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Abstract

This paper considers a moral hazard problem in an in�nite-horizon,
principal-agent framework characterized by limited commitment and
history-dependent reservation utilities. I prove existence and construct
a reduced equivalent representation of the problem that can be addressed
by numerical techniques. In computing the endogenous state space, I use
an innovative algorithm which does not rely on the convexity of the under-
lying set. Further on, I focus on the estimation of the dynamically optimal
compensation for US executives and �nd evidence that in the presence of
positive correlation between stock prices and reservation utilities, the con-
tract provides the CEO with insurance against bad outcomes, which ul-
timately smooths his/her consumption across (initial-history) states. Ex-
erting e¤ort appears to be the predominant strategy for the principal, but
shirking may still be optimal when the agent is rich enough. The opti-
mal wage scheme and the future utility of the CEO tend to grow in both
his/her current utility and in the future realization of the stock price. The
agent�s utility weakly increases in the long run.
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1 Introduction

During the last years, there has been a revived interest in the theory of dynamic
contracting1 . However, although most of the research incorporates some form of
limited commitment/enforcement, little has been done in terms of extending the
notion of commitment per se. In particular, there is no reason to believe that
the outside option is constant across the history of observables. For example, it
is unrealistic to treat the reservation utility of a CEO as �xed regardless of the
situation in his/her �rm, industry, or the economy as a whole. The dependence
could come through many channels- externalities, di¤erent types of agents, a
certain structure of beliefs, but more importantly, it can signi�cantly in�uence
the nature of the relationship and the form of the optimal contract. Moreover,
extending the notion of commitment can bring some important insights into
various contractual problems. For example, in order to address the wide use
of broad-based stock option plans, Oyer (2004) builds a simple 2-period model
where adjusting compensation is costly and employee�s outside opportunities
are correlated with the �rm�s performance.
In this sense, what remains to be done is to generalize the notion of com-

mitment by de�ning the outside options on the history observed in a dynamic
contractual setting.
The current paper considers a moral hazard problem in an in�nitely repeated

principal-agent interaction while allowing the reservation utilities of both par-
ties to vary across the history of observables. More precisely, to keep the model
tractable, the reservation utilities are assumed to depend on some �nite trun-
cation of the publicly observed history. The rest of the model is standard in
the sense that the principal wants to implement some sequence of actions which
stochastically a¤ect a variable of his/her interest, but su¤ers from the fact that
the actions are unobservable. For this purpose, the optimal contract needs to
provide the proper incentives for the agent to exercise the sequence of actions
suggested by the principal. The incentives, however, are restricted by the in-
ability of the parties to commit to a long-term relationship. It is here where the
dynamics of the reservation utilities enters the relationship by reshaping the set
of possible self-enforcing, incentive-compatible contracts.
In order to be able to characterize the optimal contract in such a setting,

I construct a reduced stationary representation of the model in line with the
dynamic insurance literature. The representation bene�ts from Green (1987)-
the notion of temporary incentive compatibility, Spear and Srivastava (1987)-
the recursive formulation of the problem with the agent�s expected discounted
utility taken as the state variable, and Phelan (1995)- the recursive structure
with limited commitment, but is closest to Wang (1997) as far as the recursive
form is concerned. Unlike Wang (1997), however, I formally introduce limited
commitment on both sides and provide a rigorous treatment of its e¤ect on the

1See, for example, Fernandes and Phelan (2000), Ligon, Thomas and Worrall (2000), Wang
(2000), Phelan and Stacchetti (2001), Sleet and Yeltekin (2001), Ligon, Thomas and Worrall
(2002), Ray (2002), Thomas and Worrall (2002), Doepke and Townsend (2004), Jarque (2005).
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structure of the reduced computable version of the model. A parallel research
by Ase¤ (2004) uses a similar general formulation2 , but via a transformation
due to Grossman and Hart (1983) constructs a dual, cost-minimizing recursive
form closer to Phelan (1995) in order to solve for the optimal contract. Such a
procedure, however, exogenously imposes the optimality of a certain action on
every possible contingency.
After existence is proved, the general form of the model is reduced to a more

tractable, recursive form where the state is given by the agent�s (promised)
expected discounted utility. On a di¤erent dimension, the state space includes
the set of truncated initial price histories in order to account for their in�uence3

on the reservation utilities. This recursive formulation does not rely on the
�rst-order approach and is not based on Lagrange multipliers [cf. Marcet and
Marimon, (1998)]. In fact, all I need is continuity of the momentary utilities.
I �rst consider an auxiliary version where the participation of the principal
is not guaranteed. The solution of this problem can be computed through
standard dynamic programming methods once the state space is determined.
Following the approach of Abreu, Pearce and Stacchetti (1990), the state space
is shown to be the �xed point of a set operator and can be obtained through
successive iteration on this operator until convergence. Given the solution of
the auxiliary problem, I resort to a procedure outlined by Rustichini (1998)
in order to solve for the optimal incentive compatible, two-side participation
guaranteed supercontract. This is achieved by severely punishing the principal
for any violation of his/her participation constraint. The procedure allows of
recovering the subspace of agent�s expected discounted utilities supportable by
a self-enforcing incentive-compatible contract.
Regarding the numerical computation, one point deserves special attention.

In computing the endogenous state space we are iterating on sets and therefore
need to represent them e¢ ciently. For the class of in�nitely repeated games
with perfect monitoring, Judd, Yeltekin and Conklin (2003) are able to construct
inner and outer convex polytope approximations based on the convexi�cation of
the equilibrium value set through a public randomization device. The algorithm
I use may be of independent interest since it does not rely on the convexity of
the underlying set. The main idea is to discretize the guess for the equilibrium
set elementwise, extract small open balls around the gridpoints unfeasible with
respect to the (non-updated) guess and use the remaining set, i.e. the guess less
the extracted intervals, as a new guess for the equilibrium set. The procedure
stops if the structure of the representations of two successive guesses coincides4

and the suitably de�ned di¤erence between the representations is less than some
prespeci�ed tolerance level.
The results suggest that with a loose upper bound on wages, the optimal con-

tract can support extremely high values for the expected discounted utility of the

2His benchmark model is a full-commitment one, but he considers limited commitment on
part of the agent as an extension.

3The relationship between price histories and reservation utilities is predetermined since
the reservation utilities are exogenous to the problem.

4Namely, if the representations have the same number of closed sets element by element.
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CEO when the participation of the principal is not guaranteed. However, when
solving for the self-enforcing contract, these values naturally disappear since
they violate principal�s participation constraint. In case of positive correlation
between �rm�s stock prices and agent�s reservation utilities, the minimum utility
the CEO can be promised for initial histories characterized by lower reservation
utility is boosted by higher reservation utilities for other states. This suggests
that the participation constraint of the agent does not bind in states character-
ized by low stock prices. In other words, the optimal contract provides the agent
with some insurance against bad outcomes, which ultimately smooths his/her
consumption across (initial history) states. Exerting e¤ort appears to be the
predominant strategy for the principal, but shirking may still be optimal when
the agent is rich enough. The optimal wage scheme and the future utility of the
agent tend to grow in both current utility and in the future realization of the
stock price. The CEO�s utility weakly increases in the long run. In particular,
agents who start rich tend to keep their utility level while those who start poor
get richer in time.
The rest of the paper is structured as follows. Section 2 presents the general

dynamic model. Section 3 derives the reduced recursive formulation. Section 4
explains the numerical algorithm at a practical level and discusses the results.
Section 5 concludes. Appendix 1 contains all the proofs. Appendix 2 presents
the results.

2 Dynamic model

The model considers a moral hazard problem in an in�nite horizon principal-
agent framework with limited commitment on both sides. Before specifying it
formally, I introduce some notation.
Let Z denote the set of integers and de�ne Z := Z [ f�1g as its two-point

compacti�cation. Let Z++ :=
�
z 2 Z : z > 0

	
and Z+ := Z++ [ f0g denote the

sets of positive and respectively nonnegative integers. Z�� and Z� are de�ned
accordingly. Let yt denote the �rm�s stock price in the end of period t, 8t 2 Z.
Then for 8t; � 2 Z : t � � , de�ne ty� := (yt; yt+1; :::; y� ) as the stream of prices
from period t to period � . For 8t 2 Z��, let ty := ty�1 and for 8� 2 Z+, let
y� := 0y� . The set of possible stock prices is assumed a stationary, �nite subset
of the nonnegative real line, namely 8t 2 Z, yt 2 Y :=

�
y(1);:::;y(N)

	
� R+,

where y = y(1) � y(2) � ::: � y(N�1) � y(N) = y with N 2 Z++n f1g and y < y.
Henceforth, I adopt the convention that for 8T 2 Z+ and an arbitrary set W ,
WT :=

T
�
i=1
W with W 0 := ;. For example, Y T denotes the set of possible price

streams of length T periods.
The timing is as follows. At the beginning of each period � 2 Z+, af-

ter a particular stock-price history �1y��1 has been publicly observed, a con-
tract c�

��1y��1� := �a� ��1y��1� ; w� ��1y��1; Y �� is signed between a risk
4



neutral principal (staying for the �rm�s shareholders)5 and a risk-averse agent
(CEO). The contract speci�es an action a�

��1y��1� to be implemented by
the agent. The action here stays for the level of e¤ort the agent should ex-
ert on the job. To make the analysis tractable, the action is assumed one-
dimensional and the action space is taken compact, time and history invariant.
Formally, a�

��1y��1� 2 A, where A � R compact. Let a = min fAg and
a = max fAg and assume a < a. The contract also speci�es a compensation
scheme w�

��1y��1; Y �, under which the agent will receive a monetary payo¤
w�
��1y��1; y�� � w � R in the end of the period if the �rm�s (end-of-period)

stock price is y� , 8y� 2 Y . After the contract is signed, the agent exercises ac-
tion a�

��1y��1�. Then, y� is observed and the agent receives w� ��1y��1; y��.
At the beginning of period � + 1, contract c�+1 (�1y� ) is signed and so on.
One can interpret the exogenous lower bound for the wage, w, as a minimum

wage, but in order to keep the analysis as general as possible I abstract from
imposing any speci�c restrictions on it.
While the agent�s action is unobservable by the principal, it in�uences the

realization of the stock price, but in a non-deterministic way. For 8� 2 R,
8at

��1yt�1� 2 A1 � At, 8�1yt�1 2 Y1 � Y t, 8t 2 Z+, let
f
�
�jat

��1yt�1� ;�1 yt�1� be the probability that yt equals � after a history
�1yt�1 has been observed and an action sequence at

��1yt�1� has been imple-
mented. Then, starting from any node we can construct the probability of any
future contingency by recursively applying Bayes�rule.
In order to be able to introduce an e¢ ciently computable form of the model,

I assume that f depends only on the action taken in the current period and each
stock price in the admissible set Y is reached with a strictly positive probability.

Assumption 1: For 8at
��1yt�1� 2 A, 8�1yt�1 2 Y t�1, 8t 2 Z+,

f
�
:jat

��1yt�1� ;�1 yt�1� = �
�
:jat

��1yt�1��, with � �yjat ��1yt�1�� > 0,
8y 2 Y , �

�
yjat

��1yt�1�� = 0 otherwise, and
P
y2Y

�
�
yjat

��1yt�1�� = 1.

Moreover, for 8y 2 Y , � (yj:) is continuous on A.

The second part of the assumption is a regularity condition which is trivially
satis�ed if A is �nite.
Since the principal is risk-neutral, without loss of generality his/her (end-of-)

period- utility can be assumed equal to the �rm�s stock price less the agent�s
compensation. He/she discounts the future by a factor �P 2 (0; 1). The agent�s
period utility function is assumed separable in monetary payo¤ and e¤ort. More
speci�cally, after a history y� =

��1y��1; y�� has been observed, the agent�s
(end-of-) period utility is given by �

�
w�
��1y��1; y��� � a� ��1y��1�, where

� : R ! R is assumed twice continuously di¤erentiable with �0 (:) > 0 and
�00 (:) < 0. The agent discounts the future by a factor �A 2 (0; 1).
In the analysis so far, it was implicitly assumed that the agent exerts the

level of e¤ort speci�ed in the contract. However, this is not necessarily so, since

5No con�icts of interest are assumed between the �rm�s shareholders and the principal.

5



if another action brings the agent strictly higher utility, he/she will �nd it prof-
itable to deviate. Therefore, the contract should provide the proper incentives
to the agent in order for him/her to exercise exactly the action recommended
by the principal.
Limited commitment is assumed on both parts in the sense that both the

principal and the agent can commit only to short-term (single-period) contracts.
This assumption is intended to re�ect legal issues on the enforcement of long-
term contracts. However, at the initial period the principal can o¤er a long
term contract (a supercontract) that neither he/she, nor the agent would like
to renege on, and that would provide the necessary incentives for the agent to
exercise the sequence of actions proposed by the principal.
In order to introduce the issue of commitment, we should specify reser-

vation utilities for the agent and the principal. For 8�1y��1 2 Y1 � Y � ,
� 2 Z+, let V

��1y��1�, U ��1y��1� 2 R be the reservation utilities (in ex-
pected discounted terms) of the agent and respectively the principal after a
history �1y��1. Since it is not practical to de�ne reservation utilities on in�-
nite histories, I make the following assumption.

Assumption 2: 9� 2 Z+ : 8� 2 Z+, 8�1y0��1 2 Y1�Y � : ���y0��1 = ��y,
V
��1y0��1� = V ��y 2

�
V ; V

�
� R and U

��1y0��1� = U��y 2
�
U;U

�
� R,

with V
��1y0��1� = V and U

��1y0��1� = U if � = 0.

The assumption says that the reservation utilities are �nite-history depen-
dent, but time independent. Note that the history dependence is truncated to
the prices in last � periods for both the principal and the agent. This is done
for the purpose of simplifying the notation. If we have �V 6= �U , we can take
� := �V _ �U and the analysis will not change.6
Given Assumptions 1 and 2, nothing in the problem being solved by the

principal in period 0 depends on �1y���1, the initial history before the pre-
vious � stock price realizations. Therefore, it would be convenient to restrict
the possible initial histories to the ones contained in the set Y �. Henceforth, I
will refer to a general element of this set as a truncated history. For 8y�� 2
Y � let c��y :=

�
a��y; w��y

�
, where a��y :=

��
at
���yt�1� : yt�1 2 Y t		1

t=0

and w��y := ffwt
����yt�1; yt�� : �yt�1; yt� 2 Y t�1 � Y gg1t=0 are respec-

tively the plan of actions and the sequence of wages de�ned on any contin-
gency given an initial truncated history ��y 2 Y �. Now, for 8��y��1 2
��y � Y � , 8� 2 Z+, 8��y 2 Y �, de�ne V�

�
c��y;

�� y��1
�

:=

=
1P
t=�
�t��A

P
yt2Y

:::
P
y�2Y

�
�
�
wt
���yt��� at ���yt�1�� tY

i=�

�
�
yijai

���yi�1�� and

U�
�
c��y;

�� y��1
�
:=

1P
t=�
�t��P

P
yt2Y

:::
P
y�2Y

�
yt � wt

���yt�� tY
i=�

�
�
yijai

���yi�1��
6The only gain of introducing �V and �U is in the case of �V < �U because then we can

de�ne the operator T on Y �V instead of on Y �V _�U , thus improving the e¢ ciency of the
numerical estimation. However, since all the results are analogous, I prefer working with �.
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as the expected discounted utilities of the agent and respectively the princi-
pal at node ��y��1.
At time 0, after a truncated history ��y 2 Y � has been observed, the prin-

cipal is solving the following problem:

[PP]

U����y := sup
c��y

U0
�
c��y;

�� y
�
s.t.:

at
���yt�1� 2 A, 8��yt�1 2 ��y � Y t, 8t 2 Z+ (1)

wt
���yt� � w, 8��yt 2 ��y � Y t+1, 8t 2 Z+ (2)

V0
�
a��y; w��y;

�� y
�
� V0

�
a0��y; w��y;

�� y
�
,

8a0��y : a
0
t

���yt�1� 2 A, 8��yt�1 2 ��y � Y t, 8t 2 Z+ (3)

V�
�
c��y;

�� y��1
�
� V ��y, 8��y��1 2 ��y � Y � , 8� 2 Z+ (4)

U�
�
c��y;

�� y��1
�
� U��y, 8��y��1 2 ��y � Y � , 8� 2 Z+ (5)

Constraint (1) guarantees that the action plan is admissible. (2) keeps the
wage schedule above its exogenously given lower bound. (3) is a period-0 in-
centive compatibility constraint requiring that the action plan of the principal
should make the agent weakly better o¤ in terms of period-0 expected dis-
counted utility than any other sequence of admissible actions. Constraint (4) is
the participation constraint, which due to the limited commitment on part of
the agent should hold every period. Constraint (5) is required by the fact that
the principal cannot commit to a long-term contract and guarantees his/her
participation.

Let ���y :=
�
c��y : (1)� (5) hold

	
denote the set of constraints given an

initial truncated history ��y.

Assumption 3: 8��y 2 Y �, ���y 6= ;.
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3 Recursive Form

Proposition 1: Let (1), (2) hold after ��y 2 Y � and wt
���yt� � w, 8��yt 2

��y � Y t+1, 8t 2 Z+ for some w 2 R. Then, (3) ,

8��y��1 2�� y � Y � ;8� 2 Z+;

V�
�
a��y; w��y;

�� y��1
�
� V�

�
a0��y; w��y;

�� y��1
�
;8a0��y : a

0
t

���yt�1� 2 A;
8��yt�1 2

���y; y��1�� Y t�� , 8t 2 Z+ : t � � (6)

This proposition shows that incentive compatibility at an initial node ��y is
equivalent to incentive compatibility at all the nodes following ��y. The uniform
upper bound on the wage is introduced in order to guarantee the boundedness
of the discounted expected utility of the agent at every node.

Proposition 2: Let (1), (2) and (5) hold after ��y 2 Y � and wt
���yt� �

w, 8��yt 2 ��y � Y t+1, 8t 2 Z+. Then, (3) ,

8��y��1 2 ��y � Y � , 8� 2 Z+,

V�
�
a��y; w��y;

�� y��1
�
� V�

�
a0��y; w��y;

�� y��1
�
,

8a0��y : a
0
�

��1y��1� 2 A, a0t ��1yt�1� = at ��1yt�1� , 8�1yt�1 2��1y; y��1�� Y t�� , 8t 2 Z++ : t > � (7)

The proposition says that constraint (3) is equivalent to requiring that after
any history �1y��1 2 �1y � Y � , at any date � 2 Z+ there is no pro�table
deviation in the current period which will make the agent strictly better o¤
(in expected utility terms) given that he/she fully complies to the plan in the
future (Green (1987)�s temporary incentive compatibility). The uniform ceiling
on wages serves the same purpose as in Proposition 1.

Proposition 3: Let (1), (2) and (5) hold after some ��y 2 Y �. Then for
8��yt 2 ��y � Y t+1, 8t 2 Z+, w

���yt� � w, where w := 1
�

�
y�w
1��P

� U
�
+ w

with � := min
(y;a)2Y�A

� (yja).

This proposition says that an admissible contract that guarantees the com-
mitment of the principal e¤ectively binds the wage from above. Consequently,
the results of Propositions 1 and 2 apply to such a contract. In particular,
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they are true for any contract in the constrained set ���y of the problem [PP].
Finally, note that w does not depend on the initial truncated history ��y.
Take an arbitrary � 2 Z+ and history ��y��1 2 Y �+� and let�

V IC2P�

���y��1�	 := fV 2 R : 9 (a;w) j(1),(2),(4),(5),(7) hold after a history
��y��1 and V�

�
a;w;�� y��1

�
= V g be the set of admissible values for the ex-

pected discounted utility of the agent signing at date � after a history ��y��1 an
incentive-compatible supercontract that guarantees both his/her participation
and that of the principal (an IC2P contract). For the purposes of estimation, we
introduce another set

�
V ICAP�

���y��1�	 := fV 2 R : 9 (a;w) j(1); (20); (4); (7)
hold after a history ��y��1 and V�

�
a;w;�� y��1

�
= V g, where (20) stays for

wt
���yt� 2 [w;w], 8��yt 2 ��y � Y t+1, 8t 2 Z+ with w de�ned as in Propo-

sition 3. This set gives us the possible discounted utilities of the agent sign-
ing at date � after a history ��y��1 an incentive-compatible contract that
guarantees the participation of the agent, but not that of the principal and
places a ceiling w on the agent�s salary at every node (an ICAP contract).
Note that by Proposition 3 and construction, 8��y��1 2 Y �+� , 8� 2 Z+,�
V IC2P�

���y��1�	 � �V ICAP�

���y��1�	.
For 8V 2

�
V IC2P�

���y��1�	, let �U IC2P�

�
V;�� y��1

�	
:= fU 2 R : 9 (a;w) j

(1); (2); (4); (5); (7) hold after ��y��1, V�
�
a;w;�� y��1

�
= V and

U�
�
a;w;�� y��1

�
= Ug be the set of possible values for the expected dis-

counted utility of the principal signing at node ��y��1 at time � an IC2P
supercontract that would give the agent an initial expected discounted utility
of V . For 8V 2

�
V ICAP�

���y��1�	, let �U ICAP�

�
V;�� y��1

�	
be the corre-

sponding set (de�ned accordingly) in case the principal is signing an ICAP con-
tract instead. For 8V 2

�
V IC2P�

���y��1�	, we have �U IC2P�

�
V;�� y��1

�	
��

U ICAP�

�
V;�� y��1

�	
, while for V 2

�
V ICAP�

���y��1�	 n �V IC2P�

���y��1�	,�
U IC2P�

�
V;�� y��1

�	
is not de�ned.

Proposition 4: For i 2 fIC2P; ICAPg, we have: (a)
�
V i�
���ey��1�	 =�

V i
���y�	, 8��ey��1 2 Y �� ��y, 8� 2 Z+ with

�
V i
���y�	 compact, 8��y 2

Y �; (b) 8V i 2
�
V i�
���ey��1�	, 8��ey��1 2 Y �� ��y, 8� 2 Z+,�

U i�
�
V i;�� ey��1�	 = �U i �V i;�� y�	 compact, 8��y 2 Y �.

Part (a) of the proposition says that the sets of possible expected discounted
utility values for the agent signing an IC2P or ICAP contract are time invariant
and compact. Furthermore, the history dependence of these sets is restricted
only to the previous (as of signing) � stock price realizations. As part (b) indi-
cates, the results also apply to the set of possible expected discounted utilities of
the principal signing an IC2P or ICAP contract guaranteeing a particular initial
utility to the agent. For the sake of consistency, unless explicitly speci�ed, any
of these sets will be regarded as after a truncated history ��y 2 Y � in period 0.

Proposition 5 (Existence of an optimal contract): For 8��y 2 Y �,

9
�
a����y; w

��
��y

�
2 ���y s.t. U����y = U0

�
a����y; w

��
��y;

�� y
�
.
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The proposition establishes the existence of an optimal IC2P supercontract.
However, due to the complexity of the problem, the optimal contract cannot
be computed analytically. Therefore, I resort to numerical methods. First, the
original problem [PP] has to be given a computable representation. In the spirit
of Spear and Srivastava (1987), this is done by constructing a recursive version
of [PP] taking the agent�s expected discounted utility as a state variable. Up to
certain quali�cations, this new formulation of the problem can be addressed by
dynamic programming routines.
Before introducing the recursive form, I establish some useful results regard-

ing the transition to the new state variable. Namely, I show that it does not
a¤ect the optimal solution.
Fix ��y 2 Y �. By Proposition 4 (b) for 8V 2

�
V IC2P

���y�	,�
U IC2P

�
V;�� y

�	
is compact and therefore, we can de�ne U

� �
V;�� y

�
:=

max
�
U IC2P

�
V;�� y

�	
as the maximum utility the principal can get by sign-

ing an IC2P supercontract o¤ering V to the agent. Furthermore, let U���y :=
sup

V 2fV IC2P (��y)g
U�
�
V;�� y

�
.

Proposition 6: For 8��y 2 Y �, U����y = U
�
��y = max

V 2fV IC2P (��y)g
U�
�
V;�� y

�
.

This proposition shows that the optimal solution is not a¤ected by changing
the state variable. Namely, we get the same solution whether the principal
directly maximizes his/her utility given ��y, or �rst �nds the maximum utility
he/she can obtain by guaranteeing the agent certain initial utility and then
maximizes over the resulting set.
Let (USCB (X;Z) ; sup) denote the space of bounded upper semicontinu-

ous (usc) functions from X to Z endowed with the sup metric. Note that�
USCB

��
V ICAP

���y�	 ;R� ; sup� is not a complete metric space. De�ne�
V ICAP

	
:=
�
V ICAP

���y�	��y2Y � as the set of possible initial discounted util-
ities of the agent signing an ICAP contract ordered by initial history.
Since Y � is �nite, this set inherits the properties of

�
V ICAP

���y�	 estab-
lished in Proposition 4 (a). Then, for 8U =

�
U��y

	
��y2Y � with U��y 2�

USCB
��
V ICAP

���y�	 ;R� ; sup�, 8��y 2 Y �, de�ne the operator T as fol-

lows: 8V 2
�
V ICAP

	
, T (U)(V ) :=

n
T��y (U)(V��y)

o
��y2Y �

with

T��y (U)(V��y)
:= max

c��y(V��y)
f
P
[

y2Y
y � w��y

�
V��y; y

�
+

+�PU��+1y;y

�
V+ ��y

�
V��y; y

��
]�
�
yja��y

�
V��y

��
g

s.t.
a��y

�
V��y

�
2 A (8)

w��y

�
V��y; y

�
2 [w;w] , 8y 2 Y (9)

10



X
y2Y

[�
�
w��y

�
V��y; y

��
� a��y

�
V��y

�
+

+�AV+ ��y

�
V��y; y

�
]�
�
yja��y

�
V��y

��
�

�
X
y2Y

[�
�
w��y

�
V��y; y

��
� a0��y

�
V��y

�
+

+�AV+ ��y

�
V��y; y

�
]�
�
yja0��y (V )

�
, 8a0��y

�
V��y

�
2 A (10)

X
y2Y

[�
�
w��y

�
V��y; y

��
� a��y

�
V��y

�
+

+�AV+ ��y

�
V��y; y

�
]�
�
yja��y

�
V��y

��
= V��y (11)

V+ ��y

�
V��y; y

�
2
�
V ICAP

���+1y; y�	 , 8y 2 Y (12)

Here V+ ��y (V; y) denotes the agent�s expected discounted utility tomorrow
given his/her expected discounted utility today (after a history ��y) is V and
the stock price realization is y.
The use ofmax instead of sup in the de�nition of T is justi�ed by the fact that

we are maximizing an usc function over a compact set. Constraints (8), (9), and
(10) are the stationary versions of (1), (20), and (7) respectively. (11) is a promise
keeping constraint7 , which guarantees the agent an expected discounted utility
of V��y today. (12) is a consistency constraint requiring that the discounted
expected utility that the agent will get next period can be supported by an
ICAP supercontract. Note that (12) implies that V+ ��y (V; y) � V ��+1y;y,
8y 2 Y .
For 8��y 2 Y � and 8V��y 2

�
V ICAP

���y�	, we have that�
U ICAP

�
V��y;

�� y
�	

is compact by Proposition 4(b). Then, we can de�ne

U
ICAP� �

V��y;
�� y

�
:= max

�
U ICAP

�
V��y;

�� y
�	
as the maximum utility the

principal can get by signing an ICAP supercontract o¤ering V��y to the agent.

For 8V 2
�
V ICAP

	
, let U

ICAP�
(V ) =

n
U

ICAP� �
V��y;

�� y
�o

��y2Y �
be the vec-

tor of these maximum utilities ordered by initial history. Next, I will show that
U

ICAP�
:
�
V ICAP

	
! RN� is the unique �xed point of the operator T and can

obtained as the limit of successively iterating on T . I start with a proposition
that establishes some useful properties of U

ICAP�
.

7 It is referred to as a re-generation constraint in Spear and Srivastava (1987).
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Proposition 7: 8��y 2 Y �, U
ICAP� �

:;�� y
�
is usc and bounded on�

V ICAP
���y�	.

Note that these properties can directly be translated to U
ICAP�

, say with
the sup metric over Y �.

Proposition 8: T
�
U

ICAP�
�
= U

ICAP�
.

The proposition says that U
ICAP�

is a �xed point of the operator T .
For the purposes of the next proposition, I introduce some additional nota-

tion. Let B (X;Z) denote the space of bounded functions from X to Z endowed
with the sup metric. For 8U 0; U 00 2��
USCB

��
V ICAP

���y�	 ;R� ; sup�	��y2Y � , de�ne � (U 0; U 00) :=

= sup
��y2Y �

���y (U
0; U 00), where ���y (U

0; U 00) :=

= sup
V��y2fV ICAP (��y)g

���U 0��y �V��y�� U 00��y �V��y����, 8��y 2 Y �. Note that both
suprema in the above de�nition are achieved.

Proposition 9: (a) T maps
��
USCB

��
V ICAP

���y�	 ;R�	��y2Y � ; �
�

into itself; (b) T is a contraction mapping with modulus �P in terms of the

metric �; (c) Let eU 2
��
B
��
V ICAP

���y�	 ;R�	��y2Y � ; �
�
: T

�eU� = eU .
Then, eU = U

ICAP�
; (d) 8U 2

��
USCB

��
V ICAP

���y�	 ;R�	��y2Y � ; �
�
,

�
�
Tn (U) ; U

ICAP�
�

!
n!1

0, where Tn (U) := T (T (:::T| {z }
n times

(U)) for 8n 2 Z++

with T 0 (U) := U .

This proposition shows that the �xed point of T is unique and can be ob-
tained as a limit of successive iterations on T . Consequently, we can use stan-
dard dynamic programming techniques in order to solve for the optimal ICAP
contract.
However, what we are ultimately interested in is solving for the optimal

IC2P contract. For this purpose, I resort again to dynamic programming using
a method outlined by Rustichini (1998).
First, I will introduce some notation. For 8��y 2 Y � and V��y 2�

V ICAP
���y�	, let �R �V��y; U;�� y� := fc��y

�
V��y

�
: (8) � (12) hold af-

ter ��y and U��+1y;y

�
V+ ��y

�
V��y; y

��
� U��+1y;y, 8y 2 Y g for some func-

tion U :
�
V ICAP

	
! (R [ f�1g)�N . Additionally, let �R

�
V��y; U;

�� y
�
:=

�R
�
V��y; U;

�� y
�
if U��y

�
V��y

�
� U��y and �R

�
V��y; U;

�� y
�
:= ; otherwise.

Denote by USCBA
��
V ICAP

���y�	 ;R [ f�1g� the space of usc, bounded
from above functions from X to Z. Then, for 8U =

�
U��y

	
��y2Y �

with U��y 2 USCBA
��
V ICAP

���y�	 ;R [ f�1g�, 8��y 2 Y �, de�ne

12



the operator T as follows: 8V 2
�
V ICAP

	
, T (U)(V ) :=n

T��y (U)(V��y)

o
��y2Y �

where T��y (U)(V��y)
:= �1 if �R

�
V��y; U;

�� y
�
=

;, and T��y (U)(V��y)
:= max

c��y(V��y)2
�R(V��y;U;��y)

f
P
y2Y

[y � w��y

�
V��y; y

�
+

+�PU��+1y;y

�
V+ ��y

�
V��y; y

��
]�
�
yja��y

�
V��y

��
g otherwise.

This operator encompasses the lower bounds on the utility of the principal
in the form of additional constraints. The only di¤erence with T is that in
case U is lower than the reservation utility of the principal today or at any
possible contingency tomorrow, T becomes �1. The idea is that any violation
of the constraints in this stationary framework is punished severely making the
contract in question non-optimal. What remains to be shown is that iterating
on this operator will indeed lead us to the optimal dynamic contract.

Proposition 10: T maps
�
USCBA

�
fV ICAP

���y�g;R [ f�1g�	��y2Y �

into itself.

For 8V 2
�
V ICAP

	
, let D0 (V ) := U ICAP

�
(V ) and Di+1 (V ) := T (Di),

8i 2 Z+. Note that by Proposition 10 and the fact that �R
�
V��y; U;

�� y
�
is com-

pact if non-empty for 8V��y 2
�
V ICAP

���y�	, 8U 2�
USCBA

�
fV ICAP

���ey�g;R [ f�1g�	��ey2Y � , 8��y 2 Y � (trivial), Di is well
de�ned on V ICAP for 8i 2 Z+.

Proposition 11: (a) fDigi2Z+ is a weakly decreasing sequence and

9D1 2
�
USCBA

�
fV ICAP

���y�g;R [ f�1g�	��y2Y � : Di
�
V��y;

�� y
�
!
i!1

D1
�
V��y;

�� y
�
, 8V��y 2

�
V ICAP

���y�	, 8��y 2 Y �; (b) T (D1) = D1; and
(c) if 9D0 2

�
USCBA

�
fV ICAP

���y�g;R [ f�1g�	��y2Y � : T (D
0) = D0,

then D0 � D1.

This proposition says that if we start iterating on the operator T taking
U ICAP

�
as an initial guess, we will ultimately converge (pointwise) to D1, the

largest �xed point of T . Next, I establish the relationship between U� and D1.
In the subsequent analysis it will be useful to extend U� on

fV ICAP g. For 8V 2 fV ICAP g, let bU� (V ) := nbU� �V��y;�� y�o��y2Y �
withbU� �V��y;�� y� = U�

�
V��y;

�� y
�

if V��y 2 fV IC2P
���y�g withbU� �V��y;�� y� := �1 otherwise.

Proposition 12: T
�bU�� = bU�.

This proposition establishes that the extension of U� on
fV ICAP

���y�g is a �xed point of T . What remains to be shown is how to
recover U� from D1. The next proposition gives the answer.
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Proposition 13: For 8V 2
�
V ICAP

	
, bU� (V ) = D1 (V ).

The proposition provides a straight-forward method of solving for the opti-
mal IC2P supercontract. After we have found the optimal ICAP contract we
take it as an initial guess and start iterating on the operator T until conver-
gence is reached. Note that convergence here is pointwise and is meant to be
on R [ f�1g. After we have obtained the limit function D1, we can recover
the set of possible values for the expected discounted utility of the agent signing
an IC2P contract by taking the subset of the domain of D1 on which the limit
function takes �nite values. More precisely, for 8��y 2 Y � we can restrict our-
selves only to values of D1

�
:;�� y

�
above U��y. Formally, fV IC2P

���y�g :=�
V 2 fV ICAP

���y�g : D1 �V;�� y� � U��y

	
. Then, for 8V 2 fV IC2P

���y�g,
we have U�

�
V ;�� y

�
= D1

�
V;�� y

�
.

However, note that the state space of the recursive problem constructed for
computing the optimal ICAP contract, fV ICAP g, is endogenous. Nevertheless,
it is the largest �xed point of a set operator and can be obtained through
successive iterations in a procedure introduced by Abreu, Pearce and Stacchetti
(1990).
Choose some bV 2 R : bV � max

��y2Y �

�
max

�
V ICAP

���y�		, where the right
side of the inequality is well de�ned given

�
V ICAP

���y�	 compact, 8��y 2
Y � and Y � �nite. Note that given Assumption 3,

h
V ��y;

bV i 6= ;; 8��y 2
Y �. Then, for 8W =

�
W��y

	
��y2Y � : W��y 2 R, 8��y 2 Y � let B (W ) :=�

B��y (W )
	
��y2Y �

with B��y (W ) :={V��y 2
h
V

��y
; bV i : 9c��y �V��y� : (8)-

(11) and (120) hold}, where (120) is de�ned as V+ ��y

�
V��y; y

�
2 W��+1y;y

\h
V

��+1y;y
;+1

�
;8y 2 Y .

Proposition 14: (a) B
��
V ICAP

	�
=
�
V ICAP

	
; and (b) if 9W � RN�

:

B (W ) =W , then W �
�
V ICAP

	
.

This proposition establishes that the set of agent�s expected discounted util-
ities supportable by an ICAP supercontract is the largest �xed point of B.

Proposition 15: Let W0 compact :
�
V ICAP

	
� W0 � RN�

and
B (W0) � W0. De�ne Wi+1 := B (Wi) for 8i 2 Z+. Then, Wi+1 � Wi,
8i 2 Z+ and W1 := lim

i!1
Wi =

�
V ICAP

	
.

The proposition says that if we start iterating on B taking as an initial guess
some compact set W0 that contains both B (W0) and

�
V ICAP

	
, we will ulti-

mately converge to the largest �xed point of the operator,
�
V ICAP

	
. This is suf-

�cient for obtaining
�
V ICAP

	
since we can always take W0 =

�
W��y

	
��y2Y � :h

V ��y;
bV i � W��y � R with W��y compact, 8��y 2 Y �. However, an even

more computationally e¢ cient result exists.
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Let us modify the operator B as follows. For 8W =
�
W��y

	
��y2Y � :

W��y 2 R, 8��y 2 Y � let eB (W ) := n eB��y (W )
o
��y2Y �

with eB��y (W ) :=

fV��y 2 W��y : 9c��y
�
V��y

�
: (8)-(11) and (1200) holdg, where (1200) is de�ned

as V+ ��y

�
V��y; y

�
2 W��+1y;y

. Note that the operator eB does not require
that the agent should commit to the contract. Namely, we do not impose a
constraint keeping the continuation values for the utility of the agent above
the lower bound given by the reservation utility. From a computational point of
view, we are increasing the e¢ ciency since we are relaxing the set of constraints.

Proposition 16: Take fW0 :=
nfW0

���y�o
��y2Y �

with fW0

���y� =h
V ��y;

bV i, 8��y 2 Y � and let fWi+1 := eB �fWi

�
for 8i 2 Z+. Then, fWi+1 �fWi, 8i 2 Z+ and fW1 := lim

i!1
fWi =

�
V ICAP

	
.

This proposition outlines a practical way of obtaining
�
V ICAP

	
. Namely,

we start with the set
nh
V ��y;

bV io
��y2Y �

and iterate on the set operator eB until
convergence in a properly de�ned sense is attained. Note that we can always
take bV = �(w)�a

1��A
.

4 Computation and Results

The computation of the model starts with solving for
�
V ICAP

	
, the set of

agent�s expected discounted utilities supportable by an ICAP contract. While
Proposition 16 gives the theoretical background for the estimation of

�
V ICAP

	
,

some caveats remain. In particular, eB is a set operator and in order to apply
the iterative procedure in practice we need an e¢ cient representation of the

sequence of sets
nfWi

o
i2Z+

. For the class of in�nitely repeated games with per-

fect monitoring, Judd, Yeltekin and Conklin (2003) are able to construct inner
and outer convex polytope approximations based on the convexi�cation of the
equilibrium value set through a public randomization device. Here, I follow a
more general approach which does not rely on assuming that

�
V ICAP

	
is con-

vex or convexifying it by introducing public randomization.8 The main idea is
to discretize the elements of the initial guess fW0 and start extracting small open
intervals, the midpoints of which are unfeasible with respect to fW0. The extrac-
tion is done elementwise without updating the previous elements. In particular,

8Such a general approach is particularly useful in addressing extensions as for example
estimating the endogenous state space of agent�s expected discounted utilities supportable by
an ICAP stock option contract, because of the non-convexities inherent to the stock option
contract.
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I start from the discretization of the �rst9 element of fW0, �nd the points that
cannot be supported by a one-period ICAP contract with a continuation utility
pro�le contained in fW0, i.e. the points of the discretization which are not ineB1 �fW0

�
, and extract small open balls around these points. Next, I �nd the

gridpoints in the second element of fW0 which are unfeasible with respect to fW0,
extract their small open neighborhoods and proceed in a similar fashion until
I cover all the elements of fW0. The remaining set, i.e. fW0 less the extracted
intervals, becomes fW1, our new guess for

�
V ICAP

	
. Given that fW0 is a vector

of N� closed intervals in R, each of the N� elements of fW1 will be a �nite union
of closed intervals in R. In order to increase e¢ ciency, intervals with length
less than some prespeci�ed level are reduced to their midpoints. The procedure
stops if for each element of fWi the number of closed intervals representing it
equals the respective number for the same10 element in fWi�1 and, in addition,
the representation of fWi di¤ers from the representation of fWi�1 by less than
some prespeci�ed tolerance level. In order to apply this stopping criterion, one
still needs to construct a measure for the di¤erence between representations.
For this purpose, I �nd the di¤erence in absolute terms between each endpoint
(minimum or maximum point) of each interval of each element of fWi and fWi�1
respectively and take the maximum one to be the di¤erence between the repre-
sentations of fWi and fWi�1. This di¤erence is well de�ned given that the two
representations share the same structure, which is actually the �rst condition
of the stopping criterion.
Once

�
V ICAP

	
is obtained, it is elementwise discretized and used as a state

space in the dynamic program for obtaining U
ICAP�

as outlined in Proposition 9.
At each iteration, the guess for U

ICAP�
being de�ned only on the discretization

needs to be interpolated over the state space. Interpolation is also required in
the subsequent iterative procedure which uses U

ICAP�
as an initial guess for bU�,

the extension of U� on
�
V ICAP

	
.

Table 1 in Appendix 2 contains
�
V ICAP

	
, the state space of the optimal

ICAP contract. The results are obtained by parameterizing the model in line
with the calibration of Ase¤ and Santos (2005). Namely, the set of possi-
ble stock prices Y =

�
y(1); y(2); y(3)

	
= f0.55, 1.125, 1.7g, the action space

A = fa; ag = f0.1253, 0.1469g, the conditional probabilities �
�
y(1)ja

�
= 0.1508,

�
�
y(2)ja

�
= 0.8121, �

�
y(3)ja

�
= 0.0371, �

�
y(1)ja

�
= 0.1268, �

�
y(2)ja

�
= 0.8082,

�
�
y(3)ja

�
= 0.065.11 I �x w = 0 and equalize the discount factors for the

agent and the principal �A = �P = 0.96. The period utility with no e¤ort,
� (:) =

p
(:), is as in Ase¤ (2004). Furthermore, I consider three di¤erent cases.

9 I endow the set of possible initial histories Y � with the lexicographic order and order the
elements of fW0 accordingly.
10Here, �same� refers to the index of the element, i.e. to the initial history to which it

corresponds.
11Ase¤ and Santos (2005) actually consider two conditional distributions over an interval of

possible stock option prices [0.55, 1.7]. In this numerical experiment, I concentrate the mass
of each distribution on 3 points of this interval: the minimum, middle, and maximum point.

16



Case 1 follows the theoretical analysis in Section 2 to derive the uniform upper
bound for the wage w given the minimum reservation utility of the principal U .
Cases 2 and 3 still honor the upper bound for the wage w, but impose additional
restrictions on the agent�s period consumption.12 Case 2 bounds the wage by y
at each contingency. It implicitly allows the agent to borrow up to y�y units of
consumption every period given a current stock price realization y. Case 3 im-
plicitly prevents the agent from borrowing. At each possible contingency, he/she
can consume no more than the current stock price realization. For case 1, I take
the upper bound for the initial guess bV = �(w)�a

1��A
, where w is derived for U = 0.

I analyze the case of � = 1, which encompasses � = 0 as a subcase. Then, I have
to deal with N� = 3 (initial history) states. I use the natural notation y(i) for
the state with initial history y(i), i 2 f1; 2; 3g. I consider three possible values
for the reservation utility of the agent: L= �(w)�a

1��A
= -3.6725, M = 0, H = -L.

Then, I analyze the more interesting case of nonnegative correlation between
initial histories and agent�s reservation utilities. This limits the number of pos-
sible combinations of reservation utility values across initial histories to 10. For
example, LMH, which stays for V

�
y(1)

�
= L, V

�
y(2)

�
= M, V

�
y(3)

�
= H, is

allowed while LHM is not. Note that KKK is equivalent to the case of � = 0 and
V =K, where K2{L,M,H}. Each cell of Table 1, contains

�
V ICAP

	
for a partic-

ular combination of reservation utility values (table rows) and a particular case
(table columns). In each cell, the left subcolumn corresponds to the intervals�
minimum points and the right - to the maximum points, while each subrow
corresponds to a particular initial history. For example, for LMH, (case) 1,�
V ICAP

�
y(1)

�	
= [0.8275, 843.0178],

�
V ICAP

�
y(2)

�	
= [0.8200, 843.0178],�

V ICAP
�
y(3)

�	
= [3.6725, 843.0178].

The results suggest that for 8i 2 f1; 2; 3g,
�
V ICAP

�
y(i)
�	
is convex from

where come the single intervals in Table 1. However, this does not automatically
translate to the state space of the stock option contract, which is inherently
nonconvex. Note that at least for cases 1 and 2 the upper bound of

�
V ICAP

	
remains constant across initial histories and reservation utility combinations. In
fact, it equals the theoretical bound given the case: �(w)�a1��A

for case 1 and �(y)�a
1��A

for case 2. This means that wages can be high enough to support high expected
discounted utilities for the agent. Note, however, that

�
V IC2P

	
�
�
V ICAP

	
and we lose high utility values in solving for U� as Figure 2 in Appendix 2
indicates. The reason is that the value function is decreasing in the upper
region of

�
V ICAP

	
, which results in violations of the principal�s participation

constraint for high utility values of the agent.
Figure 1 in Appendix 2 plots the value function of the auxiliary problem

U ICAP
�
(V ; :) over the endogenous state space

�
V ICAP (:)

	
for LMH, case 1.

The left panel corresponds to an initial history y(1), the middle - to y(2), and
the right - to y(3). While the value function may appear identical across initial
histories, this is not true numerically. The illusion comes from the large scale
of the graph necessitated by the extensive size of

�
V ICAP (:)

	
and the very low

12Cf. Wang (1997).

17



values which U ICAP
�
(V ; :) takes for V high enough. For this purpose, Figure 2

plots U ICAP
�
(V ; :) over a small region of

�
V ICAP (:)

	
containing all the values

of
�
V IC2P (:)

	
. The big di¤erence actually comes from the variation in the

agent�s minimum utility supportable by an ICAP contract. Namely, the higher
reservation utility of the agent for initial history y(3) cuts the maximum utility
the principal can get by signing the contract. The graph also suggests that
the value function is concave and monotonically decreasing. However, it is not
easy to generalize these properties. For example, Figure 3 plots U ICAP

�
(V ) for

LLL, case 3. In this particular case, U ICAP
�
(V ) which actually coincides with

U� (V ) fails to be monotonic.
Figure 2 also plots U� (V; :) over

�
V IC2P (:)

	
. As expected, the maximum

utility the principal can get by signing an ICAP contract exceeds the one re-
lated to the IC2P contract. Moreover, since the value function in the auxiliary
problem is decreasing on most of the domain, the subspace of agent�s expected
discounted utilities supportable by an IC2P contract is recovered by shrinking�
V ICAP

	
from the right.

Regarding the characteristics of the optimal contract, the recommended ac-
tion is predominantly the high-e¤ort one. However, especially when the initial
history is y(3), the low-e¤ort action appears to be optimal in some utility re-
gions. A possible explanation is that the agent is so rich (remember that agent�s
reservation utility is higher at y(3)) that the principal �nds motivating him/her
to exert e¤ort suboptimal. Figure 4 illustrates the relationship for initial his-
tory y1, LMH, case 3. There, shirking is optimal for su¢ ciently high current
utility values, i.e. when the agent is rich enough. In general, the agent�s utility
tomorrow increases in the end-of-period stock price realization (see Figure 8
for an illustration for initial history y(1), LMH, case 3). The trend is not so
clearly manifested if the initial history is y(3), i.e. if yesterday we observed the
highest possible price. If we keep the end-of-period stock price realization �xed,
tomorrow�s utility increases with the utility today (see, for example, Figure 7).
Once again, the trend is least pronounced for initial history y(3). As regards
the wage, it increases in current utility and demonstrates a slight upper trend
in the end-of-period stock prices (see Figures 5 and 6 respectively).
An interesting observation is that the minimum utility supportable by an

ICAP/IC2P contract for initial histories characterized by lower reservation util-
ity is boosted by higher reservation utilities for other states. This suggest that in
the presence of positive correlation between stock prices and reservation utilities,
the participation constraint of the agent does not bind in states characterized
by low stock prices. In other words, the ICAP/IC2P contract provides the agent
with some insurance against bad outcomes, which ultimately smooths his/her
consumption across (initial history) states. Finally, note that if the reservation
utility remains the same across some, but not all of the truncated initial histo-
ries,

�
V ICAP (:)

	
is identical for the initial histories with the same reservation

utility. While this seems obvious for � � 1, longer history dependence will po-
tentially break the relation since the set of possible tomorrow�s histories will
depend on the history today.
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Table 2 in Appendix 2 shows the e¤ect of changing the value of the minimum
reservation utility of the principal for LLL, case 1. Theoretically, we have that
increasing U decreases w, which in turn causes bV to fall. Since the analysis
so far suggests that the theoretical upper bounds for agent�s utility can be
supported by an ICAP contract, the only e¤ect of changing U comes from the
resulting change in the theoretical bound. Moreover, since the IC2P contract
cannot support agent�s utilities in the upper region of

�
V ICAP (:)

	
, the optimal

self-enforcing contract is not a¤ected.
Figure 9 in Appendix 2 illustrates the development in time of the expected

discounted utility of the agent under the optimal contract given an initial his-
tory y(1), LMH, case 3. Each curve on the graph starts from a point V0 2�
V ICAP

�
y(1)

�	
and represents a �typical�13 path V 100

�
a�y(1) ; w

�
y(1)
; y(1)

�
. The

results suggest that in the long run the agent does not get poorer in utility
terms. In particular, CEOs who start rich tend to keep their utility level while
those who start poor get richer in time.

13Each depicted path is taken to be the mean of 100 independently generated paths which
are constructed following the transition and the policies of the optimal contract given the
initial condition

�
y(1); V0

�
.

19



5 Conclusion

This paper builds a framework for analyzing dynamic moral hazard problems
characterized by limited commitment and history-dependent reservation utili-
ties. I parameterize the model and compute the optimal contract under di¤erent
structural arrangements. I �nd evidence that in the presence of positive corre-
lation between stock prices and reservation utilities, the contract provides the
agent with insurance against bad outcomes, which ultimately smooths his/her
consumption across (initial history) states. Exerting e¤ort appears to be the
predominant strategy for the principal, but shirking may still be optimal when
the agent is rich enough. The optimal wage scheme and the future utility of the
agent tend to grow in both his/her current utility and in the future realization
of the stock price. The agent�s utility weakly increases in the long run.
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APPENDIX 1

Proof of Proposition 1: It is trivial to show (6))(3). Just take � = 0. In
the other direction, let (3) hold, but assume that (6) is not satis�ed, i.e. 9� 2 Z+
and ey��1 2 Y � s.t. 9a0��y : a0t ���yt�1� 2 A, 8��yt�1 2 ���y; ey��1� � Y t�� ,
8t 2 Z+ : t � � and V�

�
a0��y; w��y;

�� ey��1� > V� �a��y; w��y;
�� ey��1�. By As-

sumption 1, for 8� 2 Z+, 8��y��1 2 ��y � Y � , we have that V�
�
w;ea; y��1�=

=
1P
t=�
�A

t�� P
yt2Y

:::
P
y�2Y

�
�
�
wt
���yt��� eat ���yt�1�� tY

i=�

�
�
yijeai ���yi�1�� does

not depend on
�eat ���yt�1� : ��yt�1 2 ��y � Y t�1

	��1
t=0

. Let a00��y :

a00t
���yt�1� = a0t

���yt�1�, 8��yt�1 2 ���y; ey��1� � Y t, 8t 2 Z+ : t � � with

a00t
���yt�1� = at

���yt�1� elsewhere. We have V�
�
a00��y; w��y;

�� ey��1� =

V�

�
a0��y; w��y;

�� ey��1�. Using the boundedness of � (:) and �(:) (given (1),
(2) and w (:) � w at every node), we obtain:

V0

�
a00��y; w��y;

�� y
�
=

=
��1P
t=0
�tA

P
yt2Y

:::
P
y02Y

�
�
�
wt
���yt��� a00t ���yt�1�� tY

i=0

�
�
yija00i

���yi�1��+
+��A

P
yt�12Y

:::
P
y02Y

V�

�
a00��y; w��y;

�� y��1
� t�1Y
i=0

�
�
yija00i

���yi�1��
> V0

�
a��y; w��y;

�� y
�
; (A 1)

where the inequality follows from the construction of a00��y,

V�

�
a0��y; w��y;

�� ey��1� > V�
�
a��y; w��y;

�� ey��1� and � > 0 by Assumption

1. Given that a00��y is admissible after
��y by construction, (A 1) contradicts

(3).�

Proof of Proposition 2: In order to show that (3) implies (7), just
note that by Proposition 1. (3))(6), and that (6))(7). In the other di-
rection, assume (7) holds at every node, but 9 an admissible plan a0�1y :
V0

�
a0��y; w��y;

�� y
�
> V0

�
a0��y; w��y;

�� y
�
:We have V0

�
a0�1y; w�1y; y

�1
�
=

=
TP
t=0
�tA

P
yt2Y

:::
P
[

y02Y
�
�
wt
���yt�� � a0t

���yt�1�] tY
i=0

�
�
yija0i

���yi�1�� +

+ �T+1A

P
yT2Y

:::
P
y02Y

VT+1

�
a0�1y; w�1y; y

T
� TY
i=0

�
�
yija0i

���yi�1��. The second
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term on the right-hand side can be made arbitrarily small by choosing T big
enough (given the assumptions on �A, �, A; (1), (2) and w (:) � w at every
node). Therefore, 9T 2 Z+ and an admissible plan a00��y : a

00
t

���yt�1� =
a0t
���yt�1�, 8��yt�1 2 ��y � Y t, 8t 2 Z+ : t � T , a00t

���yt�1� = at ���yt�1�,
8��yt�1 2 ��y � Y t, 8t 2 Z++ : t > T and V0

�
a00��y; w��y;

�� y
�
>

V0
�
a��y; w��y;

�� y
�
Then, take � 2 Z+ : � � T s.t. 9��y��1 2 ��y � Y � :

a00�
���y��1� 6= a�

���y��1� and @� 0 2 Z++ : � < � 0 � T : a00� 0
�
��y�

0�1
�
6=

a� 0
�
��y�

0�1
�
for some ��y�

0�1 2 ��y � Y � 0 . If we de�ne an admissible plan
a���y : a

�
t

���yt�1� = a00t
���yt�1�, 8��yt�1 2 ��y � Y t, 8t 2 Z+ n f�g, and

a��
���y��1� = a� ���y��1�, 8��y��1 2 ��y�Y � , by (7) at 8��y��1 2 ��y�Y � ,

we have that V�
�
a���y; w��y;

�� y��1
�
> V�

�
a00��y; w��y;

�� y��1
�
, 8��y��1 2

��y � Y � from where V0
�
a���y; w��y;

�� y
�
> V0

�
a00��y; w��y;

�� y
�
. Proceeding

in this way we can eliminate all the deviations (note that � 2 Z+ : � � T ) to

get that V0
�
a��y; w��y;

�� y
�
> V0

�
a00��y; w��y;

�� y
�
, i.e. a contradiction.�

Proof of Proposition 3: Fix � 2 Z+ and ��y��1 2 ��y � Y � . We have
y�w
1��P

� U�
�
a;w;�� y��1

�
� U , where the �rst inequality follows from (1),

(2) and the properties of A; Y; �, �P and the second - from (5). Therefore,
U�
�
a;w;�� y��1

�
is bounded. Since �P 2 (0; 1) and yt 2�

y; y
�
, where y, y 2 R+ we have that bY��y��1 :=

1P
t=�
�t��P

P
yt2Y

:::
P
y�2Y

yt

tY
i=�

�
�
yijai

���yi�1�� 2
h

y

1��P
; y
1��P

i
. Then,

cW �
a;w;�� y��1

�
:=

1P
t=�
�t��P

P
yt2Y

:::
P
y�2Y

wt
���yt� tY

i=�

�
�
yijai

���yi�1�� 2h
w

1��P
; y
1��P

� U
i
. Choose an arbitrary node ��y0� 2 ��y��1 � Y . Let�s

�x a for a moment. Since cW �
a; :;�� y��1

�
is strictly increasing in wt

���yt�,
8��yt 2

���y; y��1� � Y t��+1, 8t 2 Z+ : t � � and bounded from above by
y

1��P
� U , we can �nd w

���y0�� := sup
(w;a):(1);(2);(5) hold after ��y

�
wt
���y0��	 by

solvingcW �
a;wH ;

�� y��1
�
= y

1��P
�U for wH

���y0��, where wH : wH ���yt� =
w, 8��yt 2

����y; y��1�� Y t��+1	 n ���y0�	, 8t 2 Z+ : t � � . Then,
we have w

1��P
+
�
w
���y0��� w�� �y0� ja� ���y��1�� = y

1��P
� U , from where

w
���y0�� = 1

�(y0� ja� (��y��1))

�
y�w
1��P

� U
�
+ w. Note that

�
y�w
1��P

� U
�
is non-

negative by Assumption 3. Since 8y 2 Y; � (yj:) is continuous in A , compact,
we have that 8y 2 Y , 9eay 2 A : � (y) := min

ay2A
� (yjay) = � (yjeay). More-

over, Y �nite, therefore 9ey 2 Y : � := min
y2Y

� (y) = � (ey). Then, we have

� = � (eyjeaey) > 0, where the inequality follows from Assumption 1. By con-
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struction, �
�
y0� ja�

���y��1�� � �, therefore w
���y0�� � 1

�

�
y�w
1��P

� U
�
+ w.

Since ��y��1 was taken randomly, we are done.�

For 8��y 2 Y �, let 
��y := f(a;w) : (1) and (20) hold after ��yg.

Proof of Proposition 4: (a) Fix ��y 2 Y �. Take � 0; � 00 2 Z+ : � 0 � � 00

and arbitrary ��y0�
0�1 2 Y �

0� ��y and ��y00�
00�1 2 Y �

00� ��y. Take an

arbitrary V 0 2
n
V IC2P� 0

�
��y0�

0�1
�o
. Then 9 a contract c0 = (a0; w0) s.t.

(1),(2),(4),(5),(7) hold after ��y0�
0�1 and V� 0

�
c0;�� y0�

0�1
�
= V 0. De�ne c00 =

(a00; w00) s.t. for 8��byt 2 ��y00�
00�1� Y t�� 00+1, 8t 2 Z+ : t � � 00, a00t

���byt�1� :=
a0� 0+t�� 00

�
��y0�

0�1+t�� 00
�
, w00t

���byt� := w0� 0+t�� 00
�
��y0�

0+t�� 00
�
, where

��y0�
0+t�� 00 2 ��y�

0�1 � Y t�� 00+1 : y0� 0+i = by� 00+i, 8i 2 Z+ : i � t � � 00. By
Assumption 1 and Proposition 3, V� 00

�
c00;�� y�

00�1
�

� V 0 =

= � lim
T!1

�T��
0

A

� 00�� 0�1P
n=�

P
yT�n2Y

:::
P

y�02Y
[�
�
wt
���yt�� �

�a0t
���yt�1�]T�nY

i=� 0

�
�
yija0i

�
yi�1

��
= 0 and it is straightforward to show that

(1),(2),(4),(5),(7) hold after ��y�
00�1 given the de�nition of c00. Therefore, we

have V 0 2
n
V IC2P� 00

�
��y�

00�1
�o
. The same argument holds in the other direc-

tion, so we have proven that
n
V IC2P� 00

�
��y�

0�1
�o

=
n
V IC2P� 00

�
��y�

00�1
�o
.

Fix ��y 2 Y �.
�
V IC2P

���y�	 is bounded given (1), (2) and (5) hold.
Regarding the compactness of

�
V IC2P

���y�	, we should also prove that it is
closed. Let�s take an arbitrary convergent sequence fVig1i=1 :
Vi 2

�
V IC2P

���y�	, 8i 2 Z++ with limit V1. We need to show that V1 2�
V IC2P

���y�	. By the construction of the sequence, for 8i 2 Z++, 9ci :
(1); (2); (4); (5); (7) hold after ��y and V0(ci;�� y) = Vi. Moreover, by Proposi-
tion 3, (20) holds after ��y for 8i 2 Z++. Then, for 8i 2 Z++, ci 2 
��y. Let�s
endow 
��y with the product topology. Then, 
��y is compact as a product
of compact spaces. Therefore, 9 a convergent subsequence fcikg

1
k=1 of fcig

1
i=1

s.t. c1 := lim
k!1

(cik) 2 
��y. Consequently, c1 satis�es (1) and (2) after ��y.

For 8T 2 Z+ : T � � ; let V T� (c;
�� y��1) :=

=
TP
t=�
�t��A

P
yt2Y

:::
P
y�2Y

[�
�
wt
���yt�� � at

���yt�1�] tY
i=�

�
�
yijai

���yi�1��.
Note that V� (c;

�� y��1) � V T� (c;
�� y��1) =

= �T+1A

P
yT2Y

:::
P
y�2Y

VT+1
�
c;�� yT�1

� TY
i=�

�
�
yijai

���yi�1�� 2

[�T+1A
�(w)�a
1��P

; �T+1A
�(w)�a
1��P

], 8T 2 Z+ : T � � , 8c 2 
��y, 8��y��1 2 ��y � Y � ,
8� 2 Z+. Moreover, V T� (:;�� y��1) is continuous on 
��y. Then, V� (:;�� y��1)
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is continuous on 
��y. Analogously, we can show that U� (:;�� y��1) is contin-
uous on 
��y. As a result, we have that c1 satis�es (4); (5); (7) after y�� and
V0
�
c1;

�� y
�
= V1.

Following the same logic, we can show that
�
V ICAP�

���y��1�	 is time in-
variant and compact and depends only on the last � stock price observations
prior to signing.
(b) Analogous to the proof of (a).�

Proof of Proposition 5: Fix ��y 2 Y �. By Propositions 2 and 3, ���y =
fc : (1); (2); (4); (5); (7) holdg � 
��y. Let�s endow 
��y with a metric inducing
the product topology. Then, following the argument of the proof of Proposition
4, we obtain that ���y is compact and U0

�
:;�� y

�
is continuous on 
��y.�

Proof of Proposition 6: Fix ��y 2 Y �. By Proposition 5, we have that
9 (a��; w��) : (1); (2); (3); (4); (5) hold after ��y and U0

�
a��; w��;�� y

�
= U����y.

Let V �� := V0
�
a��; w��;�� y

�
. By Proposition 2, V �� 2

�
V IC2P (V ;U)

	
and

U����y 2
�
U
�
V ��;�� y

�	
. Therefore, U���y � U

��
��y. Suppose U

�
��y > U

��
��y. Then,

9V � 2
�
V IC2P

���y�	 : U����y < U�
�
V �;�� y

�
� U���y. Since U

� �V �;�� y� 2�
U
�
V �;�� y

�	
, 9 (a�; w�) j (1); (2); (4); (5); (7) hold after ��y, V0

�
a�; w�;�� y

�
=

V � and U0
�
a�; w�;�� y

�
= U�

�
V �;�� y

�
. Then, by the de�nition of U����y and

Proposition 2 we have that U����y � U
� �V �;�� y�, i.e. a contradiction is reached.

Consequently, U���y = U����y and the supremum in the de�nition of U���y is
achieved.�

For 8��y 2 Y � and 8V 2
�
V ICAP

���y�	, de�ne �ICAP��y (V ) :=n
c : (1); (20); (4); (7) hold after ��y and V0

�
a;w;�� y

�
= V

o
and GICAP��y (V ) :=n

c 2 �ICAP��y (V ) : U0
�
c;�� y

�
= U ICAP

� �
V;�� y

�o
.

Lemma 1: For 8��y 2 Y �, �ICAP��y (:) is upper hemi-continuous (uhc) on�
V ICAP

���y�	.
Proof: Fix ��y 2 Y � and V 2

�
V ICAP

���y�	 and note that �ICAP��y (V ) is
non-empty and compact. Take a sequence fVig1i=1 s.t. Vi 2

�
V ICAP

���y�	 ;
8i 2 Z++ and Vi !

i!1
V . Let ci 2 �ICAP��y (Vi) for 8i 2 Z++. Note that

�ICAP��y (Vi) � 
��y, 8i 2 Z++ with 
��y compact . Then, 9 a subsequence�
cij
	1
j=1

of fcig1i=1 : cij !
j!1

c 2 
��y. Since V�
�
:;�� y��1

�
is continuous

on 
��y, c satis�es (4) and (7) after ��y and V0
�
c;�� y

�
= V: Therefore, c 2

�ICAP��y (V ).�

Proof of Proposition 7: Fix ��y 2 Y � and V 2
�
V ICAP

���y�	. Take
a sequence fVig1i=1 s.t. Vi 2

�
V ICAP

���y�	 ; 8i 2 Z++ and Vi !
i!1

V . Let
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ci 2 GICAP��y (Vi) for 8i 2 Z++. De�ne U ICAP�
��y

:= lim
Vi!V

U ICAP
� �
Vi;

�� y
�
.

9 a subsequence
�
cij
	1
j=1

of fcig1i=1 : lim
j!1

U0
�
cij ;

�� y
�
= U ICAP

�
��y

. Since

GICAP��y (:) � �ICAP��y (:) and �ICAP��y (:) is uhc from Lemma 1, 9 a subsequence�
cijn

	1
n=1

of
�
cij
	1
j=1

: cijn !
n!1

c with c 2 �ICAP��y (V ). Then, U ICAP�
��y

=

lim
n!1

U0
�
cijn ;

�� y
�
= U0

�
c;�� y

�
� U ICAP

� �
V;�� y

�
where the �rst equality

comes from the fact that
�
cijn

	1
n=1

is a subsequence of
�
cij
	1
j=1

and

lim
j!1

U0
�
cij ;

�� y
�
= U ICAP

�
��y

, the second follows from the continuity of U0
�
:;�� y

�
and the third obtains directly from c 2 �ICAP��y (V ) and the de�nition of

U
ICAP� �

V;�� y
�
. Therefore, U

ICAP� �
:;�� y

�
is usc on

�
V ICAP

���y�	.
Regarding the boundedness of U

ICAP� �
:;�� y

�
, note that for 8V 2�

V ICAP
���y�	, U ICAP� �

V;�� y
�
= U0

�
cV ;

�� y
�
for some cV 2 �ICAP��y (V ) �


��y with 
��y non-empty and compact. Since U0
�
:;�� y

�
: 
��y ! R is con-

tinuous on a compact set, it is also bounded. Consequently, U
ICAP� �

:;�� y
�
is

bounded on
�
V ICAP

���y�	.�
Lemma 2: For 8��y 2 Y �, 8V 2

�
V ICAP

���y�	, let c�V : (1), (20), (4),
(7) hold after ��y, V0

�
c�V ;

�� y
�
= V and U0

�
c�V ;

�� y
�
= U

ICAP� �
V;�� y

�
.

Then, 8��y��1 2 ��y � Y � , 8� 2 Z+, U�
�
c�V ;

�� y��1
�

=

= U
ICAP� �

V�
�
c�V ;

�� y��1
�
;�� ey�, where ��ey = ���y��1.

Proof: Note that for 8��y��1 2 ��y � Y � , 8� 2 Z+, we have
that V�

�
c�V ;

�� y��1
�

2
�
V ICAP

���ey�	 and therefore,

U
ICAP� �

V�
�
c�V ;

�� y��1
�
;�� ey� is well de�ned. Since for � = 0, the result

is trivial, �x an arbitrary � 2 Z++ and ��y��1 2 ��y � Y � and assume
that the lemma does not hold. Then 9c0 : (1), (20), (4), (7) hold after ��ey,
V0
�
c0;�� ey� = V�

�
c�V ;

�� y��1
�
and U0

�
c0;�� ey� > U�

�
c�V ;

�� y��1
�
. Let�s con-

struct a supercontract c00 :
�
a00t
���yt�1� ; w00t ���yt�� =�

a0t��
���eyt���1� ; w0t�� ���eyt��� ; �, 8��yt = ���yt�1; yt� 2 ��y� � Y t�� :

�yt = eyt�� , 8t 2 Z++ : t � � , with
�
a00t
�
yt�1

�
; w00t (y

t)
�

=�
a�V;t

�
yt�1

�
; w�V;t (y

t)
�
otherwise. By the de�nition of c�V and the construction

of c00 we have that c00 satis�es (1), (20), (4), (7) after ��y and V0
�
c00;�� y

�
=

V0
�
c�V ;

�� y
�
= V . Then, U0

�
c00;�� y

�
2
n
U

ICAP �
V;�� y

�o
. However, since

U�
�
c00;�� y��1

�
> U�

�
c�V ;

�� y��1
�
, we have that U0

�
c00;�� y

�
> U0

�
c�V ;

�� y
�
,

which contradicts the fact that U0
�
c�V ;

�� y
�

=

U
ICAP� �

V;�� y
�
.�

The lemma says that at any contingency, the expected discounted utility of
the principal who has signed the ICAP supercontract maximizing his/her utility
at period 0 while guaranteeing the agent particular initial expected discounted
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utility also gives the maximum initial utility the principal can get by signing
a new ICAP supercontract guaranteeing the agent an initial utility equal to
the utility the agent would receive in that contingency under the previous con-
tract. In other words, at the optimum the principal can neither lose nor gain
by breaching the original contract and signing a new one guaranteeing the same
utility stream to the agent.
For 8��y 2 Y � and 8V��y 2

�
V ICAP

���y�	, de�ne �ICAPR

�
V��y;

�� y
�
:=

f
�
a��y

�
V��y

�
; w��y

�
V��y; y

�
; V+ ��y

�
V��y; y

�	
y2Y : (8)� (12) holdg.

Proof of Proposition 8: Take an arbitrary V 2
�
V ICAP

	
. Fix ��y 2

Y �. Given the existence of U
ICAP� �

V��y;
�� y

�
, 9
�
a��y; w��y

�
: (1), (20), (4),

(7) hold after ��y, V0
�
a��y; w��y;

�� y
�
= V��y and U0

�
a��y; w��y;

�� y
�
:=

U
ICAP� �

V��y;
�� y

�
. For 8y 2 Y , let a��y

�
V��y

�
:= a0

���y�, w��y

�
V��y; y

�
:=

w0
���y; y� ; and V+ ��y

�
V��y; y

�
:= V1

�
a��y; w��y;

���y; y��. Then, we im-
mediately have that (11) holds. Moreover, (1) ) (8), (20) ) (9), (7) )
(10). As in the proof of Proposition 4 (a), for 8y 2 Y , we can construct�
a0��+1y;y; w

0
��+1y;y

�
: (1) ; (20) ; (4) ; (7) hold after

���+1y; y� and

V0

�
a0��+1y;y; w

0
��+1y;y;

���+1y; y�� = V1
�
a��y; w��y;

���y; y��, from where we

have that (12) is satis�ed. Furthermore, by Lemma 2 8y 2 Y;

U1
�
a��y; w��y;

���y; y�� = U
ICAP� �

V1
�
a��y; w��y;

���y; y�� ; ���+1y; y�� =

= U
ICAP� �

V+ ��y

�
V��y; y

�
;
���+1y; y��, where U ICAP� �

:;�� y
�
is usc and

bounded from Proposition 7. Then, U
ICAP� �

V��y;
�� y

�
=

= U0
�
a��y; w��y;

�� y
�

=
P
y2Y

[ y � w0
���y; y� +

+�PU1
�
a��y; w��y;

���y; y��]� �yja0 ���y�� =
P
y2Y

[y � w��y

�
V��y; y

�
+

+�PU
ICAP� �

V+ ��y

�
V��y; y

�
;
���+1y; y��]� �yja��y (V )�. Then, by the de�ni-

tion of T (:), we have that T��y
�
U

ICAP�
�
(V��y)

� U
ICAP� �

V��y;
�� y

�
.

Since ��y and V =
�
V��y (V )

	
��y2Y � were chosen randomly, the result gen-

eralizes to T
�
U

ICAP�
�
� U ICAP�

.

Fix an arbitrary V 2
�
V ICAP

	
and ��y 2 Y �. We have demonstrated above

that �ICAPR

�
V��y;

�� y
�
6= ;. Then, since �ICAPR

�
V��y;

�� y
�
can be shown to be

compact and U
ICAP�

is upper semicontinuous and bounded,
9fa���y

�
V��y

�
; w���y

�
V��y; y

�
; V �+ ��y

�
V��y; y

�
y2Y : (8) � (12) hold and

T��y

�
U

ICAP�
�
(V��y)

=
P
y2Y

[ y � w���y
�
V��y; y

�
+

+�PU
ICAP�

�
V �+ ��y

�
V��y; y

�
;
���+1y; y��]� �yja���y (V )�g. By (12), for 8y 2

Y , V �+ ��y

�
V��y; y

�
2
�
V ICAP

���+1y; y�	, from where 9 �c�y� : (1), (20), (4), (7)
hold after

���+1y; y�, V0
�
c�y;
���+1y; y�� = V �+ ��y

�
V��y; y

�
and
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U0
�
c�y;
���+1y; y�� := U ICAP�

�
V �+ ��y

�
V��y; y

�
;
���+1y; y��. Then, de�ne c�� :�

a��0
���y� ; w��0 ���y; y�� =

�
a���y

�
V��y

�
; w���y

�
V��y; y

��
, 8y 2 Y , and�

a���
���y��1� ; w��� ���y��� = �

a�y;��1
���ey��2� ; w�y;��1 ���ey��1��, 8��y� =���y��1; y�� 2 ���y; y� � Y � : 1y� = ey��1 , 8� 2 Z++, 8y 2 Y . It is im-

mediate that c�� satis�es (1), (20), (4), (7) after
���y; y�, 8y 2 Y . Moreover,

(8) ) a��0
���y� 2 A, (9) ) w��0

���y; y� 2 [w;w], 8y 2 Y . By construction
and (10), we have that (7) holds at ��y. By (11), we obtain that V0

�
c��;�� y

�
= V��y 2

�
V ICAP

���y�	, from where (4) is satis�ed at ��y. Finally, we

have that U0
�
c��;�� y

�
= T

�
U�wH (V ;V )

�
. Therefore, T��y

�
U

ICAP�
�
(V��y)

2�
U ICAP

�
V��y;

�� y
�	
, from where U

ICAP� �
V��y;

�� y
�
� T��y

�
U

ICAP�
�
(V��y)

.

As before, this immediately generalizes to T
�
U

ICAP�
�
� U ICAP�

.�

Proof of Proposition 9: (a) Analogously to the proof of Lemma 1, we can
show that for 8��y 2 Y �, �ICAPR (:) is uhc on

�
V ICAP

���y�	. Then, following
an argument similar to the proof of Proposition 7, we conclude that T (U)(:) is
usc on

�
V ICAP

���y�	. It is trivial to show that T (U)(:) is also bounded.
(b) The result follows by the argument of Theorem 3.3 in Stokey and Lu-

cas (1979), p. 54 since it is trivial that T satis�es the Blackwell�s su¢ cient
conditions.
(c) Assume on the contrary that �

�eU;U ICAP�
�
> 0. We have that

�
�eU;U ICAP�

�
= �

�
T
�eU� ; T �U ICAP�

��
� �P�

�eU;U ICAP�
�
, where the

equality follows from the fact that both eU and U
ICAP�

are �xed points of T
(the �rst - by assumption, the second - by Proposition 7) and the inequal-
ity obtains by (b). However, this contradicts �P 2 (0; 1). Consequently,

�
�eU;U ICAP�

�
= 0.

(d) Since T maps USCB
�n
V ICAP;w

H
o
;R
�
into itself, the existence of

Tn (U) is guaranteed for 8n 2 Z+. Using Proposition 8 and successively

applying (b), we obtain �
�
Tn (U) ; U

ICAP�
�
� �nP�

�
U;U

ICAP�
�
. Note that

�
�
U;U

ICAP�
�
<1 since U is bounded by assumption and U

ICAP�
is bounded

by Proposition 7. Therefore, given �P 2 (0; 1), the result follows.�

Proof of Proposition 10: Just take U 2�
USCBA

�
fV ICAP

���y�g;R [ f�1g�	��y2Y � , ��y 2 Y �,

V1 2
�
V ICAP

���y�	 and fVig1i=1 s.t. Vi 2 �
V ICAP

���y�	, 8i 2 Z+ and
Vi !

i!1
V1. If lim

i
T��y (U)(Vi) = �1, the result is trivial. If limi T��y (U)(Vi) >

�1, we can always extract a subsequence fVikg
1
k=1 of fVig1i=1 s.t.

T��y (U)(Vik)
> �1, 8k 2 Z+ and lim

k!1
T��y (U)(Vik)

= lim
i
T��y (U)(Vi). Since
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�R
�
Vik ; U;

�� y
�
6= ;, 8k 2 Z+, we can apply the argument used in the proof of

Proposition 7 to obtain lim
i
T��y (U)(Vi) � T��y (U)(V1).�

Proof of Proposition 11: (a) Notice that
U ICAP

� 2
�
USCB

�
fV ICAP

���y�g;R�	��y2Y � ��
USCBA

�
fV ICAP

���y�g;R [ f�1g�	��y2Y � . Then, directly from the de-

�nition of T and T , we have T
�
U ICAP

�� � T
�
U ICAP

��
= U ICAP

�
, where

the equality follows from Proposition 8. Since T��y is monotonic for 8��y 2
Y �, fDigi2Z+ is a weakly decreasing sequence of bounded from above usc

functions, therefore 9D1 2
�
USCBA

�
fV ICAP

���y�g;R [ f�1g�	��y2Y � :

Di
�
V��y;

�� y
�
!
i!1

D1
�
V��y;

�� y
�
, 8V��y 2

�
V ICAP

���y�	, 8��y 2 Y �.
(b) First we are going to prove T (D1) � D1. Fix ��y 2 Y � and V��y 2�

V ICAP
���y�	. Let us assume that D1 �V��y;�� y� > �1 because other-

wise the result is trivial. Since D1
�
V��y;

�� y
�
is a limit of a weakly de-

creasing sequence, we have that Di
�
V��y;

�� y
�
> �1, 8i 2 Z+. Conse-

quently, Di
�
V��y;

�� y
�
� U��y, 8i 2 Z+ since Di

�
V��y;

�� y
�
< U��y )

�R
�
V��y; Di;

�� y
�
= ; ) Di+1

�
V��y;

�� y
�
= �1. This immediately implies

that D1
�
V��y;

�� y
�
� U��y. Moreover, �R

�
V��y; Di�1;

�� y
�
6= ;, 8i 2 Z++

since if �R
�
V��y; Di�1;

�� y
�
= ;, we would have Di

�
V��y;

�� y
�
= �1. Then,

for 8i 2 Z++, since Di�1 is usc and �R
�
V��y; Di�1;

�� y
�
is compact (trivial

given Di�1 is usc), 9ci
�
V��y

�
2 �R

�
V��y; Di�1;

�� y
�

:

Di
�
V��y;

�� y
�

=
P
y2Y

[ y � ci
�
V��y; y

�
+

+�PDi�1
�
V+ i

�
V��y; y

�
;
���+1y; y��]� �yjai �V��y�� � U��y.

14 Since for 8i 2
Z++, �R

�
V��y; Di�1;

�� y
�
� �ICAPR

�
V��y;

�� y
�
and �ICAPR

�
V��y;

�� y
�
is com-

pact, 9 a convergent subsequence of
�
ci
�
V��y

�	1
i=1
,
�
cik
�
V��y

�	1
k=1

, s.t.
c1
�
V��y

�
:= lim

k!1
cik
�
V��y

�
2 �ICAPR

�
V��y;

�� y
�
. Fix an arbitrary y 2 Y .

Then, we have D1
�
V+ 1

�
V��y; y

�
;
���+1y; y�� =

= lim
j!1

Dij�1
�
V+ 1

�
V��y; y

�
;
���+1y; y�� �

� lim
j!1

lim
k
Dij�1

�
V+ ik

�
V��y; y

�
;
���+1y; y�� �

� lim
j!1

lim
k
Dik�1

�
V+ ik

�
V��y; y

�
;
���+1y; y�� =

= lim
k
Dik�1

�
V+ ik

�
V��y; y

�
;
���+1y; y��, where

the �rst equality follows from
�
Dij�1

	1
j=1

being a subsequence of a sequence
converging to D1 by (a), the �rst inequality - from the upper semicontinuity of
Dij�1, the second inequality - from the fact that fDig1i=0 is weakly decreasing,
hence Dik�1

�
V+ ik

�
V��y; y

�
;
���+1y; y�� � Dij�1 �V+ ik

�
V��y; y

�
;
���+1y; y��,

8k � j, and the last equality is trivial. Notice that
Dik�1

�
V+ ik

�
V��y; y

�
;
���+1y; y�� � U��+1y;y, 8k 2 Z++ since by construction

14Here, I suppress the dependence of ci
�
V��y

�
on ��y in order to simplify the notation.
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cik
�
V��y

�
2 �R

�
V��y; Dik�1;

�� y
�

6= ;. Then, we have that
D1

�
V+ 1

�
V��y; y

�
;
���+1y; y�� � U��+1y;y, from where c1

�
V��y

�
2

�R
�
V��y; D1;

�� y
�
. Finally, T��y (D1)(V��y)

= max
c(V��y)2

�
R;wH (V��y;D1;��y)

P
y2Y

[y�

� w
�
V��y; y

�
+ �PD1

�
V+
�
V��y; y

�
;
���+1y; y��] �

�
yja
�
V��y

��
�

�
P
y2Y

[ y � w1
�
V��y; y

�
+

+�PD1
�
V+ 1

�
V��y; y

�
;
���+1y; y��]� �yja1 �V��y�� � lim

k

P
y2Y

[y�

�wik
�
V��y; y

�
+ �PDik�1

�
V+ ik

�
V��y; y

�
;
���+1y; y��]� �yjaik �V��y�� =

= lim
k
Dik

�
V��y;

�� y
�
= D1

�
V��y;

�� y
�
, where the �rst equality follows from

the fact that �R
�
V��y; D1;

�� y
�
is non-empty, D1

�
V��y;

�� y
�
� U��y, D1 is

usc and �R
�
V��y; D1;

�� y
�
is compact, the �rst inequality - from c1

�
V��y

�
2

�R
�
V��y; D1;

�� y
�
, the second inequality - by using the result obtained earlier

by developing for D1
�
V+ 1

�
V��y; y

�
;
���+1y; y��, the following equality - by

construction, and the last equality - by construction and (a).
To conclude the proof, we need to show that T (D1) � D1. Fix ��y 2 Y �

and V��y 2
�
V ICAP

���y�	. If T��y (D1)(V��y)
= �1, the result is triv-

ial, so assume T��y (D1)(V��y)
> �1 ) �R

�
V��y; D1;

�� y
�
6= ;. From

(a), we have that for 8i 2 Z+, D1 � Di, from where �R
�
V��y; D1;

�� y
�
�

�R
�
V��y; Di;

�� y
�
, 8i 2 Z+. Then, for 8i 2 Z+,

T��y (D1)(V��y)
= max

c(V��y)2
�R(V��y;D1;��y)

P
y2Y

[y � w
�
V��y; y

�
+

+�PD1
�
V+
�
V��y; y

�
;
���+1y; y��]� �yja �V��y�� � max

c(V��y)2
�R(V��y;Di;��y)

P
y2Y

[y�

�w
�
V��y; y

�
+ �PDi

�
V+
�
V��y; y

�
;
���+1y; y��]� �yja �V��y�� =

= Di+1
�
V��y;

�� y
�
. Consequently, T��y (D1)(V��y)

� lim
i!1

Di+1
�
V��y;

�� y
�
=

D1
�
V��y;

�� y
�
.

(c) Let D0 2
�
USCBA

�
fV ICAP

���y�g;R [ f�1g�	��y2Y � : T (D
0) = D0.

Note that 9D 2
�
USCB

�
fV ICAP

���y�g;R�	��y2Y � : D � D0. Consequently,

T
�
D
�
� T (D0) � D0, where the �rst inequality follows from the monotonicity of

T , while the second comes from T � T and the fact that T (D0) = D0. Repeating
the argument, we obtain Tn

�
D
�
� D0 for 8n 2 Z+. Then, by Proposition 9 (d)

we have that U ICAP
�
= lim

n!1
TnU
�
D
�
� D0, where the convergence is in terms

of �. Fix ��y 2 Y � and V��y 2 fV ICAP
���y�g. By the monotonicity of T ,

we have Di = T
i
�
U ICAP

�� � T i (D0) = D0, 8i 2 Z+. Therefore, D1 � D0.�

Lemma 3: T
�bU�� � bU�.
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Proof: (Adapted from the �rst part of the proof of Proposition 8) Fix an ar-
bitrary ��y 2 Y �. If V��y 2 fV ICAP

���y�gnfV IC2P ���y�g, bU� �V��y;�� y� =
�1 and the result is trivial. Therefore, take
V��y 2 fV IC2P

���y�g. Then, bU� �V��y;�� y� = U�
�
V��y;

�� y
�
. Given the ex-

istence of U�
�
V��y;

�� y
�
, we have that 9c : (1), (2), (4), (5), (7) hold after ��y,

V0
�
c;�� y

�
= V��y and U0

�
c;�� y

�
= U�

�
V��y;

�� y
�
. By Proposition 3, we

have that (20) holds. For 8y 2 Y , let a
�
V��y

�
:= a0

���y�, w �V��y; y� :=
w0
���y; y� ; V+ �V��y; y� := V1

�
c;
���y; y��. Then we immediately have that

(11) holds. Moreover, (1) ) (8), (20) ) (9), (7) ) (10). For 8y 2 Y , we can
construct c0 : (1) ; (20) ; (4) ; (5) ; (7) hold after

���+1y; y� and
V0
�
c0;
���+1y; y�� = V1

�
c;
���y; y��, from where we have that V+

�
V��y; y

�
2

fV IC2P
���+1y; y�g � fV ICAP ���+1y; y�g, i.e. (12) holds. From (5), we have

U�
�
V��y;

�� y
�
� U��y. Furthermore, by slightly modifying the argument of

Lemma 2, we have that 8y 2 Y; U�
�
V+
�
V��y; y

�
;
���+1y; y�� =

U�
�
V1
�
c;
���y; y�� ; ���+1y; y�� = U1

�
c;
���y; y��. Then, (5) )

U�
�
V+
�
V��y; y

�
;
���+1y; y�� � U��+1y;y, 8y 2 Y . Finally, bU� is usc (by the

argument used in the proof of Proposition 7 given the quali�cations stated in
the proof of Proposition 10) and bounded from above. Then, by the de�nition

of T , we have that T��y

�bU��
(V��y)

� bU� �V��y;�� y�.�
Lemma 4: T

�bU�� � bU�.
Proof: (Adapted from the second part of the proof of Proposition 8)

Take ��y 2 Y �. If V��y 2 fV ICAP
���y�gnfV IC2P ���y�g,bU� �V��y;�� y� = �1 and by the de�nition of T we have T��y

�bU��
(V��y)

=

�1. What remains is to prove the result on fV IC2P
���y�g. Fix an arbi-

trary V��y 2
�
V IC2P

���y�	 and note that bU� �V��y;�� y� = U� �V��y;�� y� �
U��y. If T��y

�bU��
(V��y)

� U��y, the result is trivial. Therefore, assume

T��y

�bU��
(V��y)

> U��y. Then, T��y

�bU��
(V��y)

= max
c(V��y)2

�R(V��y; bU�;��y)

P
y2Y

[y�

�w
�
V��y; y

�
+ �P bU� �V+ �V��y; y� ; ���+1y; y��]� �yja �V��y�� with

�R

�
V��y; bU�;�� y� 6= ;. Given bU� is usc and �R �V��y; bU�;�� y� is compact,

9c�
�
V��y

�
: (8) � (12) hold, bU� �V �+ �V��y; y� ; ���+1y; y�� � U��+1y;y, 8y 2 Y

and T��y

�bU��
(V��y)

=
P
y2Y

[y � w�
�
V��y; y

�
+

�P bU� �V �+ �V��y; y� ; ���+1y; y��]� �yja� �V��y��. By (12), V �+
�
V��y; y

�
2�

V ICAP
���+1y; y�	, which together with bU� �V �+ �V��y; y� ; ���+1y; y�� �

U��+1y;y implies that V �+
�
V��y; y

�
2

�
V IC2P

���+1y; y�	. SincebU� �V �+ �V��y; y� ; ���+1y; y�� = U�
�
V �+
�
V��y; y

�
;
���+1y; y��, 9c�y : (1), (2),
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(4), (5), (7) hold after
���+1y; y�, V0

�
c�y;
���+1y; y�� = V �+

�
V��y; y

�
and U0

�
c�y;
���+1y; y�� := bU� �V �+ �V��y; y� ; ���+1y; y��. Note that this

is true for 8y 2 Y . Then, de�ne c�� :�
a��0

���y� ; w��0 ���y; y�� =
�
a�
�
V��y

�
; w�

�
V��y; y

��
, 8y 2 Y , and�

a���
���y��1� ; w��� ���y��� =

�
a�y;��1

���ey��2� ; w�y;��1 ���ey��2; ey��1��,
8��y� =

���y��1; y�� 2 ���y; y�� Y � : 1y� = ey� , 8� 2 Z++, 8y 2 Y .
It is immediate that c�� satis�es (1), (2), (4), (5), (7) after

���y; y�, 8y 2 Y .
Moreover, (8) ) a��0

���y� 2 A, (9) ) w��0
���y; y� � w, 8y 2 Y . By con-

struction and (10), we have that (7) holds at ��y. By (11), we obtain that
V0
�
c��;�� y

�
= V��y 2

�
V IC2P

���y�	, from where (4) is satis�ed at ��y.

Furthermore, we have that U0
�
c��;�� y

�
= T��y

�bU��
(V��y)

> U��y. There-

fore, T��y
�bU��

(V��y)
2
�
U IC2P

�
V��y;

�� y
�	
, from where bU� �V��y;�� y� =

U�
�
V��y;

�� y
�
� T��y

�bU��
(V��y)

.�

Proof of Proposition 12: From Lemmas 3 and 4.�

Proof of Proposition 13: Since bU� 2�
USCBA

�
fV ICAP

���y�g;R [ f�1g�	��y2Y � , by Propositions 11 (c) and 12

we obtain bU� � D1. What remains to be shown is that bU� � D1. Fix
��y 2 Y � and V��y 2 fV ICAP

���y�g. If D1 �V��y;�� y� = �1, the result
is trivial; therefore, assume D1

�
V��y;

�� y
�
> �1. Then, D1

�
V��y;

�� y
�
=

= T��y (D1)(V��y)
= max

c��y(V��y)2
�R(V��y;D1;��y)

P
y2Y

[y � w
�
V��y; y

�
+

+�PD1
�
V+
�
V��y; y

�
;
���+1y; y��]� �yja �V��y�� with �R �V��y; D1;�� y� non-

empty and D1
�
V��y;

�� y
�

� U��y since otherwise we would have
D1

�
V��y;

�� y
�
= �1. Since D1 is usc and �R

�
V��y; D1;

�� y
�
is com-

pact, we have that 9c���y
�
V��y

�
2 �R

�
V��y; D1;

�� y
�
s.t. T��y (D1)(V��y)

=

=
P
y2Y

�
y � w�

�
V��y; y

�
+ �PD1

�
V �+
�
V��y; y

�
;
���+1y; y���� �yja� �V��y��.

Note that from D1
�
V �+
�
V��y; y

�
;
���+1y; y�� � U��+1y;y, 8y 2 Y , we

have D1
�
V �+
�
V��y; y

�
;
���+1y; y�� = T��+1y;y (D1)V �

+(V��y;y)
=

= max
c��y;y(V �

+(V��y;y))2
�R(V �+(V��y;y);D1;(��+1y;y))

P
y02Y

[y0 � w
�
V �+
�
V��y; y

�
; y0
�

+

+ �PD1
�
V+
�
V �+
�
V��y; y

�
; y0
�
;
�
y��+2; y; y0

��
]�
�
y0ja

�
V �+
�
V��y; y

���
with

�R
�
V �+
�
V��y; y

�
; D1;

���+1y; y�� nonempty, so the previous analysis applies.
Proceeding in this way, we can construct a supercontract c s.t.
a�
���y��1� := a���y��1

�
V � �+

�
V��y;

�� y��1
��
, w�

���y�� :=

w���y��1
�
V � �+

�
V��y;

�� y��1
�
; y�
�
, 8��y� =

���y��1; y�� 2 ��y�Y � �Y , 8� 2
Z+, where V � �+

�
V��y;

�� y��1
�
:= V �+ hy��1i�:::�V

�
+ hy0i

�
V��y;

�� y
�
, � 2 Z+ and
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V � 0+

�
V��y;

�� y
�
:= V��y with V �+ heyi

�eV ;�� yt�1� := V �+ ��yt�1

�eV ; ey� ; 8ey 2 Y ,
8eV 2

�
V ICAP

�
t��yt�1

�	
, 8��yt�1 2 ��y � Y t, 8t 2 Z+. We immediately

have (8) ) (1) and (9) ) (2). By (11), V�
�
c;�� y��1

�
=V � �+

�
V��y;

�� y��1
�
,

8��y��1 2 ��y � Y � , 8� 2 Z+ since by (12) V � �+

�
V��y;

�� y��1
�
2�

V ICAP
�
���y��1

�	
and is therefore bounded, while V�

�
c;�� y��1

�
is bounded

given (8) and (9). In particular, V0
�
c;�� y��1

�
=V��y. Then (10) ) (7). Fur-

thermore, V�
�
c;�� y��1

�
2
�
V ICAP

�
���y��1

�	
, 8��y��1 2 ��y�Y � , 8� 2 Z+

implies that (4) holds. We also have that U�
�
c;�� y��1

�
=

D1
�
V � �+

�
V��y;

�� y��1
�
;��� y��1

�
, 8��y��1 2 ��y � Y � , 8� 2 Z+ since

U�
�
c;�� y��1

�
is bounded given (8) and (9) and D1

�
:;��� y��1

�
is bounded

from above by max
���y��12Y �

(
maxeV 2fV ICAP (���y��1)g

n
U ICAP

�
�eV ;��� y��1�o) (well

de�ned by Proposition 7 and Y �nite) and from below by U . In particular,
U0
�
c;�� y

�
= D1

�
V��y;

�� y
�
. Then, (5) is satis�ed at any node. There-

fore, V��y 2
�
V IC2P

���y�	 and D1 �V��y;�� y� 2 �
U
�
V��y;

�� y
�	
. Then,bU� �V��y;�� y� = U� �V��y;�� y� � D1 �V��y;�� y�.�

Lemma 5:
�
V ICAP

	
� B

��
V ICAP

	�
.

Proof: Let V 2
�
V ICAP

	
. Fix an arbitrary ��y 2 Y �. By V��y 2�

V ICAP
���y�	 ; 9c : (1), (20), (4), (7) hold after ��y and V0 �w; a;�� y� = V��y.

By construction V��y 2
h
V

��y
; bV i. For 8y 2 Y; let a��y �V��y� := a0

���y�,
w��y

�
V��y; y

�
= w0

���y; y�, and V+ ��y

�
V��y; y

�
:= V1

�
c;
���y; y��. Given

these choices, we immediately have that (11) holds. Moreover, (1)) (8), (20))
(9), (7)) (10). Note that for 8y 2 Y ,

�
V ICAP

���+1y; y�	\hV
��+1y;y

;+1
�
=�

V ICAP
���+1y; y�	. Since for 8y 2 Y we can construct a supercontract c0y : (1),

(2), (4), (7) hold after
���+1y; y� and V0 �c0y; ���+1y; y�� = V1

�
c;
���y; y��,

we have that (120) is satis�ed. Therefore, V��y 2 B
��
V ICAP

���y�	�. Since
��y 2 Y � was chosen randomly, this generalizes to V 2 B

��
V ICAP

	�
.�

The lemma establishes that
�
V ICAP

	
is self-generating in the terminology

of Abreu, Pearce and Stacchetti (1990).

Lemma 6: Assume W =
�
W��y

	
��y2Y � : ; 6= W��y � B��y (W ), 8��y 2

Y �. Then, B (W ) �
�
V ICAP

	
.

Proof: Let the condition of the Lemma hold and take V 2 B (W ). Fix an
arbitrary ��y 2 Y �. Since V��y 2 B��y (W ), 9c��y

�
V��y

�
: (8)-(11) and (120)

hold. By (120) and W��+1y;y
� B��+1y;y

(W ), we obtain that V+ ��y

�
V��y; y

�
2

B��+1y;y
(W ). Then, 8y 2 Y , 9c(��y;y)

�
V+ ��y

�
V��y; y

��
:(8)-(11) and (120)

hold. Proceeding this way, we can construct a supercontract c : a�
���y��1� :=
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a��y��1
�
V �+
�
V��y;

�� y��1
��
, w�

���y�� := w��y��1
�
V �+
�
V��y;

�� y��1
�
; y�
�
,

8��y� =
���y��1; y�� 2 ��y � Y � � Y , 8� 2 Z+, where V �+

�
V��y;

�� y��1
�
:=

V+ hy��1i � ::: � V+ hy0i
�
V��y;

�� y
�
, � 2 Z+ and V 0+

�
V��y;

�� y
�
:= V��y with

V+ heyi �eV ;�� yt�1� := V+ ��yt�1

�eV ; ey� ; 8ey 2 Y , 8eV 2
�
V ICAP

�
t��yt�1

�	
,

8��yt�1 2 ��y�Y t, 8t 2 Z+. By construction, (8)-(11), (120) hold at 8��yt�1 2
��y � Y � , 8� 2 Z+ and V�

�
c;�� yt�1

�
�

� V �+
�
V��y;

�� y��1
�

= lim
T!1

�A
T

P
y�+T�12Y

:::
P
y�2Y

[V�+T
�
w; a; y�+T�1

�
�

� V �+T+

�
V��y;

�� y�+T�1
�
]
�+T�1Y
i=�

�
�
yijai

�
y��1

��
= 0. In particular,

V0
�
c;�� y

�
= V��y. At every node, we have (8))(1), (9))(20), (10))(7). For

every node, but ��y, (120) implies (4). Since V��y 2 B��y (W ) �
h
V ��y;

bV i,
(4) also holds at ��y. Therefore, V��y 2

�
V ICAP

���y�	, which generalizes to
V 2

�
V ICAP

	
.�

The lemma says that the image of every nonempty, self-generating set is a
subset of

�
V ICAP

	
.

Proof of Proposition 14: (a) By Assumption 3 and Lemma 5, we have
that the condition of Lemma 6 holds. Therefore, we obtain B

��
V ICAP

	�
��

V ICAP
	
, which together with Lemma 5 implies the result.

(b) It follows by Lemma 6.�

Lemma 7: Assume W 0 =
n
W 0

��y

o
��y2Y �

and W 00 =
n
W 00

��y

o
��y2Y �

: W 0
��y � W 0

��y � R, 8��y 2 Y �. Then, B��y (W
0) 6= ; ) B��y (W

0) �
B��y (W

00), 8��y 2 Y �.

Proof: Trivial.�

Lemma 8: Assume W =
�
W��y

	
��y2Y � : W��y � R compact, 8��y 2 Y �.

Then, B��y (W ) 6= ; ) B��y (W ) compact, 8��y 2 Y �.

Proof: Let the condition of the Lemma hold and assume B��y (W ) 6= ; for
some ��y 2 Y �. Note that B��y (W ) �

h
V ��y;

bV i � R is bounded by de�nition.
We should also show that it is closed. Take an arbitrary convergent sequence
fVigi2Z++ : Vi 2 B��y (W ), 8i 2 Z++ with Vi !

i!1
V1. We need to prove that

V1 2 B��y (W ). By construction, we have that for 8i 2 Z++, Vi 2
h
V ��y;

bV i
and 9ci : (8) � (11); (120) hold for Vi. By Vi 2

h
V ��y;

bV i ; 8i 2 Z++, we

obtain V1 2
h
V ��y;

bV i. By (8),(9),(120) and �V ICAP ���y�	 � h
V ��y;

bV i �h
V ; bV i � R, 8��y 2 Y �, we have that fcigi2Z++ is uniformly bounded, therefore
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9 a subsequence fcikgk2Z++ of fcigi2Z++ : cik !
k!1

c1. We immediately have

that c1 satis�es (8)-(11) for V1. Finally, since (120) is satis�ed for 8i 2 Z++
and

�
V ICAP

���y�	 is compact by Proposition 4 (a) for 8��y 2 Y �, we also
have that (120) holds for c1.�

Proof of Proposition 15: For 8��y 2 Y � and 8i 2 Z+, denote by
Wi

���y� the element of Wi corresponding to initial history ��y. By the condi-
tion of the Proposition and Assumption 3, we have that ; 6=

�
V ICAP

���y�	 �
W0

���y� � R, 8��y 2 Y �. Since by Proposition 14 (a) and Assumption 3,
B��y

��
V ICAP

	�
=
�
V ICAP

���y�	 6= ;, 8��y 2 Y �, we can apply Lemma 7
to obtain ; 6=

�
V ICAP

���y�	 � W1

���y� � R, 8��y 2 Y �. Using W1 � W0

and repeating the argument, we reach
�
V ICAP

	
� Wi+1 � Wi, 8i 2 Z+

Then, fWigi2Z+ is a sequence of non-empty, compact (by Lemma 8 since W0

compact), monotonically decreasing (nested) sets; therefore it converges to
W1 = \

i2Z+
Wi �

�
V ICAP

	
with W1 compact. What remains to be shown is

that W1 �
�
V ICAP

	
. By Lemma 6, it is enough to show that W1 � B (W1).

Let V 2 W1. This implies that V 2 Wi, 8i 2 Z+. Fix an arbitrary ��y 2 Y �.
We have that 9ci

�
V��y

�
:(8)-(11), (120) hold for V��y. By (8), (9), (120) and

Wi

���y� �W0

���y� � R, 8i 2 Z+, we have that �ci �V��y�	i2Z+ is uniformly
bounded; therefore, 9 a subsequence

�
cik
�
V��y

�	
k2Z+

of
�
ci
�
V��y

�	1
i2Z+

:

cik
�
V��y

�
!
k!1

c1
�
V��y

�
. It is immediate that c1

�
V��y

�
satis�es (8)-(11)

for V��y. Moreover, V+
�
V��y; y

�
� V ��+1y;y, 8y 2 Y . We also need to show

that for 8y 2 Y , V+ 1
�
V��y; y

�
2 W1

���+1y; y�. Fix an arbitrary y 2 Y

and assume, on the contrary, that V+ 1
�
V��y; y

�
=2 W1

���+1y; y�. Since
W1

���+1y; y� = \
i2Z+

Wi

���+1y; y� = \
k2Z+

Wik

���+1y; y�, we have that 9k0 2
Z+ : V+ 1

�
V��y; y

�
=2Wik0

���+1y; y�. Furthermore, �Wik0

	
k2Z+

was shown to

be a monotonically decreasing (nested) sequence, from where V+ ik

�
V��y; y

�
2

Wik � Wik0

���+1y; y�, 8k 2 Z+ : k � k0. Since Wik0

���+1y; y� is closed and
V+ ik

�
V��y; y

�
!
k!1

V+ 1
�
V��y; y

�
, we obtain that V+ 1

�
V��y; y

�
2

Wik0

���+1y; y�, i.e. a contradiction is reached. This proves V+ 1
�
V��y; y

�
2

W1
���+1y; y�, 8y 2 Y . Consequently, (1200) holds for c1 �V��y�. Finally, note

that V��y 2
h
V ��y;

bV i follows immediately from V��y 2 W1

���y�. Therefore,
V��y 2 B��y (W1), which generalizes to V 2 B (W1).�

For 8W =
�
W��y

	
��y2Y � : W��y 2 R, 8��y 2 Y � let B0 (W ) :=n

B0��y (W )
o
��y2Y �

with B0��y (W ) := fV��y 2
h
V

��y
; bV i : 9c��y �V��y� : (8)-

(11) and (1200) holdg, where (1200) is de�ned as V+ ��y

�
V��y; y

�
2W��+1y;y

.

Lemma 9: Take W 0
0 :=

�
W 0
0

���y�	��y2Y � with W 0
0

���y� := h
V ��y;

bV i,
8��y 2 Y � and let W 0

i+1 := B
0 (W 0

i ) for 8i 2 Z+. Then, W 0
i+1 � W 0

i , 8i 2 Z+
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and W 0
1 := lim

i!1
W 0
i =

�
V ICAP

	
.

Proof: We have thatW 0
0 is compact and

�
V ICAP

	
�W 0

0 � RN
�

. Note that

for 8W � RN�

: B��y (W ) 6= ;, B��y (W ) � B0��y (W ). Then, by Lemma 7 and
Proposition 14 (a), we obtain

�
V ICAP

	
� B (W 0

0) � B0 (W 0
0). Using the same

arguments plus the monotonicity of B0 (trivial), we have
�
V ICAP

	
�W 0

i , 8i 2
Z+. Moreover, by construction B0 (W 0

0) � W 0
0. Then, the condition B (W

0
0) �

W 0
0 is satis�ed. Observe that for 8��y 2 Y �, W 0

1

���y� = fV��y 2 hV ��y;
bV i :

9c
�
V��y

�
:(8)-(11), (1200)g = fV��y 2

h
V ��y;

bV i : 9c �V��y� :(8)-(11), (120)g =
B��y (W

0
0) since, by construction, W 0

0

���+1y; y� \ h
V

��+1y;y
;+1

�
=

W 0
0

���+1y; y�, 8y 2 Y . Furthermore, by W 0
1 � W 0

0 and the monotonicity of
B0, we obtain W 0

i+1 � W 0
i , 8i 2 Z+. Then, it is trivial that W 0

i+1 = B (W 0
i ).

Therefore, Proposition 15 applies to fW 0
igi2Z.�

Lemma 10: Let eV and fW 0
igi2Z+ be de�ned as in Lemma 8. Take fW0 :=W

0
0

and let fWi+1 := eB �fWi

�
for 8i 2 Z+. Then, fWi =W

0
i , 8i 2 Z+.

Proof: Assume fWi�1 = W 0
i�1 for some i 2 Z++. Then, fWi�1 � W 0

0 by

Lemma 8. Consequently, for 8��y 2 Y �, fWi

���y� � W 0
i

���y�, i.e. fWi � W 0
i .

Fix ��y 2 Y � and let V 2 W 0
i

���y�. By Lemma 8, W 0
i � W 0

i�1 =
fWi�1 from

where V 2 fWi�1
���y�. Then, V 2 eB��y

�fWi�1

�
. Since ��y and V were chosen

randomly, we obtain W 0
i � fWi.

We have that fW0 = W 0
0 by de�nition and have just shown that fWi�1 =

W 0
i�1 would imply fWi = W

0
i ; therefore, by induction we obtain that fWi = W

0
i ,

8i 2 Z+.�

Proof of Proposition 16: From Lemmas 9 and 10.�
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APPENDIX 2

Table 1
State Space of the Optimal ICAP Contract

Case 1 2 3
[ ] [ ] [ ]

LLL -3.1325 843.0178 -3.1325 29.4635 -3.1325 22.4035
y(1) -1.4325 843.0178 -1.4325 29.4635 -1.4325 22.4035

LLM y(2) -1.4325 843.0178 -1.4325 29.4635 -1.4325 22.4035
y(3) 0.0000 843.0178 0.0000 29.4635 0.0000 22.4035
y(1) 0.8075 843.0178 0.8056 29.4635 0.8050 22.4035

LLH y(2) 0.8075 843.0178 0.8056 29.4635 0.8050 22.4035
y(3) 3.6725 843.0178 3.6725 29.4635 3.6725 22.4030
y(1) -0.1425 843.0178 -0.1460 29.4635 -0.1461 22.4035

LMM y(2) 0.0000 843.0178 0.0000 29.4635 0.0000 22.4035
y(3) 0.0000 843.0178 0.0000 29.4635 0.0000 22.4035
y(1) 0.8275 843.0178 0.8182 29.4635 0.8280 22.4035

LMH y(2) 0.8200 843.0178 0.8200 29.4635 0.8200 22.4035
y(3) 3.6725 843.0178 3.6725 29.4635 3.6725 22.4030
y(1) 3.3575 843.0178 3.3635 29.4635 3.3632 22.3724

LHH y(2) 3.6725 843.0178 3.6725 29.4635 3.6725 22.3783
y(3) 3.6725 843.0178 3.6725 29.4635 3.6725 22.3783

MMM 0.0000 843.0178 0.0000 29.4635 0.0000 22.4035
y(1) 0.8100 843.0178 0.8100 29.4635 0.8100 22.4035

MMH y(2) 0.8100 843.0178 0.8100 29.4635 0.8100 22.4035
y(3) 3.6725 843.0178 3.6725 29.4635 3.6725 22.4030
y(1) 3.3600 843.0178 3.3594 29.4635 3.3592 22.3623

MHH y(2) 3.6725 843.0178 3.6725 29.4635 3.6725 22.3703
y(3) 3.6725 843.0178 3.6725 29.4635 3.6725 22.3703

HHH 3.6725 843.0178 3.6725 29.4635 3.6725 22.4001

Table 2
E¤ects of Changing the Minimum Reservation Utility of the Principal

(LLL, case 1)

U 0 5 10

w 1145.5526 1010.7817 876.0108bV 843.0178 791.6873 736.8045�
V ICAP

	
[-3.1325, 843.0178] [-3.1325, 791.6873] [-3.1325, 736.8045]
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Figure 1: U ICAP
�
(:; yi) ; i 2 f1; 2; 3g (LMH, case 1)
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Figure 2: U� (:; yi) ; U ICAP
�
(:; yi) ; i 2 f1; 2; 3g (LMH, case 1)
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(:); U�(:) (LLL, case 3)
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Agent's utility in time given a starting point (y(1),V0) s.t. V0 in VIC2P(y(1)), LMH, Case 3  
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