒
∫ 1

0
Wa(r)dr =: ξC2,α;

(c)

ŝ2

k2
d1,nV 2

a,n

⇒
∫ 1

0
W 2

a (r)dr −
[∫ 1

0
Wa(r)dr

]2

=: ξC2,s2 ;

(d) (∑∞
j=0 θ2

b,j

)1/2

kd2,n
tβ ⇒

ξC2,β

ξ
1/2
C2,s2

;
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(e)

tα√
n
⇒

ξC2,α

ξ
1/2
C2,s2

;

(f)

n
∑∞

j=0 θ2
b,j

k2
d2,n

R2 ⇒
ξ2
C2,β∫ 1

0 W 2
a (r)dr −

[∫ 1
0 Wa(r)dr

]2 ;

(g)

DW →p 0.

Corollary 3. Suppose that vt and xt are generated by (8) and (9) with

coefficients θa,j and θb,j satisfying (10) and (11), respectively. Assume that

the conditions in (12) hold. If the regression (15) is estimated by OLS, then,

as n →∞,

(a)

nkd2,nVb,n

kd1,nVa,n
β̂ ⇒

∫ 1
0 Wb(r)dWa(r)−Wa(1)

∫ 1
0 Wb(r)dr∫ 1

0 W 2
b (r)dr −

[∫ 1
0 Wb(r)dr

]2 =: ξC3,β ;

(b)

n

kd1,nVa,n
α̂ ⇒ Wa(1)− ξC3,β

∫ 1

0
Wb(r)dr =: ξC3,α;

(c)

ŝ2 →p σ2
a

∞∑
j=0

θ2
a,j ;

(d)

(
∑∞

j=0 θ2
a,j)

1/2

kd1,n
tβ ⇒ ξC3,β

{∫ 1

0
W 2

b (r)dr −
[∫ 1

0
Wb(r)dr

]2
}1/2

;
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(e)

(
∑∞

j=0 θ2
a,j)

1/2

kd1,n
tα ⇒ ξC3,α


∫ 1
0 W 2

b (r)dr −
[∫ 1

0 Wb(r)dr
]2

∫ 1
0 W 2

b (r)dr


1/2

;

(f)

n
∑∞

j=0 θ2
a,j

k2
d1,n

R2 ⇒ ξ2
C3,β

{∫ 1

0
W 2

b (r)dr −
[∫ 1

0
Wb(r)dr

]2
}

;

(g)

DW →p 2

[
1−

∑∞
j=0 θa,jθa,j+1∑∞

j=0 θ2
a,j

]
.

Though the orders of the OLS estimators and associated test statistics

in Corollary 2 and Corollary 3 are the same as the corresponding ones in

Theorem 3 and Theorem 4 of Tsay and Chung (2000), respectively, how-

ever, the asymptotic distributions are different and derived under slightly

weaker moment conditions, as mentioned above. Furthermore, it may be

noteworthy that, after appropriately rescaling and normalizing, the asymp-

totic distributions of β̂, tβ and R2 in Corollary 2 and of β̂, α̂, tβ , tα and

R2 in Corollary 3 are available in this paper, whereas they are not pro-

vided in the paper by Tsay and Chung (2000). We remark again that the

results in Corollaries 2–3 are also asymptotically valid even when at and

bt, t ∈ Z, are either stationary ergodic martingale difference sequences or

strictly stationary mixing sequences (if κ = 1).

The following corollary presents a special case of Corollary 3 and is of

independent interest.
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Corollary 4. Suppose that vt and xt are generated by (8) and (9) with

coefficients θa,j and θb,j satisfying (10) and (11), respectively. Assume that

the conditions in (12) hold. Consider a spurious regression of the form

vt = β̂xt + ût, which is estimated by OLS. Then, as n →∞,

nkd2,nVb,n

kd1,nVa,n
β̂ ⇒

∫ 1
0 Wb(r)dWa(r)∫ 1

0 W 2
b (r)dr

∼ N (0, 1).

Note here that if d1 = d2, then kd1,n = kd2,n, and that if, without loss of

generality, E(a2
t ) = E(b2

t ), then the law of large numbers gives V 2
a,n/V 2

b,n →p

1 as n → ∞. As a result, we have nβ̂ ⇒ N (0, 1). This is an interesting

case, since the statistic has an asymptotic standard normal distribution and

is nuisance parameter free.

4 Proofs

In this section, we will prove Theorems 1–2 and Corollaries 1–4. We start

with the following notation and lemmas. Let Sj,X,n =
∑n

t=1 Xt−j and

V 2
j,X,n =

∑n
t=1 X2

t−j , j ≥ 0. Further, for simplicity, write SX,n = S0,X,n

and V 2
X,n = V 2

0,X,n.

Lemma 1. If the coefficients θj are of the form as in (6) with d ∈ (0, 0.5),

then as n →∞,

∞∑
s=0

(Θs,n/Θ0,n)2 ∼
∞∑

s=0

[
(s + 1)d − sd

]2
∼ −1

2d + 1
+

[Γ(d + 1)]2

Γ(2d + 2) sin[π(d + 1/2)]
< ∞. (16)
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Proof of Lemma 1. Note that θ0 = 1 and assume, without loss of general-

ity, that θj = j−(1−d)/Γ(d) for j ≥ 1. Recall that Θs,n =
∑n

k=1 θ(s+1)n+1−k,

s ≥ 0. Then, standard calculus yields that as n →∞,

Θs,n =
1

Γ(d)

[
1

(sn + 1)1−d
+ . . . +

1
(sn + n)1−d

]
∼ nd

Γ(d)

∫ 1

0

1
(s + x)1−d

dx

=
nd

Γ(d)d

[
(s + 1)d − sd

]
. (17)

It implies that Θ0,n ∼ nd/[Γ(d)d] and thus that
∑∞

s=0[Θs,n/Θ0,n]2 ∼
∑∞

s=0[(s+

1)d − sd]2. Since
∑∞

s=0[(s + 1)d − sd]2 ∼
∫∞
0 [(s + 1)d − sd]2ds, result (16)

comes directly from equation (9.3) in Taqqu (2003, p.28) by noting that the

Hurst parameter H = d + 1/2. This completes the proof.

Proof of Theorem 1. For part (a), recall that V 2
j,X,n =

∑n
t=1 X2

t−j for

j ≥ 0. Write

SY,[nr]

Θ0,nVX,n
=

∑n
j=0 θj

∑[nr]
t=1 Xt−j +

∑2n
j=n+1 θj

∑[nr]
t=1 Xt−j + . . .

Θ0,nVX,n

=

∑n
j=0 θj

∑[nr]
t=1 Xt +

∑n
j=0 θj

(∑[nr]
t=1 Xt−j −

∑[nr]
t=1 Xt

)
Θ0,nVX,n

+

∑2n
j=n+1 θj

∑[nr]
t=1 X−n+t +

∑2n
j=n+1 θj

(∑[nr]
t=1 Xt−j −

∑[nr]
t=1 X−n+t

)
Θ0,nVX,n

+ . . .

=
θ0

Θ0,n

∑[nr]
t=1 Xt

VX,n
+

∞∑
s=0

{
Θs,n

Θ0,n

Vsn,X,n

VX,n

[∑[nr]
t=1 X−sn+t

Vsn,X,n

+
sn+n∑

j=sn+1

θj

Θs,n

∑[nr]
t=1 Xt−j −

∑[nr]
t=1 X−sn+t

Vsn,X,n

 . (18)

Since θ0 = 1 and Θ0,n ∼ nd/[Γ(d)d] ↑ ∞ as n → ∞, the first term is op(1)
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by (3). Noting that for j ≥ 1,

Sj,X,[nr] − Sj−1,X,[nr] =
[nr]∑
t=1

Xt−j −
[nr]∑
t=1

Xt−(j−1) = X1−j −X[nr]−(j−1), (19)

by a straightforward calculation, the second term inside the square brackets

on the right hand side of (18) can be written as

sn+n∑
j=sn+1

θj

Θs,n

∑[nr]
t=1 Xt−j −

∑[nr]
t=1 X−sn+t

Vsn,X,n

=
sn+n∑

j=sn+1

θj

Θs,n

Sj,X,[nr] − Ssn,X,[nr]

Vsn,X,n

=
sn+n∑

j=sn+1

θj

Θs,nVsn,X,n

{
[Sj,X,[nr] − Sj−1,X,[nr]] + [Sj−1,X,[nr] − Sj−2,X,[nr]]

+ . . . + [Ssn+1,X,[nr] − Ssn,X,[nr]]
}

=
sn+n∑

j=sn+1

θj

Θs,nVsn,X,n

{
[X1−j −X[nr]−(j−1)] + [X1−(j−1) −X[nr]−(j−2)]

+ . . . + [X1−(sn+1) −X[nr]−sn]
}

=
1

Θs,nVsn,X,n

{
(θsn+1 + . . . + θsn+n)(X−sn −X[nr]−sn)

+ (θsn+2 + . . . + θsn+n)(X−sn−1 −X[nr]−sn−1) + · · ·

+ θsn+n(X−sn−(n−1) −X[nr]−sn−(n−1))}

=
n∑

j=1

Θs,j

Θs,n

X−sn−n+j −X[nr]−sn−n+j

Vsn,X,n
. (20)

Noting that Vi,X,n/Vj,X,n →a.s. 1 for i 6= j, it then follows from (3) that

n∑
j=1

X−sn−n+j −X[nr]−sn−n+j

Vsn,X,n
=

Ssn+n,X,n − Ssn+n−[nr],X,n

Vsn,X,n

=
Ssn+n,X,n

Vsn+n,X,n

Vsn+n,X,n

Vsn,X,n
−

Ssn+n−[nr],X,n

Vsn+n−[nr],X,n

Vsn+n−[nr],X,n

Vsn,X,n
(21)

is stochastically bounded. This fact, together with Θs,n ↑ ∞ as n → ∞ for

17



every s ≥ 0, implies that

n∑
j=1

Θs,j

Θs,n

X−sn−n+j −X[nr]−sn−n+j

Vsn,X,n
→a.s. 0 (22)

by Kronecker’s lemma (see Petrov, 1995, p.209). As for the first term inside

the square brackets on the right hand side of (18), similar to (3), we have∑[nr]
t=1 X−sn+t/Vsn,X,n ⇒ Ws(r), where 0 ≤ r ≤ 1 and s ≥ 0. As a result, the

second term in the square brackets is dominated by the first term.

In fact, W0(r) is identical to the standard Brownian motion W (r) given

in (3) and Ws(r), s ≥ 1, can be seen to be independent copies of W (r). Thus,

for fixed r, they are normally distributed random variables with mean zero

and variance r. Note again that Vsn,X,n/VX,n →a.s. 1 for s ≥ 1, and from

Lemma 1 that Θs,n/Θ0,n ∼ [(s+1)d−sd]. Recall that kd,n = Θ0,nΥd, where

Υ2
d =

∑∞
s=0[(s + 1)d − sd]2. Putting these results together, it then follows

from the reproductive property of the normal distribution, Lemma 1 and

(18) that as n →∞,

SY,[nr]

kd,nVX,n
=

∑∞
s=0[(s + 1)d − sd]

∑[nr]
t=1 X−sn+t/Vsn,X,n

Υd
+ op(1)

⇒
∑∞

s=0[(s + 1)d − sd]Ws(r)
Υd

d= W (r) ∼ N (0, r), (23)

where d= denotes equality in distribution. This completes the proof of part

(a).

For part (b), because Xt are stationary ergodic (Stout, 1974, Lemma

3.5.8, p.182), it follows from Theorem 3.5.8 of Stout (1974, p.182) that the

18



{Yt} process is also stationary ergodic with

E(Y 2
t ) =

∞∑
j=0

θ2
j σ

2
X . (24)

By using the stationary ergodic theorem (Stout, 1974, Theorem 3.5.7) and

(24), we have that

V 2
Y,n

V 2
X,n

=
V 2

Y,n/n

V 2
X,n/n

→a.s.

∞∑
j=0

θ2
j as n →∞. (25)

This completes the proof of part (b).

For part (c), dividing part (a) by the square root of part (b) and then

multiplying by (
∑∞

j=0 θ2
j )

1/2 yields the desired result.

Now assume, without loss of generality, that yt = xt = 0 for all t ≤ 0. It

implies that yt =
∑t

k=1 vk = Sv,t and xt =
∑t

k=1 wk = Sw,t for all t > 0. It

then follows from (13) that for (t− 1)/n ≤ r < t/n, t = 1, . . . , n,

yt−1

kd1,nVa,n
=

Sv,t−1

kd1,nVa,n
⇒ Wa(r),

xt−1

kd2,nVb,n
=

Sw,t−1

kd2,nVb,n
⇒ Wb(r). (26)

The key for proving Theorem 2 and our other results is the following lemma.

Lemma 2. Let yt and xt be generated as in (8) and (9), where vt and wt

have the representations given in (10) and (11), respectively. Suppose that

the conditions in (12) hold. Then, as n →∞,

(a)

1
nkd1,nVa,n

n∑
t=1

yt ⇒
∫ 1

0
Wa(r)dr,

1
nkd2,nVb,n

n∑
t=1

xt ⇒
∫ 1

0
Wb(r)dr;
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(b)

1
n

n∑
t=1

vtwt →p 0;

(c)

1
kd2,nVb,nkd1,nVa,n

n∑
t=1

xt−1vt ⇒
∫ 1

0
Wb(r)dWa(r),

1
k2

d2,nV 2
b,n

n∑
t=1

xt−1wt ⇒
∫ 1

0
Wb(r)dWb(r),

1
kd1,nVa,nkd2,nVb,n

n∑
t=1

yt−1wt ⇒
∫ 1

0
Wa(r)dWb(r),

1
k2

d1,nV 2
a,n

n∑
t=1

yt−1vt ⇒
∫ 1

0
Wa(r)dWa(r);

(d)

1
nk2

d2,nV 2
b,n

n∑
t=1

x2
t ⇒

∫ 1

0
W 2

b (r)dr,

1
nk2

d1,nV 2
a,n

n∑
t=1

y2
t ⇒

∫ 1

0
W 2

a (r)dr;

(e)

1
nkd1,nVa,nkd2,nVb,n

n∑
t=1

ytxt ⇒
∫ 1

0
Wa(r)Wb(r)dr.

Proof of Lemma 2. For part (a), it follows from (26) and the continuous

mapping theorem that as n →∞,

1
nkd1,nVa,n

n∑
t=1

yt =
1

nkd1,nVa,n

n∑
t=1

(yt−1 + vt) =
1
n

n∑
t=1

yt−1

kd1,nVa,n
+ op(1)

⇒
∫ 1

0
Wa(r)dr. (27)
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The result for (nkd2,nVb,n)−1
∑n

t=1 xt can be proved in a similar way.

For part (b), it follows from Hall (1992, p.118) and Tsay and Chung

(2000, p.176) that

var

(
n∑

t=1

vtwt

)
=



O
(
n2d1+2d2

)
if d1 + d2 > 0.5,

O (n ln(n)) if d1 + d2 = 0.5,

O (n) otherwise.

(28)

Since d1 + d2 < 1, we have that var(n−1
∑n

t=1 vtwt) → 0 as n →∞. Hence

it follows easily from the weak law of large numbers (e.g., Petrov, 1995,

Theorem 4.16) that n−1
∑n

t=1 vtwt →p 0 as n →∞.

To prove part (c) we use arguments analogous to those of Phillips (1986,

1987). We first prove the first case of part (c). Define

Tv,n(r) =
1

kd1,nVa,n
Sv,[nr] +

nr − [nr]
kd1,nVa,n

v[nr]+1, (29)

Tw,n(r) =
1

kd2,nVb,n
Sw,[nr] +

nr − [nr]
kd2,nVb,n

w[nr]+1, (30)

(t − 1)/n ≤ r < t/n, t = 1, . . . , n. It then follows that Tv,n(r) ⇒ Wa(r),

Tw,n(r) ⇒ Wb(r), dTv,n(r) = nvtdr/(kd1,nVa,n), dTw,n(r) = nwtdr/(kd2,nVb,n)

and

∫ t/n

(t−1)/n
Tw,n(r)dTv,n(r) =

Sw,t−1vt

kd2,nVb,nkd1,nVa,n
+

wtvt

2kd2,nVb,nkd1,nVa,n
. (31)

Summing (31) over t = 1, . . . , n and rearranging yields that as n →∞,∑n
t=1 Sw,t−1vt

kd2,nVb,nkd1,nVa,n
=

n∑
t=1

∫ t/n

(t−1)/n
Tw,n(r)dTv,n(r)−

n∑
t=1

wtvt

2kd2,nVb,nkd1,nVa,n

=
n∑

t=1

∫ t/n

(t−1)/n
Tw,n(r)dTv,n(r) + op(1)
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⇒
∫ 1

0
Wb(r)dWa(r).

The proofs of the remaining cases are exactly analogous to the proof just

given, so we omit them here.

For part (d), note that
∑n

t=1 x2
t =

∑n
t=1(x

2
t−1 + 2xt−1wt + w2

t ). By

Theorem 1(b), (26), part (c) and the continuous mapping theorem, we have

that as n →∞,

1
nk2

d2,nV 2
b,n

n∑
t=1

x2
t =

1
nk2

d2,nV 2
b,n

n∑
t=1

x2
t−1 + op(1) ⇒

∫ 1

0
W 2

b (r)dr. (32)

The result for (nk2
d1,nV 2

a,n)−1
∑n

t=1 y2
t can be proved in a similar manner.

Note that
∑n

t=1 xtyt =
∑n

t=1(xt−1yt−1+xt−1vt+yt−1wt+vtwt). By (26),

parts (b)–(c) and the continuous mapping theorem, the proof of part (e) is

then similar to that just given for part (d), and therefore is omitted.

Proof of Theorem 2. For part (a), put x̄ = n−1
∑n

t=1 xt and ȳ = n−1
∑n

t=1 yt.

Note that

β̂ =
∑n

t=1(xt − x̄)(yt − ȳ)∑n
t=1(xt − x̄)2

=
∑n

t=1 xtyt − n−1
∑n

t=1 xt
∑n

t=1 yt∑n
t=1 x2

t − n−1(
∑n

t=1 xt)2
.

Then, as n →∞,

kd2,nVb,n

kd1,nVa,n
β̂ =

∑n
t=1 xtyt

nkd1,nVa,nkd2,nVb,n
−
[ ∑n

t=1 xt

nkd2,nVb,n

] [ ∑n
t=1 yt

nkd1,nVa,n

]
∑n

t=1 x2
t

nk2
d2,nV 2

b,n

−
( ∑n

t=1 xt

nkd2,nVb,n

)2

⇒

∫ 1
0 Wa(r)Wb(r)dr −

[∫ 1
0 Wa(r)dr

] [∫ 1
0 Wb(r)dr

]
∫ 1
0 W 2

b (r)dr −
[∫ 1

0 Wb(r)dr
]2 =: ξT2,β

by parts (a), (d) and (e) of Lemma 2.
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To prove part (b) we first note that α̂ = ȳ − β̂x̄ = n−1
∑n

t=1 yt −

β̂n−1
∑n

t=1 xt. Then, by Lemma 2(a) and part (a) above, as n →∞,

α̂

kd1,nVa,n
=

∑n
t=1 yt

nkd1,nVa,n
−
[

kd2,nVb,n

kd1,nVa,n
β̂

] ∑n
t=1 xt

nkd2,nVb,n

⇒
∫ 1

0
Wa(r)dr − ξT2,β

∫ 1

0
Wb(r)dr =: ξT2,α.

For part (c), note that

ŝ2 =
1
n

n∑
t=1

(yt − α̂− β̂xt)2 =
1
n

n∑
t=1

(yt − ȳ)2 − 1
n

β̂2
n∑

t=1

(xt − x̄)2

=
1
n

n∑
t=1

y2
t −

(∑n
t=1 yt

n

)2

− β̂2

[
1
n

n∑
t=1

x2
t −

(∑n
t=1 xt

n

)2
]

.

Then, by Lemma 2(a), Lemma 2(d) and part (a) above, as n →∞,

ŝ2

k2
d1,nV 2

a,n

=
∑n

t=1 y2
t

nk2
d1,nV 2

a,n

−
( ∑n

t=1 yt

nkd1,nVa,n

)2

−
k2

d2,nV 2
b,n

k2
d1,nV 2

a,n

β̂2

[ ∑n
t=1 x2

t

nk2
d2,nV 2

b,n

−
( ∑n

t=1 xt

nkd2,nVb,n

)2
]

⇒
∫ 1

0
W 2

a (r)dr −
[∫ 1

0
Wa(r)dr

]2

− ξ2
T2,β

{∫ 1

0
W 2

b (r)dr −
[∫ 1

0
Wb(r)dr

]2
}

=: ξT2,s2 .

For part (d), note that tβ = β̂[ŝ2/
∑n

t=1(xt− x̄)2]−1/2 = (β̂/ŝ)[
∑n

t=1(xt−

x̄)2]1/2. Then, by Lemma 2(a), Lemma 2(d) and parts (a) and (c) above, as

n →∞,

tβ√
n

=
β̂

kd2,nVb,n

kd1,nVa,n

ŝ

kd1,nVa,n

[ ∑n
t=1 x2

t

nk2
d2,nV 2

b,n

−
( ∑n

t=1 xt

nkd2,nVb,n

)2
]1/2

⇒
ξT2,β

ξ
1/2
T2,s2

{∫ 1

0
W 2

b (r)dr −
[∫ 1

0
Wb(r)dr

]2
}1/2

.
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Similarly, by Lemma 2(a), Lemma 2(d) and parts (b)–(c) above, as n →∞,

tα√
n

=
α̂{

nŝ2

[
1
n

+
x̄2∑n

t=1(xt − x̄)2

]}1/2
=

α̂

ŝ

[∑n
t=1 x2

t − n−1(
∑n

t=1 xt)2∑n
t=1 x2

t

]1/2

=
α̂/[kd1,nVa,n]
ŝ/[kd1,nVa,n]



∑n
t=1 x2

t

nk2
d2,nV 2

b,n

−
[ ∑n

t=1 xt

nkd2,nVb,n

]2

∑n
t=1 x2

t

nk2
d2,nV 2

b,n



1/2

⇒
ξT2,α

ξ
1/2
T2,s2


∫ 1
0 W 2

b (r)dr −
[∫ 1

0 Wb(r)dr
]2

∫ 1
0 W 2

b (r)dr


1/2

,

proving (e).

By Lemma 2(a), Lemma 2(d) and part (a) above, as n →∞,

R2 =
∑n

t=1(ŷt − ȳ)2∑n
t=1(yt − ȳ)2

= β̂2

∑n
t=1 x2

t − n−1(
∑n

t=1 xt)2∑n
t=1 y2

t − n−1(
∑n

t=1 yt)2

=
k2

d2,nV 2
b,n

k2
d1,nV 2

a,n

β̂2

∑n
t=1 x2

t

nk2
d2,nV 2

b,n

−
[ ∑n

t=1 xt

nkd2,nVb,n

]2

∑n
t=1 y2

t

nk2
d1,nV 2

a,n

−
[ ∑n

t=1 yt

nkd1,nVa,n

]2

⇒ ξ2
T2,β

∫ 1
0 W 2

b (r)dr −
[∫ 1

0 Wb(r)dr
]2

∫ 1
0 W 2

a (r)dr −
[∫ 1

0 Wa(r)dr
]2 ,

proving (f).

Finally, we prove part (g). Recall that ût = yt − α̂ − β̂xt and ŝ2 =

n−1
∑n

t=1 û2
t . Also, note that kd1,n, kd2,n, Va,n and Vb,n ↑ ∞ as n → ∞.

Then, by Theorem 1(b), Lemma 2(b), Theorem 2(a) and Theorem 2(c), as

n →∞,

DW =
∑n

t=2(ût − ût−1)2∑n
t=1 û2

t

=
∑n

t=2(vt − β̂wt)2

ŝ2n
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=

∑n
t=2 v2

t

n[
ŝ2

k2
d1,nV 2

a,n

]
k2

d1,nV 2
a,n

−
2
kd2,nVb,n

kd1,nVa,n
β̂[

ŝ2

k2
d1,nV 2

a,n

]
kd1,nVa,nkd2,nVb,n

∑n
t=2 vtwt

n

+

[
k2

d2,nV 2
b,n

k2
d1,nV 2

a,n

β̂2

]
[

ŝ2

k2
d1,nV 2

a,n

]
k2

d2,nV 2
b,n

∑n
t=2 w2

t

n

→p 0,

proving (g). The proof of the theorem is complete.

Proof of Corollary 1. Note that if d1 = d2 = d, then Θa,0,n = Θb,0,n =

Θ0,n and Υ2
d1

= Υ2
d2

= Υ2
d such that kd1,n = kd2,n = kd,n. Note further that

when E(a2
t ) = σ2

a < ∞ and E(b2
t ) = σ2

b < ∞, then the law of large numbers

gives n−1
∑n

t=1 a2
t →p σ2

a and n−1
∑n

t=1 b2
t →p σ2

b , respectively. Given these

results, the proof is straightforward and thus omitted.

Proofs of Corollaries 2–4. Note from Lemma 1 that Θa,0,n ∼ nd1/[Γ(d1)d1],

Θb,0,n ∼ nd2/[Γ(d2)d2], Υ2
d1

< ∞ and Υ2
d2

< ∞. It means that kd1,n =

O(nd1) and kd2,n = O(nd2). Then, the proofs of Corollaries 2–3 are exactly

analogous to that of Theorem 2, so we omit them. By the argument just

given together with item 5 of Table 3.3 in Banerjee et al. (1993), Corollary

4 holds true obviously.
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5 Concluding remarks

This paper has tried to shed some light on the asymptotic properties of

partial sums of fractionally integrated processes which are long memory or,

say, long-range dependent. Their applications in studying the asymptotic

behaviour of spurious regression problems are given in an explicit way. Our

results differ sharply from the ones in the long memory literature where

asymptotic distributions are functionals of fractional Brownian motions.

From an econometric point of view, the results we obtained are important

and interesting in their own right.

Long memory has appeared to be suitable description of the data gen-

erating processes for many observed economic and financial variables. As it

has been emphasized in Ferson et al. (2003), many of the regressions in the

financial literature may be spurious if the dependent variables are persistent

and highly autocorrelated regressors are used. On a theoretical level, our

results (especially Corollaries 2–4) may offer a better understanding of the

simulation results given in the latter paper.

26



References
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