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Abstract 
 
The improvements in the reporting and maintenance of data sets containing spatial and 
temporal domains as well as powerful computers have opened the way for Spatial-Temporal 
(ST) models and estimation techniques in many disciplines. In this paper we compare a 
Spatial Temporal Linear Model (STLM) proposed in the literature to forecast real estate 
prices to a Spatial Errors Model (SEM) cast in state-space form (SSSEM).  We explore in 
detail the incorporation of the time and spatial information in the estimation of the parameters 
of both models.  We derive analytical expressions that show how the spatial and time 
information are handled in the estimation of the hedonic parameters in each case. The 
estimates from the STLM and from the Kalman Filter of the SSSEM account for spatial 
correlation of contemporaneous and past sales, although the relative weighting of information 
differs.  This is not the case for the Kalman smoothed estimates. The fixed time estimates 
from STLM are expected to be close to the average of the time-varying estimates produced by 
the Kalman Filter over the same time period.  We illustrate both methods with a sample from 
Brisbane, Australia for the period 1985-2005.  We find the estimation of the STLM model is 
not computationally feasible for samples larger than 9,000.  This is a severe draw back 
considering the usual size of real estate data sets.  A comparison of prediction performance 
indicates the RMSE of the SSSEM based predictions is considerably lower than those 
obtained from STLM.  
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A Comparison Of Methods For Spatial-Temporal Forecasting With An Application To 
Real Estate Prices 

Introduction 
 
Increased accuracy and improvements in the reporting and maintenance of data sets 
containing spatial and temporal domains as well as powerful computers have opened the way 
for Spatial-Temporal (ST) models and estimation techniques in many disciplines. ST methods 
have clear advantages over purely spatial or time-series methods as they do not require data to 
be pooled over either domain and thus do not lead a loss of information through aggregation. 
ST modeling has recently been introduced to real estate market analysis although it has been 
popular in other disciplines such us environmental sciences.  
 
The nature of real estate market data has led to many difficulties in proposing effective 
modeling methods over time. Earlier estimation methods such as OLS and Grid Estimators 
did not account for spatial or temporal factors effectively and required the data to be pooled 
over space and time. Currently most real estate models have a spatial component in the mean 
or variance to account for the presence of spatial correlation in the data. However purely 
spatial models still require data to be aggregated over time and thus also lead to a loss in 
valuable information. A handful of spatiotemporal models have been introduced recently to 
real estate market analysis.  These are the first attempts to allow for combined analysis of both 
the spatial and temporal domains in the data.  
 
The temporal domain is one dimensional and contains a natural ordering while the spatial 
domain is most commonly two dimensional and does not contain a natural ordering. Further, 
the spatial domain also contains more features than the temporal domain that need to be 
considered, adding to the complexity of its analysis.  
 
The ST real estate models have developed as extensions of existing spatial models in the 
literature.  One of the pioneering models was the Spatial Temporal Linear Model (STLM) 
proposed by Pace et al. (2000) in the International Journal of Forecasting. The filtering of 
spatial and temporal components is handled through a covariance structure with both spatial 
and temporal weight matrices.  The parameters of the model are constant over time and 
estimated through a generalized least squares estimator.   
 
This paper seeks to compare both analytically and empirically the STLM model to a Spatial 
Errors Model (SEM) cast in state-space form, which we will denote by SSSEM.  The SSSEM 
model is a special case of a more general set of models which have become popular in other 
disciplines known as the Krigged Kalman Filter. In the SSSEM the covariance has a time 
varying spatial structure and the parameters are time-varying.  The SSSEM model can be 
estimated through classical likelihood methods or Bayesian methods.  
 
Section 2 shows analytically how the time and spatial domain are handled by the STLM and 
SSSEM, and demonstrate that the processes of information assimilation of each of the models 
leads to the result that the averages of the time varying coefficients’ estimates obtained from 
the application of the Kalman filter to the SSSEM are comparable to the fixed coefficient 
estimates obtained via the STLM, although the Kalman smoothed estimates are not.  We also 
show that the SSSEM is better suited to handle large data sets than the STLM.  Section 3 
illustrates the results using a sample of monthly housing sales for the Brisbane metropolitan 
area for the period 1985-2005 and presents a comparison of prediction performance.  Section 
4 concludes.  
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2. The STLM and SSSEM Models  
 

2.1 Introduction 

This section shows how the two models incorporate the spatial and time evolution of sales 
observations and how the estimation of the hedonic parameters includes this evolution.  To 
ease the presentation we first present a simple case of six houses and three time periods which 
are design to aid the understanding of the general findings.  
 
Both methods require a measure of distance between houses as well as a time ordering of 
sales. Figure 1 presents the spatial location of six houses and Table 1 presents the ordering of 
the sales for these houses.  
 

 

 
Figure 1. Location of Six Houses 

 
Thus, for instance house three was sold in period one however it was sold after house two, 
which was also observed in period one. The observations are ordered in time therefore, 
observation one is the furthest in the past while observation six is the most recent.  



 4

 
Table 1: Time of Sales Ordering 

 
 
 
 
 
 

 
 
 
 
 
Given the spatial distribution of the observations and the time of sale, the STLM and the 
SSSEM specifications can be obtained in their general forms.  
 

2.2 Spatial-Temporal Linear Model (STLM) Derivation 
 
The STLM has the following form, 
 

   Y X β ε= +           (1) 
  W uε ε= +           (2) 

s T ST TSW S T ST TSφ φ φ φ= + + +        (3) 
2~ (0, )     u N Iσ          (4) 

 
where, 
N  - Number of observations in the sample. 

1N
Y
×

 - Matrix of the observations of the dependent variable (log of house prices). 

N K
X
×

 - Matrix of the independent variables (hedonics) and a constant term. 

1K
β
×

 - Unknown parameter vector (shadow prices of hedonics). 

1N
u
×

 - Vector of white noise error terms 

1N
ε
×

  - Autocorrelated errors 

N N
W
×

 - Spatial-Temporal weight matrix 

N N
S
×

 - Spatial weight matrix 

N N
T
×

 - Temporal weight matrix 

[ , , , ]s T ST TSφ φ φ φ φ=  - Set of scalar autoregressive parameters. 
 
It is assumed that the observations are ordered chronologically, the oldest observations in X 
are in the first row while the most recent in the nth row. The matrix W is partitioned into a 
spatial component S and a temporal component T. The spatial weight matrix S represents the 
spatial relations among previous observations; similarly, the temporal weight matrix T 
represents temporal relations among previous observations. The S and T matrices are 
weighted in time and space by autoregressive parameters. The matrices act in a similar way to 

Observation
/House Time of Sale 

1 1 
2 1.1 
3 1.2 
4 2.1 
5 2.2 
6 3 
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a lag operator in space and time respectively. A lag operator is applied to data with regular 
periodicity, where as these matrices are the ‘lag operators’ for data with irregular periodicity, 
which is one of the features of real estate data. By concentrating only on previous 
observations the calculations are simplified greatly via the lower triangular structure of both 
weight matrices due to the chronological ordering. This analysis ignores any contemporary 
spatial correlation which may be significant. This weakness of the model is discussed by 
Cressie (1993) in relation to STARMA type models employed in the literature. The 
significance of contemporary spatial correlation will depend on the time scale that is modeled 
by the data, for example, if one period is a year then contemporary spatial correlation in house 
prices would be highly significant as prices of houses sold in the same year would be 
expected to be highly correlated and thus this modeling structure would be inappropriate. 
However, if one time period is a day then the contemporary spatial correlation may be omitted 
without a significant loss in information.  
 
 
Pace et al. (2000) specify the following assumptions for the S and T weight matrices and the 
autoregressive parameters; 
 

[1] [1] S × =           
[1] [1]T × =           

0, 0 ij ijj i S T≥ ⇔ = =         
1 1 φ− < <           

0, 0 ij ijS T≥ ≥           
 
The S and T matrices are assumed to be row stochastic which implies that each row of the 
matrix will sum to 1. However as by assumption the matrices are lower triangular, the first 
rows of the matrices consist only of zeros. Here [1] denotes an N by 1 vector of 1s.  The 
matrices are specified as lower triangular as spatial and temporal dependence is only on the 
previously sold properties therefore, the matrices S and T will only contain non-zero elements 
below the main diagonal.  
 
The S matrix is obtained as a weighted average of individual neighbour matrices constructed 
based on a fixed number of spatial neighbours, sm . We assume sm  is chosen as three to 
illustrate the construction of S. The first step in deriving the spatial weight matrix involves 
obtaining the distances between each observation and all the previous observations. As the 
number of observations, N, increases the number of comparisons required will rise at an 
increasing rate as the number of comparisons for N observations (total number of houses in 
the sample) is given by  
 

1

1( 1) ( 1) 
2

N

i
i N N

=

− = −∑         (5) 

 
As a result, this step may cause computational problems with large data sets. 
 
The distances obtained via a pair-wise comparisons yield the distance matrix D. The units for 
the distances in matrix D are arbitrary as they are only used to determine the rank of the 
potential neighbours of each property. The numbers, chosen in (6) for the pair-wise distance 
comparisons, correspond in relative magnitudes to the spatial locations of the six houses. The 
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matrix is lower triangular as each observation is only compared to previous observations, thus 
the first observation has no past observations to be compared to.  
 

0 0 0 0 0 0
5 0 0 0 0 0
6 2 0 0 0 0

 
8 6 4 0 0 0
4 8 7 6 0 0
5 2 1 3 6 0

D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

       (6) 

 
To construct S, sm  individual neighbour matrices of dimension N by N, are required. Due to 
their sparse nature they are less likely to cause computational difficulties. The individual 
neighbour matrices can be obtained from the distance matrix, D. In the simple case presented 
about, three individual neighbour matrices are computed. 1S  represents the first nearest 
neighbour matrix. Each row in this matrix contains a 1 for the closest neighbour for the 
considered observation and all other elements are 0. The smallest element in each row of the 
D matrix implies the minimum distance from the observation corresponding to the row 
number to the observation corresponding to the column number, therefore they are ‘first 
nearest neighbours’ and thus this element is given a value of 1 in the 1S  matrix. 
 

1

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0

S

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

       (7) 

 
Similarly, the second nearest neighbour matrix 2S is obtained via a similar technique. This 
matrix contains a 1 for the element in each row with the second smallest distance value. Thus 
the first two rows of this matrix consist of 0s as the second observation only has one potential 
neighbour which is the first closest neighbour, and the first observation does not have any 
neighbours in the past. 
 

2

0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0

S

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

       (8) 

 
The final individual neighbour matrix, given our choice of sm =3, required to obtain the 
spatial weight matrix is the third nearest neighbour matrix 3S . Similarly to the construction of 
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the previous two spatial matrices, 3S  contains a 1 in each row for the third smallest value in 
that row in the D matrix. 
 

3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

S

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

       (9) 

 
The spatial weight matrix, S, is derived as a weighted average of the individual neighbour 
matrices. Pace et al. (2000) note that sensitivity analysis of the results the authors obtained via 
the STLM indicates that changes caused by selecting equal or differentiated weights for the 
individual neighbour matrices yield minimal changes.  An analytical investigation of the 
effects of various weight specifications for the calculation of the spatial weight matrix is a 
possible direction of further research however for the purpose of the comparison conducted in 
this study equal weights are applied.  
 

( ) 0                        for 1,  1...ijS i j N= = =                 (10) 
3

( ) ( )
1

              for 2,  1...    ij l ij
l

S S i j N
=

= = =∑                 (11) 

3

( ) ( )
1

1            for 3,  1...
2ij l ij

l
S S i j N

=

= = =∑                 (12) 

3

( ) ( )
1

1            for 3,  1...
3ij l ij

l
S S i j N

=

= > =∑                 (13) 

 
In the above expressions ( )ijS  denote the element of the spatial matrix S in row i and column j. 
The elements in the first row of all of the individual neighbour matrices are 0, therefore the 
elements of the first row of the S matrix which are a weighted average of the individual 
matrices values, are also 0. The second observation only has one previously sold neighbour 
therefore the weight given to this neighbour is 1. The third observation has two previously 
sold neighbours, and thus assuming equal weights, are given a weight of a half. For the fourth 
observation and above, each observation will have three previously sold spatial nearest 
neighbours, therefore the elements of the spatial weight matrix are obtained by giving each 
respective neighbour the weight of one third. The above calculation may easily be generalized 
to any sm  as the fixed number of spatial neighbours. When the row number exceeds sm  each 

spatial neighbour is weighted by 1

sm
. Similarly to the above expressions, when the row 

number is less than or equal to sm  the weights are distributed equally. For example for row 

sm each neighbour is given a weight of 1
1sm −

. Via this specification the obtained spatial 

weight matrix is row stochastic, as the elements of each row will sum to 1 with the exception 
of the first row.  This is a convenient definition as it has a filtering interpretation. For 
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example, the product SY gives the average log sales price of the sm  nearest neighbours of 
each property. 
 
The resultant spatial weight matrix is given by (14). 
 

0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
2 2
1 1 1 0 0 0
3 3 3
1 1 10 0 0
3 3 3

1 1 10 0 0
3 3 3

S

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

        (14) 

 
The second component of the weight matrix in the STLM is the temporal weight matrix T. If 
the STLM is rewritten in a linear regression form, the T matrix only appears as a product with 
other matrices.  
 

 
S T ST TS

s T ST TS

Y X SX TX STX TSX
SY TY STY TSY u

β φ β φ β φ β φ β
φ φ φ φ

= − − − −
+ + + + +

     (15) 

 
In practice this implies the T weight matrix does not need to be calculated or stored as the 
product of T and another variable represents the running average of that variable thus it may 
be obtained via linear filter routines in programs such as Matlab. This is a practical advantage 
of the model which is highlighted by Pace et al. (2000) as it saves on the storage of a matrix 
with a large potential number of non-zero elements. However for our purpose the temporal T 
matrix is calculated explicitly.  
 
The temporal weight matrix is defined in a similar fashion to the spatial weight matrix. Each 
row of the T matrix contains a non-zero element for Tm closest, previously sold neighbours in 
time for the observation corresponding to that row, where Tm denotes the number of temporal 
neighbours selected in the model. As the observations are assumed to be ordered in time from 
the outset there is no necessity to calculate the distance in time between all previously sold 
houses or to construct individual neighbour matrices. The closest Tm  neighbours to an 
observation will be the Tm  preceding observations in the data set. Similarly to the S matrix, 
the T matrix is row stochastic therefore the elements of each row with the exception of the 
first row will sum to 1 and equal weights are given to each temporal neighbour. 
 
For the case in Figure 1 and Table 1 the temporal weight matrix is given by  
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0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
2 2
1 1 1 0 0 0
3 3 3

1 1 10 0 0
3 3 3

1 1 10 0 0
3 3 3

T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

        (16) 

 
If the STLM is written in linear regression form, the matrix of hedonics X as well as the 
dependent variable Y are not only filtered via the T and S matrices individually but also by 
their products TS and ST.  

0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
2
1 1 0 0 0 0
2 6
5 5 1 0 0 0

18 18 9
11 5 1 0 0 0
18 18 9

ST

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

       (17) 

0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
2
1 1  0 0 0 0
2 6

11 5 1 0 0 0
18 18 9
7 5 1 0 0 0

18 18 9

TS

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

       (18) 

From this analysis it is evident that the STLM takes the spatial and temporal effects via the 
nearest neighbours approach by considering all the observations in the sample simultaneously. 
The result of this approach is that all the filtering matrices and therefore the specified weight 
matrix W in (2) are of dimension N by N. Although many of the matrices are sparse and thus 
computationally feasible even with a relatively large number of observations, the derivation of 
the spatial weight matrix requires the construction of a relatively dense distance matrix which 
may lead to computational difficulties with large data sets.  
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In order to simplify the estimation of the parameters in this model, Pace et al (2000) use the 
form in (15), which allows the use of Least Squares methods. Several restrictions can be 
imposed on the structure of the lag parameters [ , , , ]s T ST TSφ φ φ φ φ= . In addition they show the 
form of the likelihood to obtain estimates of φ . We will not reproduce the details here, except 
to indicate that the estimator of the hedonic parameters amounts to an Estimated Generalised 
Least Squares procedure, which we present below as it will be required for the comparison to 
the SSSEM. Let the covariance matrix of the correlated error term ε  be denoted by Ψ .  
 

( )  Var ε = Ψ            
 W uε ε= +           

   u Wε ε⇒ = −           
( )  u I W ε⇒ = −          

1( )  I W uε −⇒ = −           
 

( ) [ ]                           ( ) 0      Var E Eε εε ε′= Ψ = =∵      
1 1            [( ) ( ) ] E I W uu I W− − ′′= − −         

1 1            ( ) ( )( )     I W E uu I W− − ′′= − −        
2 1 1 2            ( ) ( )         ( )   I W I W E uu Iσ σ− − ′ ′= − − =∵      

2 1 1                                                ( ) ( )    I W I Wσ − − ′= Ω Ω = − −    (19) 
1 1ˆ ˆ ˆ( ) ( )I W I W− − ′Ω = − −          

ˆ ˆ ˆ ˆˆ  S T ST TSW S T ST TSφ φ φ φ= + + +         
 

1 1 1ˆ ˆ ˆ( ' ) '   EGLS X X X Yβ − − −= Ω Ω         
1 1 1 1 1 1 1ˆ ˆ ˆ ˆ        ( '[( ) ( )  ] ) [( ) ( )  ]X I W I W X X I W I W Y− − − − − − −′ ′′= − − − −    

1

1 1 1

1 1 1

ˆ ˆ ˆ ˆ ˆ   ( '[( [ ]) ( [
ˆ ˆ ˆ ˆ ˆ      ]) '] ) '[( [   
ˆ ˆ ˆ ˆ ˆ ˆ      ]) ( [ ]) ']     

S T ST TS S

T ST TS S T

ST TS S T ST TS

X I S T ST TS I S

T ST TS X X I S T

ST TS I S T ST TS Y

φ φ φ φ φ

φ φ φ φ φ

φ φ φ φ φ φ

−

− − −

− − −

= − + + + − +

+ + + − + +

+ + − + + +

 (20) 

 
The circumflex accent on the matrices and parameters in expressions denotes estimates of the 
respective matrices and parameters. The variance covariance matrix of the coefficients is 
standard and given by  
 

ˆ ˆ ˆ( ) [( )( ) ]EGLS EGLS EGLSVar Eβ β β β β ′= − −        
2 1 1ˆ                 ( ' )X Xσ − −= Ω          
2 1 1 1 1ˆ ˆ                 ( '[( ) ( ) '  ] )X I W I W Xσ − − − −= − −        
2 1

1 1 1

ˆ ˆ ˆ ˆ ˆ                 ( '[( [ ]) ( [
ˆ ˆ ˆ                    ]) '] )      

S T ST TS S

T ST TS

X I S T ST TS I S

T ST TS X

σ φ φ φ φ φ

φ φ φ

−

− − −

= − + + + − +

+ + +
  (21)  

 
As the hedonic coefficient estimates and their standard errors are both given as functions of 
the S and T weight matrices this implies they will incorporate the information on the spatial 
and temporal autocorrelations within the sample for each house relative to previously 



 11

observed houses. Therefore the estimates are based on past information known at the time of 
sale of each observation.  
 

2.3 State Space Spatial Error Model Derivation 
 
The SSSEM model was proposed by Cominos (2006) and Cominos et al (2007) as a suitable 
alternative to obtain The derivation of the SSSEM is approached in a similar fashion to the 
STLM. The model is given in a very general form and a step by step procedure is applied to 
bring the model up to the stage where all the required matrices are specified.  
 
The Spatial Errors Model (SEM) is a commonly used model in Spatial statistics (see Lessage 
and Pace (2004), Florax and de Graaff (2004)) and it takes the form  
 

 Y Xβ ε= +            (22) 
  uε ρ ε= ϒ +            (23) 

 
where, 
N  - Number of observations in the sample. 

1N
Y
×

- Matrix of the observations of the dependent variable (log of house prices).  

N k
X
×

- Matrix of the independent variables and a constant term. 

1k
β
×

  - Vector of unknown parameters. 

1N
ε
×

  - Vector of spatially correlated error terms. 

1N
u
×

  - Vector of error terms. 

1 1
ρ
×

    - spatial correlation parameter. 

N N×
ϒ - Spatial weight matrix. 

 
 
The starting point of the specification of the SSSEM is given by its general form that allows 
the N observations to be modeled accounting by their chronological ordering 
 

 t t t tY X β ε= +          (24) 
                       1...   t t t tu t Tε ρ ε= ϒ + =       (25) 

1  t t tβ β η−= +           (26) 
( ) 0                               ( )    t t t tE Cov Hε ε ε ′= =      (27) 

2~ (0, )  t u tu N Iσ                        
2~ (0, ),t kQ Q Iηη σ=         

( ) 0  T
t tE ε η =          

  
 

~ ( , )t t tb Pβ           (28) 

0 00                                        P Iβ κ= =       (29) 
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tN  - Number of observations in period t. 

1t

t
N
Y
×

 - Matrix of the observations of the dependent variable (log of house prices).  

kN
t

t

X
×

 - Matrix of the independent variables and a constant term in period t.  

1×k
tβ   - Vector of unknown parameters. 

1×tN
tε   - Vector of spatially correlated error terms. 

1×tN
tu   - Vector of error terms. 

1 1
ρ
×

    - spatial correlation parameter. 

t t

t
N N×
ϒ - Spatial weight matrix. 

1×tN
tη   - Vector of innovations. 

 
In practice the model parameters ρ , 2

uσ , 2
ησ  can be estimated via numerical Maximum 

Likelihood methods or Bayesian estimation. The estimation of these parameters does not play 
a key role in the comparison of the STLM and the SSSEM therefore their estimation is not 
considered in this paper (the interested reader is refereed to Harvey (1990)).  
 
The first step is the determination of the spatial weight matrix tϒ  for every time period. 
Although there are alternative methods to determine the distance between neighbours, for our 
purpose it suffices to say that tϒ  is a row stochastic matrix based on the distance between 
houses that were sold in t.  For instance, for the case in Figures 1 and Table 1, three spatial 
weight matrices are found. In period one houses 1, 2 and 3 were observed, in period  two 
houses 4 and 5 were observed and in period three only house 6 was observed. Each weight 
matrix takes into account only the houses observed in its respective period therefore tW  is of 
dimension tN  by tN  as opposed to N by N as in the STLM specification. Here tN  denotes the 
number of observations in period t.  
 
As the observations are not spatially correlated to themselves the diagonal elements of the 
weight matrices are zeros similarly to the STLM specification. For example, as houses 1 and 2 
are neighbours (refer to Table 1 and Figure 1), houses 1 and 3 are not neighbours, and houses 
2 and 3 are neighbours. The weight matrix for the first time period would be,  
 

1

0 1 0
1 1 0
2 2
0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥ϒ =
⎢ ⎥
⎢ ⎥⎣ ⎦

          (30) 

 
And similarly for the remaining two time periods we would have 
 

2

0 1
   

1 0
⎡ ⎤

ϒ = ⎢ ⎥
⎣ ⎦

           (31) 
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[ ]3 0ϒ =            (32) 

 
In practice, when data sets are very large a fixed number of neighbours is used to define the 
non-zero weights in the tϒ  matrix similar to the case of STLM.  
 
Once the weight matrices for each period have been specified, the hedonic coefficients of the 
SSSEM may be obtained via algorithms such as the Kalman Filter and Kalman Smoother 
which are applied to the State Space Form (SSF) of the model. The SSSEM is already 
specified in its state-space form, where the measurement equation is given by (24) and the 
transition equation via (26). Although the error term of the measurement equation tε  is 
spatially autocorrelated, it is uncorrelated over time and therefore satisfies the assumptions of 
the Kalman algorithms. The Kalman algorithms require the specification of the variance 
covariance matrix of the measurement equation error term denoted by tH which can easily be 
derived, 
 

t t t tu ε ρ ε= − ϒ             
( )t t tu I ρ ε⇒ = − ϒ           

1( )  t t tI uε ρ −⇒ = − ϒ           
( ) [ ']              ( ) 0 t t t tVar E Eε ε ε ε= =∵        

1 1            [( ) '( ) ']t t t tE I u u Iρ ρ− −= − ϒ − ϒ        
1 1            ( ) ( ')( ) 't t t tI E u u Iρ ρ− −= − ϒ − ϒ        

2 1 1            ( ) ( ) '  u t tI Iσ ρ ρ− −= − ϒ − ϒ         
           tH=          (33) 

 
The hedonic coefficients are the state vector in this specification, and thus, SSSEM may 
report the conditional or unconditional estimates obtained via the Kalman Filter or the 
smoothed estimates obtained via the Kalman Smoother. To obtain a better understanding of 
how these filters help the model to incorporate the temporal evolution of house prices, the 
Kalman algorithms, the Filter and the Smoother, are presented. In the above definitions both 
error terms, tε  and tη  are assumed to be normally distributed. 
 
The Kalman Filter can be divided into a set of prediction equations and updating equations 
(the reader is refer to Harvey (1990) for detailed explanation of the Kalman Filter algorithm).  
The resulting estimates of the hedonic parameters obtained from the prediction equations are 
the conditional estimates, given by  
 

11  tt tb b −− =           (34) 
2

1 11     t tt tP P Q P Iησ− −− = + = +         (35) 

 
Applying the updating equations of the filter we obtain the unconditional estimates  
 

1
1 1 1b ( )  t t t t tt t t t t tb P X F Y X b−
− − −

′= + −        (36) 
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1
1 1 1t t t tt t t t t tP P P X F X P−
− − −

′= −         (37) 
2 1 1

1 1 ( ) ( )t t t t t t u t tt t t tF X P X H X P X I Iσ ρ ρ− −
− −

′ ′ ′= + = + − ϒ − ϒ     (38) 

 
In order to show how equations (35)-(38) incorporate the information over time, we show 
their expressions for three time periods. 
 
Period 1 conditionals 

010  b b=             
2

010P P Iησ= +             

 
Period 1 unconditionals 
 

1
1 1 1 1 110 10 10b ( )b P X F Y X b−′= + −          

2
0 1 1 0 110

2 1 1 1
1 1 1 1 0

    [ ( )

       ( ) ( ) ] ( ) u

b P X X P I X

I I Y X b

ησ

σ ρ ρ− − −

′ ′= + + +

′+ − ϒ − ϒ −
       

2 2
1 1 0 0 1 1    ( , , , , , , , )b uf b P Y Xησ σ ρ= ϒ          

1
1 1 1 110 10 10  P P P X F X P−′= −           

2
1 1 0 110 10

2 1 1 1
1 1 1 10

   [ ( )                

       ( ) ( )  ]u

P P X X P I X

I I X P

ησ

σ ρ ρ− − −

′ ′= − + +

′+ − ϒ − ϒ
       

2 2
1 1 0 1   ( , , , , , )P uf P Xησ σ ρ= ϒ         

2 1 1
1 1 1 1 110 ( ) ( )   uF X P X I Iσ ρ ρ− −′ ′= + − ϒ − ϒ         

 
In the first period the Kalman Filter estimates for the hedonic coefficients are a function of the 
spatial relationships of the houses observed in period one, via 1ϒ . Therefore this estimate 
only considers the information available in period one, the spatial relationships and the 
observations of the dependent and independent variables. With each recursion the estimates of 
the hedonic coefficients and the covariance matrix become increasingly complex (the 
expression for the third period coefficient estimate is over a page long) if fully expanded 
therefore for periods two and three the conditional and unconditional estimates are given as a 
general function rather than an explicit expression. The full derivation and the explicit 
functional forms of all the general functions presented in this Section are provided in 
Appendix 1 of Svetchnikova (2007). The goal of this Section is to analyze where each piece 
of information is assimilated into the obtained estimates and thus compare this process to that 
utilized by the STLM. 
 
Period 2 conditionals 

121

2 2
21 1 0 0 1 1

                                                     

     ( , , , , , , , ) b u

b b

f b P Y Xησ σ ρ

=

= ϒ
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2
121

2 2
21 1 0 1

                                                     

      ( , , , , , )  P u

P P I

f P X
η

η

σ

σ σ ρ

= +

= ϒ
       

 
Period 2 unconditionals 

1
2 2 2 2 221 21 21

1
21 1 21 1 2 2 1 2 2 2 21 1

2
2 1 2 0 0

b ( )                                                                   

   ( ,...) ( ,...) ( , ,...)( ( ,...))             

   ( , , , , ,
b P F b

b

b P X F Y X b

f f X f Y X f

f b P ησ σ

−

−

′= + −

′= ϒ + ϒ ϒ ϒ − ϒ

= ϒ ϒ 2
1 2 1 2, , , , , )            u X X Y Yρ

   

1
2 2 2 221 21 21

1
21 1 21 1 2 2 1 2 2 21 1

2 2
2 1 2 0 1 2

                                     

   ( ,...) ( ,...) ( , ,...) ( ,...)

   ( , , , , , , , )               
P P F P

P u

P P P X F X P

f f X f X f

f P X Xησ σ ρ

−

−

′= −

′= ϒ − ϒ ϒ ϒ ϒ

= ϒ ϒ

      

2 1 1
2 2 2 2 221

2 2
2 1 2 0 1 2

 ( ) ( )   

    ( , , , , , , , )
u

F u

F X P X I I

f P X Xη

σ ρ ρ

σ σ ρ

− −′ ′= + − ϒ − ϒ

= ϒ ϒ
        

 
 
Period 3 conditionals 

232

2 2
32 1 2 0 0 1 2 1 2

                                        

   ( , , , , , , , , , , ) b u

b b

f b P X X Y Yησ σ ρ

=

= ϒ ϒ
       

2
232

2 2
32 1 2 0 1 2

                               

   ( , , , , , , , )P u

P P I

f P X X
η

η

σ

σ σ ρ

= +
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Period 3 unconditionals 

1
3 3 3 3 33 2 3 2 3 2

1
32 1 2 32 1 2 3 3 1 2 3 3 3 32 1 2

2 2
3 1 2 3 0 0

b ( )                                                                 

   ( , ...) ( , ...) ( , , ...)( ( , ...))  

   ( , , , , , , ,
b P F b

b u

b P X F Y X b

f f X f Y X f

f b P ησ σ

−

−

′= + −

′= ϒ ϒ + ϒ ϒ ϒ ϒ ϒ − ϒ ϒ

= ϒ ϒ ϒ 1 2 3 1 2 3, , , , , , )X X X Y Y Yρ

    

1
3 3 3 33 2 3 2 3 2

1
32 1 2 32 1 2 3 3 1 2 3 3 32 1 2

2 2
2 1 2 3 0 1 2 3

                                                           

   ( , ...) ( , ...) ( , , ...) ( , ...)

   ( , , , , , , , , , )    
P P F P

P u

P P P X F X P

f f X f X f

f P X X Xησ σ ρ

−

−

′= −

′= ϒ ϒ − ϒ ϒ ϒ ϒ ϒ ϒ ϒ

= ϒ ϒ ϒ

  

 
2 1 1

3 3 3 3 33 2

2 2
3 1 2 3 0 1 2 3

 ( ) ( )        

   ( , , , , , , , , , )

u

F u

F X P X I I

f P X X Xη

σ ρ ρ

σ σ ρ

− −′ ′= + − ϒ − ϒ

= ϒ ϒ ϒ
     

  
 
The conditional estimates in each period take into account the spatial relationships observed 
in previous periods, the initial conditions on the state vector and the three covariance 
parameters. For example, in period three the conditional estimates of the hedonic coefficients 
are based on the information on the houses observed in periods one and two. This is similar to 
the principle applied to the STLM where the model is designed so that the estimates only 
consider the spatial relationships between previous observations. However, if the 
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unconditional estimates are used then the updating equations ensure that contemporaneous 
period information is also taken into account. 
 
In the final period recursion of the Kalman Filter the unconditional estimates of the hedonic 
coefficients and the covariance matrix of these estimates utilize all the information in the 
sample. Importantly, this information has entered in a sequential form, and the relative 
importance of new information is added through the matrix tF .  
 
The initial state (starting values) for the Kalman Filter in the SSSEM model is specified to 
suit the non-stationary nature of the transition equation. If the transition equation is stationary 
and time invariant the starting values for the filter are given implicitly by the model 
specifications via the unconditional mean and variance of the state vector (hedonic coefficient 
vector). However, in the case of non-stationarity Harvey (1990) suggests two possible 
approaches. One approach assumes the initial state vector to be fixed and thus the initial 
variance is zero. The second approach, chosen by Cominos et al. (2007) for the SSSEM 
specification, is to define the initial state vector as random with a diffuse distribution, defining 
the initial variance to be very large which reflects the lack of prior knowledge about the state 
vector. This approach implies that the estimates obtained via the Kalman Filter recursions in 
the periods near the beginning of the sample may be very inaccurate and very sensitive to 
different choices of starting values. The initial iterations of the Kalman Filter need a burn-in 
period to assimilate enough information from the data to yield reliable estimates. 
 
The Kalman Smoother is an algorithm applied to the unconditional estimates obtained via the 
Kalman Filter and its purpose is to adjust estimates in each period to account for all the 
information in the sample. For example, the first period unconditional estimate of the hedonic 
coefficient vector will be updated such that the smoothed estimate will be based on the 
information in all the periods in the sample. We present below that equations of a fixed 
interval Kalman Smoother to illustrate the process. 
 

1*( )                     1,...,t t tt T t Tb b P b b t T+= + − =        

1 1*( ) * '  t t tt T t T t tP P P P P P+ += + −          
1

1*t t t tP P P −
+

′=             

 
 
As the recursions of the Kalman Smoother work backwards, the smoothing algorithm begins 
with period T-1, as period T estimates are already based on the information of the entire 
sample and act as the starting values for this algorithm. For the above case of three time 
periods,  
 
Period 2 Smoother 
 

* 1
2 2 3 2

1
2 1 2 32 1 2

2 2
2* 1 2 0 1 2

                                               

     [ ( , ,...)] ( , ,...)  

     ( , , , , , , , )
P P

P u

P P P

f f

f P X Xησ σ ρ

−

−

′=

′= ϒ ϒ ϒ ϒ

= ϒ ϒ
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*
2 2 22 3 3 3

2 1 2 2* 1 2 3 1 2 3 2 1 2

2 2
23 1 2 3 0 0 1 2 3 1 2 3

( ) 

   ( , ,...) +  ( , ,...) { ( , , ,...)  ( , ,...)}     

   ( , , , , , , , , , , , , , )
b P b b

b u

b b P b b

f f f f

f b P X X X Y Y Yησ σ ρ

= + −

= ϒ ϒ ϒ ϒ ϒ ϒ ϒ − ϒ ϒ

= ϒ ϒ ϒ

    

 
* *

2 2 22 3 3 3 3 2

2 1 2 2* 1 2 3 1 2 3

32 1 2 2* 1 2

23 1

  ( )                                                            

     ( , ,...) ( , ,...)[ ( , , ,...)

        ( , ,...)] [ ( , ,...)]  

     ( ,

P P P

P P

P

P P P P P P

f f f

f f

f

′= + −

= ϒ ϒ + ϒ ϒ ϒ ϒ ϒ −

′− ϒ ϒ ϒ ϒ

= ϒ ϒ 2 2
2 3 0 1 2 3, , , , , , , , )       uP X X Xησ σ ρϒ

     

 
The smoothed coefficients () and the smoothed covariance matrix () are updated such that 
they now make use of all the information in the sample. The smoothed estimates and 
covariance matrix for period two now contain the information of all the spatial weight 
matrices, 1 2,ϒ ϒ  and 3ϒ . However, in reality economic agents in period two do not possess 
the information contained in 3ϒ  therefore the smoothed estimate for period two does not 
accurately reflect the information of economic agents in period two. Similarly, the first period 
estimates are smoothed to include the information of the entire sample. 
  
Period 1 Smoothed 
 

*
1 1 113 2 3

1 1 1* 1 23 1 2 3 1 1

2 2
13 1 2 3 0 0 1 2 3 1 2 3

( )   

    ( ,...) ( ,...)[ ( , , ,...) ( ,...)]  

    ( , , , , , , , , , , , , , )
b P b b

b u

b b P b b

f f f f

f b P X X X Y Y Yησ σ ρ

= + −

= ϒ + ϒ ϒ ϒ ϒ − ϒ

= ϒ ϒ ϒ

     

* *
1 1 113 2 3 21

1 1 1* 1 23 1 2 3 21 1 1* 1
2 2

13 1 2 3 0 0 1 2 3

( )

    ( ,...) ( ,...)[ ( , , ,...) ( ,...)][ ( ,...)]

    ( , , , , , , , , , , )      
P P P P P

P u

P P P P P P

f f f f f

f b P X X Xησ σ ρ

′= + −

′= ϒ + ϒ ϒ ϒ ϒ − ϒ ϒ

= ϒ ϒ ϒ

    

 
Although theoretically the choice of the smoothed coefficient for the SSSEM specification is 
inconsistent in a forecasting sense, the impact on the results in practice may not be very 
significant. The difference between the smoothed and the Kalman Filter estimates 
(conditional and unconditional) of the coefficient vector and its covariance matrix is expected 
to be greatest near the beginning of the sample. The adjustment is scaled by a function of the 
covariance matrix of the respective period, which also implies the adjustment is greatest at the 
beginning of the sample period as the initial state vector is assumed to have a diffuse 
distribution.  
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3. Empirical Results 

3.1 Introduction 
 
To complement the analytical discussion, the State Space Spatial Error Model (SSSEM) and 
the Spatial Temporal Linear Model (STLM) are applied to a real estate data set from the 
Brisbane Metropolitan area. The data are discussed next.  
 
3.2 Model and Data 
 
The model and data used in this study are that from Cominos (2006) and Cominos et al 
(2007). The hedonics included in the model are determined by data availability.  This data set 
contains the house sale price, date of sale (month,year), size of the lot (Area), number of 
Bedrooms, number of bathrooms, number of car parking spaces (includes carport and lock up 
garage, denoted by CarLug), and the number and street address which were geocoded into 
longitude and latitude coordinates.   
 
Cominos (2006) discusses in detail the problem of the reliability of real estate data. As the 
data from more recent years tend to be more reliable due to improvements in the collection 
and maintenance of data sets, for the purpose of the empirical comparison of the STLM and 
the SSSEM the data previous to the period 1985-2005 have been excluded. This period 
provides more than enough data to conduct the comparison as the quantity of data rises at an 
increasing rate with time. The upward trend in the quantity of data is illustrated for the period 
1985-2000 in Figure 2. 
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Figure 2: Number of observations per Month 

 
The original data set by Cominos (2006) included houses with acreage. As the aim of models 
such as the STLM and the SSSEM is to model a ‘typical’ house, these houses were filtered 
out from the data for the purpose of this study. By modeling a ‘typical’ house the STLM and 
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the SSSEM minimize the problem of heterogeneity in the hedonic residuals. Neither of the 
modeling specifications correct for heterogeneity which is inherent in the real estate market as 
it is not homogeneous by nature, thus the houses in the data set should be as homogenous as 
possible while allowing for enough variation in the hedonics to give reliable estimates of the 
hedonic coefficients. As a result houses with a number of CarLug, bedrooms and bathrooms 
larger than  six were excluded in this study. The distributions and summary statistics for the 
prices as well as hedonic variables are illustrated next. 
 
The hedonic variables included in the provided data set have been chosen for a number of 
reasons. The information about these hedonics has been more commonly available for most 
properties and similar variables are often used in the literature. The distribution and the 
summary statistics for the area in square meters, the number of bedrooms, the number of 
bathrooms and the number of car spaces and lock up garages are presented in Figure 3 to 
Figure 9. 
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Figure 3: Area Variable (m2) 

 
The area variable is relatively symmetrical in its distribution however the right tail is longer 
than the left even though the number of observations in the range 1250 square meters and 
over is relatively small. Thus overall most of the houses in the data set are between 250 and 
1250 centered around 600 square meters. Due to the outliers in the right hand tail of the 
distribution the range of the Area variable is quite large, 101 to 1999 square meters. To 
decrease the effect of the right hand tail and thus reduce the influence of large observations 
the log of the Area is used as a hedonic variable in the empirical comparison rather than the 
Area variable. In addition, the dependent variable will also be in the log form therefore the log 
form of the Area variable yields a convenient elasticity interpretation to the Area coefficient. 
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Figure 4: Ln(Area) Variable 

 
Taking the log of the variable reduces its range by scaling large values more than small ones 
and therefore in this case may increase computational feasibility by reducing the values of 
some of the elements in the hedonic matrix. 
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Figure 5: Number of Bedrooms Variable 

The distribution of the Bedrooms variable is close to symmetrical with a slight right skew. 
The median number of bedrooms for the data set is three, which is a logical estimate for a 
typical house.  
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Figure 6: Number of Bathrooms Variable 

 
The distribution of the Bathroom variable is skewed to the right indicating that although most 
houses have more than one bedroom the number of bathrooms tend to be mostly between one 
and three. Even for houses where six bedrooms are observed the number of bathrooms tends 
to be smaller. This result is not out of the ordinary as a typical house is not expected to 
contain a very large number of bathrooms. 
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Figure 7: Number of Car Spaces and Lockup Garages Variable 

 
In the discussion of the creation of the original data set, Cominos (2006) notes that the 
variable for car spaces is observed for some houses while others may contain a variable for a 
lock up garage. As these variables are very closely related the author combines the two 
variables into the CarLug variable which denotes the sum of the number of car spaces and the 
number of lock up garages. Most of the distribution for this variable is contained between 
values of one and two which is considered to be quite standard for a typical house in the 
Brisbane Metropolitan area. 
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The dependent variable in many hedonic models in the literature is given as log of the house 
price rather than just the house price to render the distribution more symmetrical. Normality is 
a common assumption for the error terms in the regression thus the dependent variable is 
expected to also be approximately Normal. For example, the Kalman Filter1 applied in the 
estimation of the coefficients of the SSSEM model requires the normality assumption to be 
valid. The semi-log form of the model also serves to correct for heteroskedasticity between 
the house value and the residuals as the prediction error increases in size with more expensive 
dwellings. 
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Figure 8: House Prices 

 
Although the data set has been filtered further to exclude atypically large houses with a 
greater number of bedrooms, bathrooms or car spaces than six, it is difficult to exclude 
smaller atypical luxury homes. A luxury home may be determined partly by location however 
they are difficult to detect thus even the cleaned data distribution is heavily right skewed with 
a long, thin, right tail. Most of the typical houses in the data set range between $1090 
(minimum value) and $100,000 however there are houses priced up to $5,900,000. The 
filtered data set contains ninety six houses which have a sales price below $10,000. Although 
this sales price seems too low to be realistic it may have resulted due to circumstances of the 
sale such as the house may have been in a bad state of disrepair or the seller wanted to sell 
immediately and was not concerned about the low price. As the underlying factors of these 
low price observations are unknown, it may not be appropriate just to exclude them from the 
data set as it may lead to biased results. Therefore they have not been filtered out from the 
data set. A more in depth investigation of the underlying reasons for such low prices is an 
avenue for further research however it is not investigated in this paper. 
 
 

                                                 
1 Although the Kalman Filter may be altered to accommodate non-Gaussian data, the Kalman Filter 
specifications given in this paper assume normality. 



 23

 

0

2000

4000

6000

8000

10000

12000

7.5 10.0 12.5 15.0

Series: LNPRICE
Sample 1 65239
Observations 65239

Mean       12.17899
Median   12.15478
Maximum  15.59046
Minimum  6.993933
Std. Dev.   0.687757
Skewness  -0.273581
Kurtosis   4.679017

Jarque-Bera  8476.949
Probability  0.000000

 
Figure 9: Log of House Prices 

 
Taking the log of the house price renders the distribution of the variable approximately 
symmetric. The skewness of the distribution is reduced dramatically from 6.3 for the price to -
0.27 for the log of the price. 
 
The data may be tested for spatial autocorrelation via common spatial tests such as the Moran 
I, LR and LM tests. However as these tests have been performed on the data set by Cominos 
et al. (2007) only the conclusions are given in this paper. All the three tests performed on the 
data yield the result of the existence of spatial autocorrelation in the error of the hedonic 
model. Spatial autocorrelation is expected to occur in real estate data sets and is discussed in 
detail in the literature. On the other hand, testing the data for temporal autocorrelation yields 
more daunting problems. A Moran I type of spatial autocorrelation test is performed on data 
aggregated over some given time period thus, similarly to test for temporal autocorrelation 
data may be aggregated over space. However, the method of aggregation is unclear. A logical 
procedure to aggregation would be a submarket approach, where observations are aggregated 
over submarkets. Unfortunately the definition of submarkets requires in depth analysis of the 
spatial correlations in the data which is outside the scope of this paper. Therefore testing of 
the data for temporal autocorrelation is an avenue for further research. 
 
 
3.3 Estimation Results  
 
Both of the models have been coded in Matlab, the Matlab code for both models is available 
from the authors. As predicted via the analytical results the STLM specification leads to 
computational problems due to the large size of the data set therefore a moving window 
approach is taken to the estimation. The SSSEM specification yields monthly estimates for 
the hedonic coefficients therefore to compare the coefficient estimates of the SSSEM and the 
STLM, the monthly SSSEM estimates are averaged over each year. The averages of the 
estimated coefficients for the two models are relatively similar and the movements of the 
coefficients over time also confirm the results obtained in the previous section.  
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3.3.1 STLM Results 
 
The application of the STLM to the Brisbane Metropolitan data set 1985 to 2005 resulted in 
computational difficulties. The attempt to run the program was made on three different 
computers however all attempts were unsuccessful. Although the model makes use of sparse 
matrices to aid computation it is nevertheless quite restrictive in the sample size it is able to 
handle. The problem lies in the process of the construction of the individual neighbour 
matrices. Once constructed, due to their sparsity their large dimensions should not cause 
computational problems however to construct these matrices the distance between each pair 
of observations must be calculated and recorded in an N by N matrix. As the potential 
neighbours only consist of previous observations this matrix will be lower triangular however, 
this still causes computational problems for sample sizes over 90002. As the data set used in 
this application consists of over 60,000 observations a direct comparison of the models over 
the entire sample has proven impossible without access to a server. 
 
To tackle this problem the model was estimated using an overlapping windows approach. As 
the number of observations rises at an increasing rate over the sample period (see Figure 2), 
the later years, 2001 to 2005, are the most problematic for the STLM specification. This 
period alone contains nearly 30,000 observations. As a result for the purpose of this empirical 
comparison only 16 years as opposed to 21 years of data are used, accounting for the period 
from 1985 to 2000. Although it would have been interesting to see the results of the two 
models for the more recent years, 16 years of data are still enough to conduct the empirical 
comparison effectively. Even with the exclusion of the more recent five years of data, to apply 
a window of an equal duration over the period, each window could not be extended to over 
two years.  
 
The STLM coefficients were estimated for each two year window over the period 1985 to 
2000. As the windows overlap for all the years in this period with the exception of the first 
and last year, the coefficient estimates were taken as averages of the two overlapping 
windows for each year. The dependent variable in the hedonic regression equation of the 
STLM is the log of the house price rather than just the house price therefore the direct 
interpretation of the coefficients is not the shadow price of each characteristic. The 
coefficients for the Bedroom, Bathroom and CarLug variables may be interpreted as the 
percentage change in the house price given a one unit change in the respective variable. 
Cominos et at (2007) highlight an identification problem in the original model between the 
intercept and Area coefficient, as in this paper no attempt has been made to change the 
original specification, no interpretation of the Area coefficients is provided in the empirical 
comparison. 
 
The hedonic coefficient estimates for each window with the exception of the Area variable are 
transformed into the shadow prices of each characteristic by multiplying the coefficients 
obtained via the STLM specification by the average price of a house in each estimation 
window. The average house prices have increased nearly three fold over the period 1985 to 
2000 therefore the expectation is that the shadow prices of the hedonics should also increase 
over the period even if there is a downward trend in the coefficients in the semi-log form of 
the model. Table 2 illustrates the trend in house prices over the sample period. 
 

 

                                                 
2 The data set used by Pace et al (2000) had 5243 houses.  
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Table 2: Average House Prices 
 

Time Period Average House Price
1985-1986 $66,675 
1986-1987 $70,905 
1987-1988 $84,616 
1988-1989 $103,538 
1989-1990 $126,199 
1990-1991 $134,825 
1991-1992 $138,924 
1992-1993 $147,531 
1993-1994 $156,114 
1994-1995 $160,260 
1995-1996 $161,739 
1996-1997 $166,454 
1997-1998 $174,506 
1998-1999 $184,184 
1999-2000 $192,814 

 
 
Table 3 shows the shadow prices of the three house characteristics obtained from the STLM.  
 

Table 3: STLM Shadow Prices 
Time Period   Bedroom  Bathroom  CarLug  
1985-1986 $2,613.66 $6,140.78 $2,166.94 
1986-1987 $2,517.11 $5,516.37 $808.31 
1987-1988 $4,112.32 $6,422.33 $2,293.08 
1988-1989 $5,466.83 $9,349.52 $4,503.92 
1989-1990 $7,723.35 $10,562.82 $2,700.65 
1990-1991 $8,871.47 $12,296.02 $3,047.04 
1991-1992 $8,002.05 $13,461.78 $4,751.22 
1992-1993 $6,919.21 $13,956.45 $4,175.13 
1993-1994 $6,790.98 $15,751.94 $2,997.40 
1994-1995 $8,926.48 $19,231.19 $1,234.00 
1995-1996 $11,176.14 $16,125.34 $3,509.73 
1996-1997 $10,669.70 $15,946.29 $4,161.35 
1997-1998 $10,226.05 $18,061.37 $5,043.22 
1998-1999 $11,990.36 $20,131.27 $5,912.30 
1999-2000 $13,921.14 $20,881.70 $5,379.50 

 
 
The results illustrate plausible estimates, all of which are significant, for the Bedroom, 
Bathroom and CarLug shadow prices. However, the value of an extra bathroom relative to an 
extra bedroom seems high. This result may stem from the effect of missing hedonics that are 
significant contributors to the overall price of a house. Another possible explanation for this 
effect may be that an extra bathroom implies a larger house than an extra bedroom or a more 
luxurious house. The problem of missing variables is discussed by Cominos (2006) in the 
application of the SSSEM to the original data set. However, this problem stems from the 
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availability of information on hedonic characteristics and not from the model specification. 
The Bathroom, Bedroom, CarLug and Area variables were used as the information on these 
variables was available for most of the houses in the Brisbane Metropolitan area. Thus, as 
stated, the Bathroom coefficient is likely to be correlated with other hedonics that have not 
been included in the model and is therefore results in a much higher shadow price than 
expected by picking up the shadow prices of the missing hedonics as well as its own. There is 
an upward trend over the sample in all three shadow prices illustrated in Table 3 as expected. 
The shadow price for an extra car space fluctuates over the sample period however the 
shadow price for an additional bedroom and an additional bathroom illustrate a steady upward 
trend over the sample period. 
 
3.3.2 SSSEM Results 
 
The estimation of the SSSEM did not result in any computational problems. However as the 
STLM could only be applied to the period 1985 to 2000, the SSSEM was also estimated for 
this  period for the purpose of the comparison. One period for the SSSEM is taken to be one 
month, therefore this model specification yields one hundred and ninety two estimates for 
each of the hedonic coefficients. The spatial weight matrices are constructed using a Delaunay 
Triangulation Algorithm. The construction of the weight matrix by the Delaunay 
Triangulation Algorithm allows a different number of spatial neighbours for each property 
depending on the position of the property within the spatial domain and the variation in the 
density of points over the spatial domain. As discussed the application of the Kalman 
Smoother is considered inappropriate in the context of predictions of real estate prices. 
Therefore, the SSSEM coefficients are given either via the conditional estimates or the 
unconditional estimates yielded by the Kalman Filter. The use of the unconditional estimates 
implies the agents in the market mold their preferences based on current period and previous 
periods’ information. On the other hand, the utilization of the conditional estimates implies 
that consumers base their preferences only on previous periods’ information. 
 
Similarly to the STLM specification the dependent variable is given as the log of the house 
price therefore to obtain the shadow prices of the hedonics the coefficients obtained via the 
SSSEM are multiplied by the average house price each period. Table 4 illustrates the average 
shadow prices for each year in the sample period for the hedonics (excluding the Area 
variable as stated in the previous section) using the conditional Kalman Filter coefficient 
estimates. Table 5 illustrates the results obtained if the unconditional results are utilized. The 
monthly estimates seem to move in cycles therefore the model may require a seasonal 
component. Attempts to account for the seasonality by considering one period as a quarter or 
specifying the SSSEM with seasonal dummies did not lead to promising results. Therefore, to 
account for the seasonality in the estimates a more formal modeling technique than simply 
inserting seasonal dummies into the modeling structure may be required. This investigation is 
outside of the scope of this paper however the results of the inclusion of the seasonal 
dummies and quarterly estimates are given in Appendix 3 of Svetchnikova (2007).  
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Table 4: SSSEM Conditional Shadow Prices 
Conditional Estimates of Coefficients 

Year Bedroom Bathroom CarLug 
1986 $2,691 $9,461 $2,262 
1987 $3,888 $10,560 $3,332 
1988 $6,844 $9,484 $3,256 
1989 $5,587 $18,598 $6,061 
1990 $12,324 $16,264 $2,264 
1991 $9,724 $18,061 $4,940 
1992 $8,337 $20,877 $5,742 
1993 $6,049 $22,540 $7,353 
1994 $9,390 $25,732 $3,574 
1995 $12,203 $29,993 $300 
1996 $14,392 $24,031 $8,172 
1997 $15,599 $24,084 $3,486 
1998 $14,694 $30,628 $6,796 
1999 $18,052 $29,712 $8,358 
2000 $19,539 $34,110 $7,656 

 
Due to the specification of the SSSEM3 the conditional and unconditional estimates of the 
coefficients obtained via the Kalman Filter are not dramatically different. As a result the 
estimated shadow prices of the hedonics differ only slightly between the conditional and 
unconditional specifications. 
 

Table 5: SSSEM Unconditional Shadow Prices 
Unconditional Estimates of Coefficients 

Year Bedroom Bathroom CarLug 
1986 $2,451 $9,834 $1,903.19 
1987 $4,128 $10,666 $2,718.67 
1988 $6,998 $10,406 $4,137.89 
1989 $5,742 $16,904 $5,677.43 
1990 $12,308 $17,183 $2,176.88 
1991 $9,009 $18,854 $6,976.16 
1992 $8,610 $20,472 $4,571.01 
1993 $6,137 $23,098 $6,693.39 
1994 $9,358 $25,392 $3,664.22 
1995 $12,381 $30,119 $597.67 
1996 $15,306 $23,568 $7,860.60 
1997 $14,404 $25,450 $3,850.20 
1998 $16,124 $28,177 $6,068.90 
1999 $17,319 $31,320 $8,131.03 
2000 $19,204 $34,495 $7,261.85 

 
 
Although the trend in all shadow prices is upward for the SSSEM as well as the STLM, the 
SSSEM specification illustrates a greater change over the sample period. The estimates near 
the beginning of the sample period are very close for the two modeling specifications 
however towards the end of the sample period the estimates produced by the SSSEM 
specification are significantly greater than those of the STLM especially for the Bathroom and 
                                                 
3 This results from the transition equation in the SSF of the SSSEM being defined as a random walk. 
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Bedroom variables. The estimates of the shadow prices obtained via the SSSEM are all 
significant and plausible with the exception of the shadow price for a car space in 1995. The 
value for an extra car space in 1995 seems too low for both the conditional and unconditional 
estimates. A closer examination of the data in that year reveals several outliers.  The presence 
of these observation results in some of the monthly estimates for the CarLug coefficient of the 
SSSEM to be negative and therefore the average coefficient for 1995 is unrealistically low. 
The presence of these observations warrants a review of the data obtained for the year 1995 to 
determine if these observations are a result of measurement error or some very specific 
circumstances. 
 
Similarly to the STLM specification the relative sizes of the shadow prices of the Bedroom 
and Bathroom variables do not seem realistic. The Bathroom shadow price is too high relative 
to the Bedroom shadow price for the reasons already discussed.  
 
The analytical derivations indicate that the estimates obtained via the STLM specification 
should be close to the average of the coefficients obtained via the Kalman Filter in the 
SSSEM. The data set used for this comparison states the time of sale by month thus the 
STLM estimates would incorporate the information of all the previous months for each 
observation respectively. The unconditional estimates given by the Kalman Filter incorporate 
the information obtained in the previous months as well as the current month in question. On 
the other hand the conditional estimates obtained via the Kalman Filter only incorporate the 
information obtained in the previous months and thus the average of the conditional estimates 
should be approximately the same as the STLM estimate for a given period. A disadvantage 
of using the Kalman Filter estimates to define the coefficients in the SSSEM is that the 
coefficient estimates near the beginning of the sample are unreliable and heavily dependent on 
the initialization values of the Kalman Filter, thus the year 1985 is not included in the 
comparison of the models. As the STLM estimates are obtained via overlapping two year 
windows (due to computational difficulties already stated), the yearly estimates are obtained 
as an average of the values obtained via the two overlapping windows for each year. The 
yearly estimate of the Bedroom coefficient for the two models is given in Table 6.  Figure 10 
illustrates the movement of the SSSEM conditional and unconditional monthly Bedroom 
coefficient estimates and the yearly Bedroom coefficient estimates obtained via the STLM. 
 

 
Table 6: Bedroom Coefficient Comparison 

Bedroom Coefficient 
Year SSSEM(conditional) SSSEM(unconditional) STLM 
1986 0.039 0.036 0.037 
1987 0.054 0.057 0.042 
1988 0.074 0.076 0.051 
1989 0.048 0.049 0.057 
1990 0.092 0.092 0.064 
1991 0.072 0.066 0.062 
1992 0.059 0.061 0.052 
1993 0.040 0.040 0.045 
1994 0.059 0.059 0.050 
1995 0.076 0.077 0.062 
1996 0.089 0.094 0.067 
1997 0.092 0.085 0.061 
1998 0.082 0.090 0.062 
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1999 0.096 0.092 0.069 
2000 0.099 0.097 0.072 
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Figure 10: Bedroom Coefficient over Time 
 
The conditional and unconditional estimates obtained via the Kalman Filter are very similar. 
The estimates obtained via the STLM and the average of the estimates obtained via the 
SSSEM are relatively similar, which confirms the results obtained in Section 2. Figure 10 
illustrates that the time path of the STLM estimate is around the average of the SSSEM 
estimates. The standard errors of the estimates are not presented here as it is unclear how to 
determine the appropriate measure of the standard errors given the overlapping windows 
approach of estimation for the STLM. Although the standard errors for the monthly SSSEM 
coefficients are obtained via the Kalman Filter, as with the overlapping windows approach for 
the STLM, an appropriate measure for the standard error for the average of the coefficients 
each year is also unclear. 
 
The empirical results for the Bathroom coefficient differ more significantly between the two 
models than the Bedroom coefficient. The estimates of the Bathroom coefficient are slightly 
higher for the conditional and unconditional estimates of the SSSEM specification with 
respect to the estimates obtained via the STLM. Table 7 illustrates the average of the monthly 
estimates obtained via the SSSEM for each year and the average of the overlapping windows 
of the STLM for each year. Figure 11 shows the time series of the coefficient estimates for the 
STLM and the SSSEM. Although the time series of the two modeling techniques are not as 
close as those of the Bedroom coefficient, the STLM estimates are still relatively close to the 
average of the SSSEM estimates. 
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Table 7: Bathroom Coefficient Comparison 
 

Bathroom Coefficient 
Year SSSEM(conditional) SSSEM(unconditional) STLM 
1985 0.105 0.104 0.092 
1986 0.139 0.144 0.085 
1987 0.146 0.147 0.077 
1988 0.103 0.113 0.083 
1989 0.159 0.144 0.087 
1990 0.121 0.128 0.087 
1991 0.133 0.139 0.094 
1992 0.147 0.144 0.096 
1993 0.148 0.151 0.098 
1994 0.161 0.159 0.110 
1995 0.187 0.187 0.110 
1996 0.148 0.145 0.098 
1997 0.142 0.150 0.100 
1998 0.171 0.157 0.106 
1999 0.158 0.167 0.109 
2000 0.173 0.175 0.108 
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Figure 11: The Bathroom Coefficient over Time 

 
The estimates of the CarLug coefficient are also quite similar for the two modeling 
specifications. Similarly to the Bathroom coefficient, the average of the unconditional as well 
as the conditional estimates of the SSSEM for each year are higher than the estimates 
obtained via the STLM. These results are illustrated by Table 8. The time path of the 
coefficient estimates is shown via Figure 12. The path of the STLM coefficients over time is 
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approximately at the average of the SSSEM coefficients over time. These results are 
encouraging in light of the analytical findings of Section 2 and they seem confirmed via these 
empirical results.  

 
Table 8: CarLug Coefficient Comparison 

CarLug Coefficient 
Year SSSEM(conditional) SSSEM(unconditional) STLM 
1986 0.033 0.028 0.022 
1987 0.046 0.038 0.019 
1988 0.035 0.045 0.035 
1989 0.052 0.049 0.032 
1990 0.017 0.016 0.022 
1991 0.036 0.051 0.028 
1992 0.040 0.032 0.031 
1993 0.048 0.044 0.024 
1994 0.022 0.023 0.013 
1995 0.002 0.004 0.015 
1996 0.050 0.048 0.023 
1997 0.021 0.023 0.027 
1998 0.038 0.034 0.031 
1999 0.044 0.043 0.030 
2000 0.039 0.037 0.028 
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Figure 12: CarLug Coefficient over Time 

 
Given the SSSEM has time varying coefficients, changes in preferences over time would be 
picked up by this specification as a trend (even if small).  By having estimated the STLM, a 
fixed parameter model, with rolling windows, the coefficients have been allowed to evolve 
over time albeit in a more haphazard fashion than that imposed by the formal transition 
equation of the SSSEM.   
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3.4 Forecasting Accuracy 
 
Attempting to compare the accuracy of prediction for the two models leads to difficulties as 
the best method of comparison is unclear. Due to the different treatment of time by the two 
models they may be compared via the Root Mean Squared Error (RMSE) using the monthly 
coefficients of the SSSEM or averaging the coefficients to obtain an average estimated 
shadow price for each characteristic over the sample period. Here the two models are 
compared on their accuracy of predicting the log of the price of a typical house for each two 
year window for which the STLM was estimated. The prediction may also be compared for 
observations outside the sample however this is outside the scope of this paper. The predicted 
log of the price obtained via each of the models is compared to the price of a typical house in 
that time window. A typical house is given by the median values for each of the 
characteristics each period. During the sample period 1985 to 2000 the median house stays the 
same with each window, the plot is of 607 meters squared and the house has 3 bedrooms, 1 
bathroom and 2 car spaces. Although the typical characteristics of a house do not change 
through time the log of the price for a typical house increases over time as illustrated by Table 
10. Table 10 illustrates the log of the price of a typical house as implied by the data and as 
predicted by the two models. 
 

Table 11: Predicted Log Prices 
 
Time Period  Ln(Price) Data SSSEM conditional SSSEM unconditional STLM 
1986-1987 11.0429 10.9927 10.9940 11.2078 
1987-1988 11.2118 11.1218 11.1398 11.4485 
1988-1989 11.3964 11.3748 11.3918 11.6110 
1989-1990 11.5712 11.5320 11.5443 11.4859 
1990-1991 11.6699 11.6268 11.6371 11.6827 
1991-1992 11.7519 11.7157 11.7199 12.0108 
1992-1993 11.8056 11.7701 11.7706 12.0212 
1993-1994 11.8494 11.8101 11.8103 12.0489 
1994-1995 11.8706 11.8072 11.8085 12.1566 
1995-1996 11.8699 11.8056 11.8066 12.0648 
1996-1997 11.9016 11.8243 11.8264 12.1791 
1997-1998 11.9512 11.8554 11.8589 12.2415 
1998-1999 11.9829 11.8992 11.8801 12.3131 
1999-2000 12.0257 11.9391 11.9428 12.3253 

 
 
The first window from 1985-1986 is excluded from the comparison as the Kalman Filter 
requires a burn-in period and therefore the coefficients obtained for the beginning of the 
sample are not considered. The predictions for the models are kept in the log form rather than 
converted into prices as simply taking the exponential of the log of the predicted price leads to 
biased results.  
 
To obtain the unbiased estimates for the predicted prices of the two models an estimate of the 
variance of each of the coefficients is required. As the STLM is estimated via an overlapping 
windows approach it is unclear how an appropriate measure for the variance of the 
coefficients should be determined. The investigation of variance measures for an overlapping 
windows approach is outside the scope of this paper and therefore the prediction comparison 
is conducted in relation to the log of the price rather than the price. 
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The computed RMSE for each case are presented in Table 12. If the coefficients are estimated 
as the conditional estimates of the Kalman Filter is 0.06349. The RMSE for the SSSEM when 
the coefficients are estimated via the unconditional estimates of the Kalman Filter is 0.06134. 
The unconditional specification of the coefficients is expected to give more accurate results as 
consumers in the real estate market are likely to take the information of the current month into 
account. The RMSE obtained via the STLM specification is 0.2345.  Therefore the STLM 
provides a less accurate prediction for the log of the price than both of the SSSEM 
specifications. 
 

Table 12.  Root Mean Square Comparison 
 

 SSSEM 
(conditional) 

SSSEM 
(unconditional)

STLM 

RMSE 0.06349 0.06134 0.2345 
 
 
 

4. Conclusions 

Increased accuracy and improvements in the reporting and maintenance of data sets 
containing spatial and temporal domains as well as powerful computers have opened the way 
for Spatial-Temporal (ST) models and estimation techniques in many disciplines. ST methods 
have clear advantages over purely spatial or time-series methods as they do not require data to 
be pooled over either domain and thus do not lead a loss of information through aggregation. 
ST modeling has recently been introduced to real estate market analysis although it has been 
popular in other disciplines such us environmental sciences.  
 
The ST real estate models have developed as extensions of existing spatial models in the 
literature.  One of the pioneering models was the Spatial Temporal Linear Model (STLM) 
proposed by Pace et al. (2000) in the International Journal of Forecasting. The filtering of 
spatial and temporal components is handled through a covariance structure with both spatial 
and temporal weight matrices.  The parameters of the model are constant over time and 
estimated through a generalized least squares estimator.   
 
This compares both analytically and empirically the STLM model to a Spatial Errors Model 
(SEM) cast in state-space form, denote by SSSEM.  In the SSSEM the covariance has a time 
varying spatial structure and the parameters are time-varying.  The SSSEM model can be 
estimated through classical likelihood methods or Bayesian methods.  
 
The analytical results show how the time and spatial domain are handled by the STLM and 
SSSEM, and demonstrate that the processes of information assimilation of each of the models 
leads to the result that the averages of the time varying coefficients’ estimates obtained from 
the application of the Kalman filter to the SSSEM are comparable to the fixed coefficient 
estimates obtained via the STLM, although the Kalman smoothed estimates are not.  We also 
show that the SSSEM is better suited to handle large data sets than the STLM.  An illustration 
of the results is provided with a real estate sample for the Brisbane metropolitan area.  The 
number of pair-wise comparisons required to construct the spatial neighbours weight matrices 
in the STLM model makes the estimation of it computationally unfeasible for samples that are 
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larger than 9,000.  This is not a problem for the SSSEM model as such comparisons are only 
required for houses sold within the same time period. The forecasting performance of the two 
models is evaluated through their RMSE.  The SSSEM model provides significantly more 
accurate forecast than the STLM.  
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