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Abstract

In this paper we empirically evaluate competing approaches for combining density
forecasts. We compare combinations of density forecasts for CPI inflation using a suit of
linear forecasting devices and various VARs with moving estimation windows to account
for structural change. Three different data sets for the US, the UK and Norway are used.
We find that several combination schemes improve over selecting the best model through-
out the three data sets. Thus, it is safe to combine predictive densities. Furthermore,
we find that some combination schemes that work well in point forecasting cannot be
recommended for density combination.
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1 Introduction

The value of a point forecast can be increased by supplementing it with some measure of
uncertainty. Interval and density forecasts are considered an important part of the com-
munication from policymakers to the public. For example, the Bank of England as well
as the central bank of Norway, Norges Bank, publish so-called fan-charts for inflation that
supposedly communicate the banks’ views on possible paths of future inflation. However, pol-
icymakers usually have a whole suit of forecast models at hand. While it is now established
that the combination of individual forecasts may help to form a better consensus forecast
when it comes to point forecasting, a similar conclusion has not been reached in the literature
on density forecasting. In this paper, we therefore empirically evaluate competing approaches
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for combining density forecasts. We compare combinations of density forecasts for inflation
using a suit of linear forecasting devices and various VARs and compare the results over data
sets for the US, the UK and Norway.

While the literature on combining point forecasts has reached a relatively mature state
dating back to papers such as Bates & Granger (1969), the same cannot be said about our
knowledge on density forecasting and particularly combination schemes of individual density
forecasts. Timmermann (2006) provides an extensive summary of the literature on combining
point forecasts.

The literature on density and interval forecasting is summarized in surveys of Tay &
Wallis (2000) and Corradi & Swanson (2006a). See also Clemen, Murphy & Winkler (1995).
Corradi & Swanson (2006a) is maybe the most comprehensive survey to date on the evaluation
of single and multiple density forecasts.

Clements (2006) and Granger, White & Kamstra (1989) have considered combination of
event and quantile forecasts. Density forecasting considering the whole distribution of the
variable to be forecasted has only recently emerged in economics (see, e.g., Wallis 2005).
In contrast, already Genest & Zidek (1986) provided a survey on density combination in
meteorology.

Some combination schemes for density forecasts have been proposed that probably orig-
inate in their success in combining point forecasts. For example, equal weights have been
suggested by Hendry & Clements (2004) and Wallis (2005). Granger & Jeon (2004) propose
in a more general framework “thick modeling”.

Bayesian approaches naturally lend themselves to density combination schemes. So it is
maybe not surprising that various approaches have emerged in this field. For example, Min &
Zellner (1993) propose simple combinations based on posterior odds ratios. Palm & Zellner
(1992) propose a combination method that captures the full correlation structure between
the forecast errors resulting from different models by explicitly modeling their dynamic inter-
action. Following Morris (1974), Morris (1977) and Winkler (1981), Hall & Mitchell (2004)
consider an approach where competing density forecasts are combined by a “decision maker”
who views these forecasts as data that is used to update a prior distribution. Bayesian model
averaging (BMA) methods have been proposed by Leamer (1978) and Raftery, Madigan &
Hoeting (1997). An empirical study on BMA is Jackson & Karlsson (2004). Geweke & White-
man (2006) introduce the idea of predictive likelihood, and Eklund & Karlsson (2007) and
Andersson & Karlsson (2007) use this method for forecast combination with Bayesian AR
and VAR models. Garratt, Lee, Pesaran & Shin (2003) apply a Bayesian approach to the UK
economy. Also Mitchell & Hall (2005) suggest weights derived in a Bayesian framework.

From a classical perspective, weights based on the Kullback-Leibler Information Criterion
have been proposed by both Amisano & Giacomini (2007) and Hall & Mitchell (2007). This
criterion offers a way of measuring predictive accuracy and points to combination schemes
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seeking to minimize the distance between estimated predictive densities and the true but
unknown density of the variable to be predicted. This is achieved by considering logarithmic
scoring rules that reward models which on average give higher probability to events which
have actually occurred.

While Jore, Mitchell & Vahey (2007) provide some evidence on the performance of the
weighting scheme proposed by Hall & Mitchell (2007) relative to equal weights and the pair-
wise equal averaging method of Clark & McCracken (2007), our knowledge on when and why
predictive density combinations work is still limited. As Hall & Mitchell (2007) state: “It is
important to try to build up both an increased understanding and an empirical consensus
about the circumstances in which density forecast combination works.” Taking inflation den-
sity forecasting as a relevant example, we ask how predictive density combinations perform
relative to individual density forecasts and selecting the best performing model ex-ante. How
large are the gains from combining? Are some density combination schemes dominated by
others? How do our results vary over the three samples? Finally, we compare the results on
density combination with the results on point-forecast combination measured in terms of root
mean squared prediction error.

Our results show that recursive log-score weights, trimming the k% worst models and the
pairwise equal weight scheme give superior results than selecting ex-ante the best individual
model in all the three samples. Furthermore, the obtained performance from combining is
close to the result for the ex-post best individual model for the US application. The trimming
approach provides the highest log-score in the Norwegian exercise. Equal weights, which
provide accurate point forecasts, give, on contrary, always lower log-scores than selecting
the best individual model ex-ante. This finding suggests that the equal weight scheme is
inadequate for density forecasts. Bayesian model averaging confirms to have trimming effect,
but its success depends on the measure used to derive model probabilities and how appropriate
this measure is for the application of interest.

The rest of the paper is organized as follows. In section two we discuss the evaluation of
density forecasts and combining predictive densities. In section three we describe the data
and the suit of density forecast models. Section four contains the results of the out-of-sample
experiment. Section five concludes.

2 Evaluating and Combining Predictive Densities

2.1 Evaluating Predictive Densities

The question of how to measure the accuracy of density forecasts has recently received a lot
of attention in the theoretical literature. Corradi & Swanson (2006a) provide an extensive
survey. This question is decisive because it is central to how we design density combination
schemes (Hall & Mitchell 2007). In this paper we compare multiple models and combination
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schemes that are misspecified and sometimes nested. This fact complicates matters by some
degree.

One branch of the literature is concerned with testing whether predictive densities are cor-
rectly specified (Bierens 1982, Bierens & Ploberger 1997). These tests require the assumption
of correct specification of the density forecast under the null using all the relevant informa-
tion (e.g., Diebold, Gunther & Tay 1998, Bai 2003) or conditional on a given information set
(Corradi & Swanson 2003). Unfortunately, the models in our suit do not satisfy any of these
assumptions.

Another branch is concerned with model evaluation of multiple, possibly misspecified
models. One possibility is to evaluate density forecasts in terms of their implied economic
value (Granger & Pesaran 2000, Clements 2004). This strategy makes a lot of sense in areas
such as financial econometrics but is less meaningful for policymakers such as central banks.
Therefore we stick to statistical measures. Two approaches have been considered in the
recent literature. One is based on a distributional analog of mean squared error (Corradi
& Swanson 2004, 2006b), the other is based on the Kullback-Leibler Information Criterion
(KLIC) (Kitamura 2002, Amisano & Giacomini 2007, Hall & Mitchell 2007).

The measure of distributional accuracy introduced by Corradi & Swanson (2004, 2006b)
is attractive because of its analogy to the usual mean squared error norm in point forecasting.
Given a benchmark density function, a norm over a set of possible density forecasts is defined
in a straightforward manner taking the expectation of the squared, point-wise difference
between a candidate density and the benchmark density over all possible outcomes of the
variable to be forecasted. One problem is the dependence on a benchmark which might be
difficult to justify in our case unless one uses a nonparametric estimate as in Li & Tkacz
(2006). Given the short sample sizes at hand, this option does not appear convenient in the
present context.

On the other hand, measures based on the well-known KLIC can circumvent this problem.
The KLIC is a sensible measure of accuracy, since it chooses the model which on average gives
higher probability to events that have actually occurred. Specifically, the KLIC distance
between the true density ft and some candidate density f c

t of a random variable Yt is defined
as

KLICt =
∫

ft(yt) ln
ft(yt)
f c

t (yt)
dyt

= E[ln ft(yt)− ln f c
t (yt)].

Under some regularity conditions, a consistent estimate can obtained from the average of the
sample information, y1, . . . , yT , on ft and f c

t :

KLIC =
1
T

T∑

t=1

[ln ft(yt)− ln f c
t (yt)].
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Even though we do not know the true density, we can still compare multiple densities, f c
t,i for

i = 1, . . . , N . It is sufficient to consider only the latter term in the above sum,

− 1
T

T∑

t=1

ln f c
t,i(yt), (1)

for all i and to choose the model for which the expression in (1) is minimal.
Turning to density forecasts, let f c

t+h,t denote a prediction of the density for Yt+h, possibly
obtained by combination of individual density forecasts and conditional on information up to
date t. Let yt+h be the realization of Yt+h and suppose that T e h-step-ahead-forecasts have
been obtained, starting at time T s and given a total number of T observations. A measure
of out-of-sample performance is the average logarithmic score or “log-score”

lnS :=
1
T e

T−h∑

t=T s

ln f c
t+h,t(yt+h). (2)

Models or combination schemes that are associated with a high average log-score are approx-
imating well the unknown true density in terms of KLIC (Hall & Mitchell 2007).

For the iid case, Vuong (1989) suggests a likelihood ratio test for choosing the conditional
density model that is close to the true density in terms of KLIC. The tests was extended by
Amisano & Giacomini (2007) to cover the case of dependent observations. Also Kitamura
(2002) employs a KLIC-based approach to select between misspecified models. Measures in
terms of the KLIC also have a Bayesian interpretation as the KLIC-best model is also the
model with the highest posterior probability, as shown by Fernández-Villaverde & Rubio-
Ramirez (2004). Hall & Mitchell (2007) propose to use the KLIC distance between the
combined density forecast and the true but unknown density of the variable that is fore-
casted. Practically, computation of the KLIC distance does not require the estimation of any
statistical model. Thus, it can measure forecasts obtained from informal sources as well and
is our preferred measure of predictive accuracy.

2.2 Combining Predictive Densities

There are two elementary choices in combining densities. One is the way of aggregation and
the other is the construction of the weights. Possible ways of aggregation are described in
Genest & Zidek (1986). We focus here on the “linear opinion pool” of N competitive forecast
densities of the same event:

f c
t+h,t(yt+h) =

N∑

i=1

ωt+h,t,ift+h,t,i(yt+h), (3)
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where the collection of probability forecasts is {ft+h,t,1, . . . , ft+h,t,N}. The weights have to be
a convex linear combination, that is, 0 ≤ ωt+h,t,i ≤ 1 and

∑N
i=1 ωt+h,t,i = 1 for all i = 1, . . . , N

such that the resulting combination is indeed a density function. There are also other schemes
such as the generalized opinion pool and a logarithmic combination of densities (Genest &
Zidek 1986). Both are interesting alternatives, but we focus on the linear opinion pool for
simplicity.

For the derivation of the N probability forecasts we apply Bayesian inference on individual
models in section 3. This choice simplifies our computation as in Bayesian forecasting it is
natural to compute predictive densities, which thereby we define as forecast densities, and we
can use standard results to compute density forecasts from the set of individual models in 3.
The conditional forecast density of a future random variable Yt+h given the data up to time
t, Ωt = {ys, xs|s ≤ t}, and model i is defined as

ft+h,t,i(yt+h) =
∫

ft+h,t,i(yt+h|θi)p(θi|Ωt)dθi, (4)

where ft+h,t,i(yt+h|θi) is the conditional forecast density of YT+h given Ωt, model parame-
ters θi, and model i; p(θi|dt) is the posterior density for parameter θi. For the construction
of the weights, we consider several recent proposals in the emerging literature as well as the
empirical evidence on the combination of point forecasts (Timmermann 2006).

Equal weights (EW): Equal weights are used in the aggregation of the forecasts in the
Survey of Professional Forecasters to publish a combined density forecast for inflation. Equal
weights for combining densities have also been proposed in the literature by Hendry &
Clements (2004) and Wallis (2005). Formally, ωt+h,t,i = 1/N for all t, h, i.

Recursive log-score weights (RLSW): If we are measuring density fit by the logarithmic
score, then it is only natural to base the construction of combination weights on past out-of-
sample forecast performance measured in the same way. A promising candidate combination
scheme are recursive log-score weights as proposed in Jore et al. (2007). The weights for the
h-step ahead density combination take the form

wt+h,t,i =
exp[

∑t−h
τ=t ln fτ+h,τ,i(yτ+h)]

∑N
i=1 exp[

∑t−h
τ=t ln fτ+h,τ,i(yτ+h)]

, (5)

where t is the beginning of the evaluation period and is taken as fixed.

Trimming (TRIMW): Trimming the set of models by throwing away the k% worst models
and assigning equal weights to the remaining models is a popular way of improving EW
forecast combinations (Granger & Jeon 2004, Timmermann 2006). However, as Granger &
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Jeon (2004) state “[...], this is more of a pragmatic folk-view than anything based on a clear
theory.”. A more practical concern is the choice of k and the evaluation criterion. The
evaluation criterion is past out-of-sample performance in terms of the average log-score. At
each point of time and for each horizon we choose the trimming parameter k computing the
average log-score for a number of alternatives

lnSt,k,h =
1

t− h− t + 1

t−h∑
τ=t

ln f c,k
τ+h,τ,i(yt+h) (6)

where t is the beginning of the evaluation period and f c,k is the density combination obtained
by trimming the k% worst models. Then, the k is chosen that yielded the highest out-
of-sample average log-score in the past. The set of possible k s is {8, 16, . . . , 62}, which
corresponds to throwing away 1, 2, . . . , 8 density forecasts, respectively.

Pairwise equal weights (PEW): Pairwise equal weights (PEW) is actually a special case
of trimming and has been proposed by Clark & McCracken (2007) for point forecasts. They
propose to combine the forecasts of one univariate model and one multivariate model with
equal weights. We consider a slight modification of this strategy by choosing at each point of
time two models based on past performance of the models’ density forecasts in terms of the
average log-score.

Bayesian Model Averaging

Bayesian approaches have been widely used to construct forecast combinations, see, e.g.,
Leamer (1978), Hodges (1987), Draper (1995), Min & Zellner (1993) and Strachan & van
Dijk (2007). In this approach one does not estimate regression weights and uses those to
compute (density) forecasts, but the combination weights are based on the posterior proba-
bility for any individual model. The predictive density accounts then for model uncertainty
by averaging over the probabilities of individual models. We propose two BMA schemes: the
original one proposed in an empirical application by Madigan & Raftery (1994), and a more
recent one discussed in Geweke & Whiteman (2006).

BMA using marginal likelihood (BMAW): The forecast density of Yt+h given Ωt is
computed by averaging over the conditional forecast densities given the individual models
with the posterior probabilities of these models as weights:

ft+h,t(yt+h) =
N∑

i=1

ft+h,t,i(yt+h)P (i|Ωt), (7)
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where ft+h,t,i(yt+h) is the conditional predictive density given Ωt and model i; P (i|Ωt) is the
posterior probability for model i, defined as

P (i|Ωt) =
p(y|i)p(i)∑N

j=1 p(y|j)p(j)
, (8)

where y = {ys}t
s=1; p(i) is the prior density for model i and p(y|i) is the marginal likelihood

for model i given by

p(y|i) =
∫

p(θi|Ωt, i)p(θi)dθi. (9)

p(θi) is the prior density for the parameter θi of model i. The integral in equation (9) can
be evaluated analytically in the case of linear models, but not for more complex forms. Chib
(1995), e.g., has derived a method to compute the above expression also for some nonlinear
examples. Proper priors for θi are usually applied, otherwise the Bartlett paradox may hold
and models with less parameters would be strictly preferred.

BMA using predictive likelihood (BMAPLW): Geweke & Whiteman (2006) propose
a BMA scheme based on the idea that a model is as good as its predictions. The predictive
density of Yt+h conditional on Ωt has the same form as equation (7), but the posterior density
of model i conditional on Ωt is now computed as:

P (i|Ωt) =
ft,t−h,i(yt)p(i)∑n

j=1 ft,t−h,j(yt)p(j)
, (10)

where ft,t−h,i(yt) is as in (5). In Bayesian terminology, this density is defined as the predictive
likelihood for model i. As in de Pooter, Ravazzolo & van Dijk (2007) and Ravazzolo, van
Dijk & Verbeek (2007) we compute the predictive density for quarter t using information
until quarter t− h and we evaluate the realized value for time t using the same density. The
resulting probability is then applied to compute the weight for model i in constructing the
forecast for t + h made at time t. If we evaluated the predictive likelihood over an expanding
window of forecasts, this approach would coincide with the recursive log-score weights.

3 The Data and the Model Suite

We take inflation density forecasting as a relevant example to evaluate different ways of
combining predictive densities. In order to obtain an intuition for the sample dependence
of our and other results we compare ways of combining density forecasts over three different
data sets. Let pt denote some price level index in quarter t. We are interested in forecasting
quarter-to-quarter inflation measured by the quarterly log change, ∆1pt = ln pt− ln pt−1. We
consider CPI indices for the US and the UK and the Norwegian core CPI index. The set of
potential predictors contains a quarterly money measure, a three month Treasury Bill yield
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and a quarterly output measure. We focus on core CPI for Norway as energy prices have
a dominant role on the Norwegian CPI index. Norwegian energy prices in turn are affected
largely by weather conditions. We use M2 as a money measure in all three countries, and
we use real output as a measure of US GDP. Quarterly real GDP series are available for the
other two countries.

We collect US CPI, GDP and M2 data from the Federal Reserve Bank of Philadelphia’s
Real time Data Set for Macroeconomists, US interest rates from the Fred database, UK
CPI, interest rates and money from the OECD database, and UK GDP from EUROSTAT.
Norwegian data is collected from Norges Banks database.1 We use seasonally unadjusted series
and even though we have real time data for US and Norwegian GDP we simply abstract from
the real time aspect of the data and use the latest available vintage.

Data is available over different sample periods for the three countries and we select the
longest sample period we have for each country. We consider sample periods that run from
1960 Q1 to 2007 Q3 for US data, from 1978 Q1 to 2007 Q2 for UK data, and from 1979 Q2
to 2007 Q3 for Norwegian data. The evaluation periods start with the forecasts undertaken
in 1976 Q2, 1994Q2 and 1995 Q4. Thus, there are 126, 53 and 48 evaluated forecasts for the
US, the UK and Norway, respectively.

Univariate Models: The univariate models may be justified as simple “forecasting devices”
as in Clements & Hendry (2006). These simple models are included to insure against all sorts
of structural breaks. They also present different assumptions about the orders of integration
of the price level series. These models can be quite serious forecasting devices as pointed out
by, e.g., Castle & Hendry (2007).

Random Walk in ∆4 ln pt (RWD4):

The model is given by

∆4 ln pt = ∆4 ln pt−1 + εt,

where ∆4 ln pt := ln pt− ln pt−4 and the forecast at horizon h is ∆4 l̂n pT+h|T = ∆4 ln pT .

Random Walk in ∆1 ln pt (RWD1):

The model is given by

∆1 ln pt = ∆1 ln pt−1 + εt,

and forecast can be obtained directly.

1All data are available upon request to the authors.
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Random Walk in ∆1∆4 ln pt (RWD1D4):

The model is given by

∆1∆4 ln pt = ∆1∆4 ln pt−1 + εt,

where ∆1∆4 ln pt := ∆1(ln pt − ln pt−4) = (ln pt − ln pt−4)− (ln pt−1 − ln pt−5).

AR1D4:

The model is a simple AR(1) in fourth differences

∆4 ln pt = µ + α1∆4 ln pt−1 + εt,

where, for estimation purposes, only the last 20 observations are used.

AR1D1:

The model is a simple AR(1) in first differences

∆1 ln pt = µ + α1∆1 ln pt−1 + εt,

where, for estimation purposes, only the last 20 observations are used.

Vector Autoregressive Models: The model suite also contains vector autoregressive
models of the form

yt = µ + A1yt−1 + . . . + Apyt−p + ut,

where yt is a (K × 1) random vector, µ, A1, . . . , Ap are constant coefficient matrices of
suitable dimension, ut is the error term and the lag length is denoted by p.

We consider different VARs that contain variables usually considered in the literature
on forecasting inflation. All VARs are estimated with 2 lags using the last 50 observations
to allow for structural change. The VARs are unrestricted. Therefore, the models can be
distinguished by the components in yt alone. We use eight different VARs whose components
are given in table 1. In the table, M2t denotes the M2 money measure, it a short-term interest
rate and yt is a quarterly output measure.

In estimation we use conjugate diffuse priors. That is, we basically use uninformative
priors and the resulting estimates are therefore not very different from their classical counter-
parts. The reason we apply Bayesian methods at the estimation stage is that we use Bayesian
combination methods later on and we would like to apply different combination schemes to
the same predictive densities. We refer to Koop (2003) for estimation details on univariate
models and de Pooter et al. (2007) for derivations on VAR models. In general, if yt denotes
the variable to be forecasted by model i, the predictive density for the one-step-ahead forecast
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Table 1: Description of employed VARs
VAR-Nr. Variables
1 (∆1 ln pt, ∆1 lnM2t)′

2 (∆1 ln pt, ∆1it)′

3 (∆1 ln pt, ∆1it, ∆1 ln yt)′

4 (∆1 ln pt, ∆1 lnM2t, ∆1 ln yt)′

5 (∆4 ln pt, ∆4 lnM2t)′

6 (∆4 ln pt, ∆4it)′

7 (∆4 ln pt, ∆4it, ∆4 ln yt)′

8 (∆4 ln pt, ∆4 lnM2t, ∆4 ln yt)′

follows a t(µi, Σi, v)-distribution given by

ft+1,t,i(yt+1, µi,Σi, νi) = ci |Σi|−1/2[νi + (yt+1 − µi)Σ−1
i (yt+1 − µi)]−

νi+ki
2

ci =
v

vi/2
i Γ(νi+ki

2 )
πki/2Γ(vi

2 )

for a (ki×1) vector µi, a positive definite matrix Σi (ki×ki) and a positive scalar vi, where ki

denotes the number of variables in the model. In case of the VARs ki > 1 and the marginal
density for an element yt+1,j of yt+1 is t(µi,j , Σi,jj , v), where µi,j , Σi,jj denote the jth entry
in µi and the (j, j) element in Σi, respectively (Koop 2003).

Selection (SELEC): Comparing the performance of the combination methods to the per-
formance of each individual model is interesting. However, this kind of comparison is less
informative about the actual forecasting performance that could be obtained in real-time be-
cause it is essentially ex-post. In practice, a forecaster has to choose ex-ante which forecasting
model to employ. We therefore compare the combination methods to ex-ante selection.2 This
can be done in several ways. It is however natural to assume that a forecaster, if he has to
select one model, chooses the model that performed best in the past. Since we are interested
in predictive densities, the relevant criterion is here the past performance of the models in
terms of the average log-score. Note that (i) the way we select models should be closely re-
lated to the standard AIC criterion based on the predictive likelihood and that (ii) the above
described PEW scheme is close to selection.

2Another interesting issue that is not explored in this paper is the following: The model suit is taken as
given but of course the suit is chosen because we have an idea which models might work in the present context.
This idea is mainly based on evaluating the models ex-post - using the available data. Thus, we should view
the set of models as random. A more sophisticated comparison would therefore model the evolution of the
model set as well. This is however left for future research.
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4 Out-of-Sample Experiment

The results of the out-of-sample evaluation are summarized in figures 1 - 3 and in table 2. We
focus here on one-step-ahead density forecasting for simplicity. Generating forecast densities
for longer forecast horizons requires simulation of the predictive densities and would therefore
increase the computational burden quite quickly. We are currently working on an extension
to multi-step-ahead forecasts. Figures 1 - 3 show the out-of-sample forecasting performance of
the individual models, the combination schemes and model selection for the three data sets.
Out-of-sample forecasting performance is measured both in terms of the average log-score
and RMSPE. In the figures we display the negative average log-score such that models which
are close to the (0, 0) coordinate perform well in terms of both measures. Table 2 tabulates
exactly the same information that has been used to generate the figures.

The results for the individual models show that while there is a close relation between a
model’s average log-score and its RMSPE for most of the models, this relation might break
down in important cases. In the case of the UK and Norway, the AR1D4 model is performing
miserably in terms of the average log-score but is quite competitive in terms of RMSPE. As
expected, the forecasting performance of the individual models varies considerably over data
sets. While the RWD1D4 model is performing relatively well in terms of log-score and RMSPE
for the US, the same cannot be said for the other two data sets. This might be explained by
the fact that the US sample is much longer than the other two and contains periods of high
volatility such as the 1970s. The VARs can generate surprisingly good predictive densities,
in particular bivariate VARs containing log prices and interest rates in first (VAR2) or fourth
(VAR6) differences do well for all three data sets. Considering higher-dimensional VARs does
not seem to pay off in our setting. In the case of the US, the VAR2 is the best model in
terms of average log-score. The best univariate model (RWD4) in terms of average log-score
dominates however all the VARs in the case of the UK and Norway.

As in Hall & Mitchell (2007), the results are partially disappointing for an exercise where
the forecaster trying to select in real-time the best model among a set of competitive speci-
fications. This approach, SELECT, provides occasionally poor statistics, with a reduction of
average log-score of roughly 15% and 50% compared to the best individual model for the US
and the UK, respectively. Moreover, in both cases there are at least two individual models
that perform better than the SELECT approach. Results are qualitatively similar in terms
of point forecast accuracy. The evidence is different for Norway, where the log-score of the
SELECT approach is equal to the best model. The explanation is that the RWD4 specifica-
tion provides the best forecasts at each point of time for Norway, meaning that it is always
selected.

Focusing on the lower part of table 2, findings for combination schemes are very intrigu-
ing. Combining forecasts is the best forecasting strategy in several cases, and it is always a
“safe” approach to minimize forecast errors. There are however important difference among
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evaluation criteria and data sets. The RLSW, TRIMW and PEW schemes provide higher
log-scores and lower RMSPEs than the SELECT approach for the US and Norway. TRIMW
has the higher log-score among the three approaches, and in Norway it has the highest log-
scores among all models and combinations. TRIMW does also well in term of RMSPE. The
log-score associated to TRIMW is however lower than the log-score of the SELECT strategy
for UK data. RLSW and PEW schemes are more consistent over the three applications, with
results for RLSW better in US data, but opposite evidence for UK and Norway. Therefore,
opposite to Jore et al. (2007), which focus only on US data and have a smaller set of uni-
variate models, our results revaluate PEW and TRIMW schemes. Note, however, that they
use slightly different evaluation criteria. The explanation probably relates to our stronger
attention to structural instability. As Castle & Hendry (2007) describe, our set of univariate
devices is robust to various forms of instability, which is not always the case in Jore et al.
(2007). Moreover, our selection of the two or N − k best individual models to use in the
PEW or TRIMW respectively, is done ex-ante at each point of time, allowing for different
combinations over the sample period. Jore et al. (2007) use the same two individual models
over the full forecasting sample, ignoring that it may be possible to predict that some models
perform well over some periods but not in others as Hall & Mitchell (2007) also notice.

Bayesian model averaging perform poorly with US data, but gives quite accurate forecasts
for UK and Norwegian density and point inflation forecasts. In particular, results are very
promising for the scheme BMAW applied to the UK. As Hall & Mitchell (2007) also conclude,
for this database using in-sample information to derive model weights is a better strategy that
computing weights using past performance. BMAPLW has lower log-score statistics than
those given by the SELECT approach for all the three countries. BMAPLW assigns weights
by computing the realized predictive density of the last forecast. This seems less adequate
than computing weights over an expanding set of realized probabilities as it is done for the
RLSW or discarding the worse models using the same statistics.

We finally focus on the performance of the EW scheme. Clark & McCracken (2007) shows
that equal weights give often more accurate point forecasts than more complex combinations
schemes. We find similar evidence in term of RMSPE. However, as in Jore et al. (2007),
results are very different in terms of average log-score. The average log-scores of the EW
scheme is lower than those obtained by SELECT and other averaging schemes in all three
exercises. Furthermore, differences are often quite substantial, indicating that this averaging
scheme is not adequate for density forecasts.

5 Conclusion

This paper proposes to expand the research on combining inflation density forecasts by eval-
uating several averaging schemes over three different data sets. Equal weights, recursive log-
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score weights, trimming, pairwise equal weights and two Bayesian model averaging schemes
are proposed to combine density forecasts from a set of univariate devices and multivariate
VARs for US, UK and Norwegian inflation. Results are evaluated in terms of average log-
score. We find that combination schemes do not always beat the ex-post best individual
models, but recursive log-score weight, trimming and pairwise equal weight schemes always
outperform a strategy where the best individual model is selected ex-ante at each point of
time. Bayesian model averaging based on marginal likelihood also provides promising results,
and it seems more appropriate in exercises where the previous schemes perform poorly. Fi-
nally, the equal weight scheme gives always worse results than other combination methods
and selecting ex-ante the best model in all three exercises, confirming that this scheme is not
adequate for density forecasting as it is for point forecasting.

We think our findings can provide some directions to future applied research on density
forecasts. For example, recursive weights and Bayesian model averaging methods can be
combined with trimming. The worst k models can first be trimmed out, then estimated
weights can be assigned to the remaining N − k models. Other combination schemes where
weights are estimated using different criteria can be exploited, in particular considering the
poor performance of equal weights.

14



References

Amisano, G. & Giacomini, R. (2007), ‘Comparing density forecasts via weighted likelihood
ratio tests.’, Journal of Business & Economic Statistics 25, 177–190.

Andersson, M. & Karlsson, S. (2007), Bayesian forecast combination for VAR models. Un-
published manuscript, Sveriges Riksbank.

Bai, J. (2003), ‘Testing parametric conditional distributions of dynamic models.’, Review of
Economics and Statistics 85, 531–549.

Bates, J. M. & Granger, C. W. J. (1969), ‘Combination of forecasts’, Operational Research
Quarterly 20(4), 451–468.

Bierens, H. (1982), ‘Consistent model-specification tests.’, Journal of Econometrics 20, 105–
134.

Bierens, H. J. & Ploberger, W. (1997), ‘Asymptotic theory of integrated conditional moments
tests.’, Econometrica 65, 1129–1151.

Castle, J. L. & Hendry, D. F. (2007), Forecasting uk inflation: The roles of structural breaks
and time disaggregation. University of Oxford, Department of Economics, Discussion Paper.

Chib, S. (1995), ‘Marginal likelihood from the gibbs output’, Journal of American Statistical
Association 90, 972–985.

Clark, T. E. & McCracken, M. W. (2007), Averaging forecasts from VARs with uncertain
instabilities. Revision of Federal Reserve Bank of Kansas City Working Paper 06-12.

Clemen, R. T., Murphy, A. H. & Winkler, R. L. (1995), ‘Screening probability forecasts:
Contrasts between choosing and combining.’, International Journal of Forecasting 11, 133–
145.

Clements, M. P. (2004), ‘Evaluating the bank of england density forecasts of inflation.’, Eco-
nomic Journal 114, 844–866.

Clements, M. P. (2006), ‘Evaluating the survey of professional forecasters probability dis-
tributions of expected inflation based on derived event probability forecasts.’, Empirical
Economics 31, 49–64.

Clements, M. P. & Hendry, D. F. (2006), Handbook of Economic Forecasting, Elsevier, chap-
ter 9.

Corradi, V. & Swanson, N. (2003), ‘Bootstrap conditional distribution tests in the presence
of dynamic misspecification.’, Journal of Econometrics 133(2), 779–806.

15



Corradi, V. & Swanson, N. (2004), A test for comparing multiple misspecified conditional
distributions. Working Paper, Rutgers University.

Corradi, V. & Swanson, N. (2006a), Handbook of Economic Forecasting, Elsevier, chapter 2.

Corradi, V. & Swanson, N. (2006b), ‘Predictive density and conditional confidence interval
accuracy tests.’, Journal of Econometrics 135, 187–228. 1-2.

de Pooter, M., Ravazzolo, F. & van Dijk, D. (2007), ‘Predicting the term structure of interest
rates’, Working paper, Tinbergen Institute .

Diebold, F. X., Gunther, T. & Tay, A. S. (1998), ‘Evaluating density forecasts with applica-
tions to finance and management.’, International Economic Review 39, 863–883.

Draper, D. (1995), ‘Assessment and propagation of model uncertainty’, Journal of the Royal
Statistical Society Series B 56, 45–98.

Eklund, J. & Karlsson, S. (2007), ‘Forecast combination and model averaging using predictive
measures’, Econometric Reviews 26, 329–362.

Fernández-Villaverde, J. & Rubio-Ramirez, J. F. (2004), ‘Comparing dynamic equilibrium
models to data’, Journal of Econometrics 123, 153–187.

Garratt, A., Lee, K., Pesaran, M. H. & Shin, Y. (2003), ‘Forecast uncertainties in macroecono-
metric modelling: An application to the UK economy.’, Journal of the American Statistical
Association 98, 829–838.

Genest, C. & Zidek, J. (1986), ‘Combining probability distributions: A critique and an an-
notated bibliography.’, Statistical Science 1, 114–148.

Geweke, J. & Whiteman, C. (2006), Bayesian forecasting, in G. Elliot, C. Granger & A. Tim-
mermann, eds, ‘Handbook of Economic Forecasting’, North-Holland.

Granger, C. W. J. & Jeon, Y. (2004), ‘Thick modeling.’, Economic Modelling 21, 323–343.

Granger, C. W. J. & Pesaran, M. H. (2000), ‘Economic and statistical measures of forecast
accuracy.’, Journal of Forecasting 19, 537–560.

Granger, C. W. J., White, H. & Kamstra, M. (1989), ‘Interval forecasting: An analysis based
upon ARCH-quantile estimators.’, Journal of Econometrics 40, 87–96.

Hall, S. G. & Mitchell, J. (2004), Density forecast combination. National institute of economic
and social research discussion paper, No. 249.

Hall, S. G. & Mitchell, J. (2007), ‘Combining density forecasts.’, International Journal of
Forecasting 23, 1–13.

16



Hendry, D. F. & Clements, M. P. (2004), ‘Pooling of forecasts.’, Econometrics Journal 7, 1–31.

Hodges, J. (1987), ‘Uncertainty, policy analysis and statistics’, Statistical Science 2, 259–291.

Jackson, T. & Karlsson, S. (2004), ‘Finding good predictors for inflation: A bayesian model
averaging approach.’, Journal of Forecasting 23, 479–498.

Jore, A. S., Mitchell, J. & Vahey, S. P. (2007), Combining forecast densities from VARs with
uncertain instabilities. Norges Bank, NIESR and RBNZ, working paper.

Kitamura, Y. (2002), Econometric comparisons of conditional models. Working Paper, Uni-
versity of Pennsylvania.

Koop, G. (2003), Bayesian Econometrics, Wiley.

Leamer, E. (1978), Specification Searches., Wiley, Oxford.

Li, F. & Tkacz, G. (2006), ‘A consistent bootstrap test for conditional density functions with
time-dependent data.’, Journal of Econometrics 127, 863–886.

Madigan, D. M. & Raftery, A. E. (1994), ‘Model selection and accounting for model un-
certainty in graphical models using occam’s window’, Journal of the American Statistical
Association 89, 1335–1346.

Min, C. K. & Zellner, A. (1993), ‘Bayesian and non-bayesian methods for combining mod-
els and forecasts with applications to forecasting international growth rates.’, Journal of
Econometrics 56, 89–118.

Mitchell, J. & Hall, S. G. (2005), ‘Evaluating, comparing and combining density forecasts us-
ing the klic with an application to the bank of england and nieser “fan” charts of inflation.’,
Oxford Bulletin of Economics and Statistics 67, 995–1033.

Morris, P. (1974), ‘Decision analysis expert use.’, Managment Science 20, 1233–1241.

Morris, P. (1977), ‘Combining expert judgments: A bayesian approach.’, Managment Science
23, 679–693.

Palm, F. C. & Zellner, A. (1992), ‘To combine or not to combine?’, Journal of Forecasting
11, 687–701.

Raftery, A. E., Madigan, D. & Hoeting, J. A. (1997), ‘Bayesian model averaging for linear
regression models.’, Journal of the Amercian Statistical Association 92, 179–191.

Ravazzolo, F., van Dijk, H. K. & Verbeek, M. (2007), ‘Predictive gains from forecast combi-
nation using time-varying model weight’, Econometric Institute Report 2007-26 .

17



Strachan, R. & van Dijk, H. K. (2007), ‘Bayesian model averaging in vector autoregressive
processes with an investigation of stability of the us great ratios and risk of a liquidity trap
in the usa, uk and japan’, Econometric Institute Report 2007-09 p. 47.

Tay, A. S. & Wallis, K. F. (2000), ‘Density forecasting: A survey.’, Journal of Forecasting
19, 235–254.

Timmermann, A. (2006), Forecast Combinations, Elsevier, chapter 4.

Vuong, Q. (1989), ‘Likelihood ratio tests for model selection and non-nested hyptheses’,
Econometrica 57, 307–333.

Wallis, K. F. (2005), ‘Combining density and interval forecasts: A modest proposal.’, Oxford
Bulletin of Economics and Statistics 67, 983–994.

Winkler, R. (1981), ‘Combining probability distributions from dependent information
sources.’, Managment Science 27, 479–488.

18



A Appendix

Figure 1: Negative average log-score and RMSPE for the individual and combined density
forecasts - US.
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Figure 2: Negative average log-score and RMSPE for the individual and combined density
forecasts - UK.
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Figure 3: Negative average log-score and RMSPE for the individual and combined density
forecasts - Norway.
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Table 2: Out-of-sample prediction performance

US UK Norway
lnS RMSPE lnS RMSPE lnS RMSPE

Individual Models
RWD4 -0.869 0.610 -0.309 0.290 -0.117 0.265
RWD1 -1.035 0.693 -0.703 0.429 -0.275 0.312
RWD1D4 -0.656 0.490 -1.344 0.856 -1.004 0.665
AR1D4 -2.123 0.694 -1.392 0.319 -1.303 0.301
AR1D1 -0.917 0.461 -0.761 0.479 -0.551 0.401
VAR1 -0.650 0.451 -0.859 0.540 -0.381 0.340
VAR2 -0.539 0.409 -0.825 0.535 -0.326 0.325
VAR3 -0.579 0.421 -0.534 0.402 -0.248 0.305
VAR4 -0.692 0.464 -0.584 0.428 -0.295 0.311
VAR5 -0.922 0.586 -0.497 0.383 -0.172 0.251
VAR6 -0.781 0.514 -0.441 0.334 -0.143 0.249
VAR7 -0.824 0.529 -0.453 0.340 -0.200 0.270
VAR8 -0.944 0.600 -0.513 0.401 -0.268 0.276
Selection
SELEC -0.626 0.453 -0.442 0.368 -0.117 0.265
Combinations
EW -0.689 0.454 -0.618 0.308 -0.227 0.253
RLSW -0.582 0.438 -0.432 0.360 -0.119 0.263
TRIMW -0.567 0.440 -0.451 0.307 -0.105 0.251
PEW -0.594 0.439 -0.422 0.365 -0.112 0.265
BMAW -0.646 0.477 -0.311 0.289 -0.121 0.264
BMAPLW -0.635 0.451 -0.538 0.298 -0.195 0.258

In the table lnS denotes the average log-score evaluated out-of-sample and RMSPE denotes
the root mean squared prediction error. See the text for explanation of the model suit.
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