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Abstract

This paper develops a new semiparametric method for modelling multivariate

data, particularly when it is desired to assign different levels of importance to various

regions in the domain of the joint distribution. The main idea is to estimate the

unknown parameter by maximizing a Cramer-von-Mises type distance between a

particular type of empirical distribution and the true distribution, which is specified

in a semiparametric way that allows a flexible form for the multivariate distribution.

The Cramer-von-Mises function incorporates a weight function to assign differential

weights to different parts of the domain of the distribution. The main focus of this

paper is estimating the lower tail of the joint distribution accurately. In a simulation

study, the performance of the new semiparametric method is found to be better than

that of the inference function method. The proposed estimation method is used to

estimate the joint distribution of DM-USD and Yen USD exchange rates.

JEL Classifications: C13, C14 and C32

Some key words: Copula; minimum distance; Cramer - von Mises; pseudolikelihood;
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1 INTRODUCTION

The class of semiparametric methods continue to attract considerable interest as a

suitable compromise between fully parametric and fully nonparametric methods for

modeling multivariate data. The former, particularly that based on multivariate

normal distribution, is usually very restrictive because it is capable of represent-

ing only a limited range of shapes, but the method is usually easier to implement.

By contrast, the latter, which includes multivariate kernel and spline estimates, is
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very flexible but usually difficult to implement and may require unrealistically large

samples. In this paper, we develop a new semiparametric method for modeling mul-

tivariate data when it is desired to assign different levels of importance to different

regions in the domain of the distribution. In terms of flexibility and ease of imple-

mentation, the method developed in this paper lies between the two extremes of

fully parametric and fully nonparametric approaches.

To estimate the unknown parameter in the model, we maximize a Cramèr-von-

Mises type distance between a particular type of empirical distribution and the true

distribution, which is specified in a semiparametric way allowing a flexible form

for the multivariate distribution. Further, we also use a weight function to assign

differential weights to different parts of the domain of the distribution. This is an

attractive feature of this new method compared to the likelihood based ones and

those based on estimating equations.

To provide a brief overview of the type of situations that we have in mind, let

us consider an example. Let Y1 and Y2 denote the returns of two shares, say a

bank and a mining company respectively. Let x denote the return on a market

index such as the Dow Jones Index. Suppose that Y1 = xT
1 β1 + ε1 and Y2 =

xT
2 β2 + ε2, where x1 = x2 = (1, x)T . Thus, after accounting for the overall market

movements, ε1 and ε2 represent the risks that are not under the control of the

investor. In this setting, examples of quantities that are of interest include the

following, where a1 and a2 are given numbers: (i) The probability that the returns

from the investments would fall below certain specified levels for a given value of x,

for example, pr(Y1 ≤ a1 and Y2 ≤ a2 | x); (ii) The probability that the return from

one investment falls below a specified level given that the other has already fallen

below a certain level, for example, pr(Y1 ≤ a1 | Y2 ≤ a2,x), and (iii) the quantile

c, defined by pr{b1Y1 + (1 − b1)Y2 ≤ c | x} = α, where α is a given number, for

example α = 0.05 or 0.4. In quantitative finance, the quantity c in the last example

is usually referred to as the Value at Risk of a portfolio in which b1 and (1− b1) are

the proportions of investment in the first and second assets respectively.

There are similar quantities of interest in other contexts, where one is essentially

interested in estimating the joint distribution of ε1 and ε2 in the region where both of

them are negative. In risk management where the variable of interest is the return
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from an investment, investors and hence portfolio managers pay more attention

to the lower tail, and quantities such as semi-variance, which is essentially the

variance of the negative values. Note that in contrast to the traditional objective

of regression modeling, wherein the main interest is the regression parameter with

the error distribution being a nuisance parameter/function, their roles are reversed

in the foregoing example. In this type of inferential settings, wherein the error

distribution itself is the object of interest, we cannot afford to assume that the error

distribution is restricted to be multivariate normal. The quantities of particular

interest are functions of the joint distribution of (ε1, ε2).

Thus, the methodological part of the problem requires to estimate the joint

distribution of (ε1, ε2) using a procedure that assigns more importance to its joint

negative tail without imposing strong parametric forms for the joint distribution

of ε := (ε1, ε2). This paper develops a new flexible method to suit this objective.

To this end, we specify the joint distribution of ε using copulas because of their

attractive features in this type of settings (see (Joe, 1997) and (Cherubini et al.,

2004)). It would be helpful to briefly recall some of these relevant results.

The joint cumulative distribution function H(x) of a random vector X with

continuous marginals Fj(xj) = pr(Xj ≤ xj) has the unique representation H(x) =

C{F1(x1), . . . , Fk(xk)}, where C(u) is the joint cumulative distribution of U :=

(U1, . . . , Uk) and Uj is the random variable Fj(Xj) which is distributed uniformly

on [0, 1], j = 1, . . . , k (Sklar (1959)). The function C is called the copula of X.

This suggests that the joint distribution of X can be specified in two convenient

stages independently: first, specify distributions F1, . . . , Fk for the margins, and

in the second stage specify a joint distribution C on the unit cube. Two of the

reasons for increased interest on copulas include the flexibility they offer because

they can represent practically any shape for the joint distribution, and their ability

to separate the intrinsic measures of association between the components of X and

the functional forms of the marginal distributions.

Usually the copula belongs to a parametric family, and in fact, the marginal dis-

tributions themselves may be from parametric families. In this case, the joint cumu-

lative distribution H(x) of X takes the form H(x; α1, . . . , αk,θ) = C{F1(x1; α1), . . . ,

Fk(xk; αk); θ}, and θ is called the dependence parameter or association parameter.
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This helps to separate the marginal parameters from the intrinsic association which

is captured by θ. An attractive feature of this approach is that the copula C and the

association parameter θ are invariant under continuous and monotonically increas-

ing transformations of the marginal variables. Hence copulas have an advantage

when the interest centers on intrinsic association among the marginals (Wang and

Ding (2000), Oakes and Wang (2003)).

Now, we provide a brief outline of the approach developed in this paper. The

estimation is carried out in two stages. In the first stage, we estimate the regression

parameters for each margin separately. Let ε̃1j, . . . , ε̃nj, denote the residuals for the

jth component and let ε̃i = (ε̃i1, . . . , ε̃ik)
T , i = 1, . . . , n. These are then used to

construct an empirical copula, C̃n(u), to estimate the true unknown copula in a way

that has some resemblance to the traditional empirical distribution function. Now,

we estimate θ by θ̃ defined by

θ̃ = arg min
θ

Jn(θ) where Jn(θ) =

∫
{C̃n(u)− C(u; θ)}2W (u, γ̃) du, (1)

W (u, γ̃) is some weight function that enables us to assign different levels of impor-

tance to different parts in the domain of C(u; θ), and γ̃ is a statistic. Thus, the

weight function may depend on the data, for example, W (u, γ̃) = I(u1 ≤ γ̂1, u2 ≤
γ̂2), where (γ1, γ2) = (F1(0), F2(0)) so that a positive weight is assigned only to the

region where ε1 and ε2 are estimated to be negative.

Let us note that the existing results for estimation using Cramèr-von-Mises dis-

tance between the empirical distribution and a member of the family of parametric

distributions, are not applicable to our approach based on (1) because C̃n(u) is not

the usual empirical distribution function, but the empirical copula based on esti-

mated parameters and functions. Even for independently and identically distributed

observations, the empirical copula is not a sum of independently and identically

distributed random variables. Consequently, we encounter some mathematical chal-

lenges.

In the foregoing example, we considered a simple form of the linear model. In

financial risk management, usually high-frequency financial time series data are

used. For these data, GARCH-type models are used frequently in practice. In fact,

this class of models have become the work-horse of financial econometrics. In the
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main body of this paper, we consider linear and nonlinear GARCH models.

We show that the resulting estimator θ̃ is asymptotically normal and obtain

an estimator for its asymptotic covariance matrix. In the asymptotic results, the

efficiency of the estimators of β does not affect the efficiency of θ̃, but does affect

the efficiency of estimators of events such as pr(ε ≤ a).

Once θ̃ has been computed, the joint distribution of ε would be estimated by

C(F̃n(ε); θ̃), where F̃n(t) =
(
F̃n1(t1), . . . , F̃nk(tk)

)
and F̃nj(tj) = n−1ΣiI(ε̃ij ≤ tj),

the empirical distribution of the residuals obtained in the first stage of estima-

tion. This estimated joint distribution of the error term is a fundamental quan-

tity of interest for statistical inference. If in fact the true copula C0(u) of ε is

not a member of the family C(u; θ) then θ̃ converges to θ0, the point at which
∫ {C0(u) − C(u; θ)}2W (u,γ0) du reaches its minimum. Thus, even if our choice

of the parametric form C(u; θ) is incorrect, the distribution being estimated is still

the ’best’ in terms of being ’closest’ to the true copula with respect to the distance

d(C1, C2) =
∫ {C1(u)− C2(u)}2W (u,γ0) du.

Thus, for the purpose of estimating probabilities of various events of interest,

for example, as in the investment example discussed earlier, a method based on

a distance measure, such as that proposed in this paper, is intuitively appealing.

Even though we allow the marginal distributions to be unknown and a nonpara-

metric method is adopted for this aspect, our estimation method does not require

complicated smoothing methods such as a kernel or spline estimates because the es-

timation method requires only an estimate of the cumulative distribution function

for which we use an empirical distribution function.

The plan of the paper is as follows: Section 2 states the main results and an

indication of the main arguments for the proofs. Section 3 provides discussion of a

simulation study, and section 4 discusses an example. Section 5 concludes.

2 The Main Results

Since the results for multivariate nonlinear time-series models are significantly more

complicated, we shall first provide the results for the linear regression model in

detail. Then we shall extend to the more general case.
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2.1 The linear regression model

We assume that the true model for Y := (Y1, . . . , Yk) is Yj = xT
j βj + εj, where xj is

a nonstochastic vector of covariates associated with Yj, the jth component of Y. Al-

though we assume that xj is nonstochastic, most of the results would hold when xj

is stochastic, with appropriate modifications. Suppose that there are n independent

observations (Yi1,xi1, . . . , Yik,xik), (i = 1, . . . , n). Thus, we have Yij = xT
ijβj + εij,

(i = 1, . . . , n, j = 1, . . . , k). Let the probability density and cumulative distribution

functions of εj be denoted by fj and Fj respectively. Let C0(u) denote the true

copula of ε = (ε1, . . . , εk)
T where u = (u1, . . . , uk)

T . Let C(u; θ) and c(u; θ) denote

the assumed parametric form of the copula of ε and the corresponding density func-

tion, respectively. For the time being we shall assume that θ is scalar for simplicity.

The results for the case when it is a vector will be presented later; this extension

is quite straight forward except for complicated notation. Let F = (F1, . . . , Fk)
T

and F(ε) = (F1(ε1), . . . , Fk(εk))
T . Let the empirical distribution functions for the

univariate and multivariate cases be defined as Fnj(t) = (n + 1)−1
∑

i I(εij ≤ t) and

Fn(ε) = (n+1)−1
∑

I(εi ≤ ε) respectively. Now, the empirical copula Cn is defined

by

Cn(u) = Fn(F−1
n1 (u1), . . . , F

−1
nk (uk)), (2)

where F−1
nj (uj) is defined as inf{t : Fnj(t) ≥ uj}, for example, see Fermanian et al.

(2004) or Tsukahara (2005).

The main parametric methods of estimating θ are maxmimum likelihood[ML]

and inference function for margins[IFM] (for example, see Joe (1997)). These esti-

mators are asymptotically normal under some standard regularity conditions which

include that the marginal distributions be correctly specified. For the case when

the copula is correctly specified, Genest et al. (1995a) introduced a more appealing

method (see also Oakes (1994)).

Now, we introduce the following semiparametric estimator of the copula param-

eter θ, when the marginal distributions are unknown: (a) Let β̃j be an estimator of

βj such that n1/2(β̃j−βj) = Op(1). (b) Compute the residuals ε̃ij = yij−xT
ijβ̃j, for

i = 1, . . . , n. (c) Estimate Fj(t) by F̃nj(t), the empirical distribution of the residuals

defined by F̃nj(t) = (n + 1)−1Σn
i=1I(ε̃ij ≤ t); thus F̃nj is the empirical distribution
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of {ε̃1j, . . . , ε̃nj}. (d) Compute the copula by C̃n, the empirical copula for residuals

defined by

C̃n(u) = F̃n(F̃−1
n1 (u1), . . . , F̃

−1
nk (uk)) (3)

where F̃n(ε) = (n + 1)−1
∑

I(ε̃i ≤ ε). (e) Estimate θ by θ̃, defined by θ̃ =

argminθJn(θ) where

Jn(θ) =

∫
{C̃n(u)− C(u; θ)}2W (u, γ̃) du (4)

and W (u, γ̃) is a given nonnegative weight function. This two-stage procedure is

similar to the Pseudo-likelihood approach of Genest et al. (1995b) which was also

indicated in broad terms by Oakes (1994), both for the case when (Yi1, . . . , Yik)

are independent and identically distributed for i = 1, . . . , n. It turns out that C̃n

converges in probability to the true copula C0(u). Consequently, Jn(θ) also converges

in probability, uniformly in θ, to J0(θ) defined by

J0(θ) =

∫
{C0(u)− C(u; θ)}2W (u, γ0) du (5)

where γ0 is the probability limit of γ̃. Therefore, θ̃ is likely to be a reasonable

estimator of θ0, which we define as the point at which J0(θ) reaches its minimum.

If C0(·) is a member of the family {C(·; θ) : θ ∈ Θ} then θ0 is the true value.

We will show that θ̃ is consistent and asymptotically normal, and obtain a closed

form expression for the asymptotic variance. By substituting sample estimates for

the asymptotic variance formulae, we shall obtain a consistent estimator of the large

sample variance of θ̃.

Now, let us indicate the essentials for obtaining the asymptotic distribution of
√

n(θ̃ − θ0). Under quite general conditions, θ̃ is a consistent estimator of θ0. By a

one-term Taylor expansion, we have

√
n(θ̃ − θ0) = {J̈n(θ̄)}−1

√
nJ̇n(θ0) (6)

where J̇ and J̈ are the first and second derivatives of Jn, and θ̄ ∈ (θ0, θ̃). Convergence

of {C̃n, γ̃, θ̄} in probability ensures that J̈n(θ̄)
p→ J̈0(θ0). Therefore, it remains to

obtain the asymptotic distribution of
√

nJ̇n(θ0).

Note that C̃n(u) in (3) is different from the Cn(u) in (2), the former is the

empirical copula of the residuals ε̃1, . . . , ε̃n. Since residuals are expected to be close
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to the true errors, we would expect C̃n(·) and Cn(·) to be close. It turns out, as

stated in the next lemma, that they are very close, and this plays a crucial role in

the derivations.

To indicate the main steps in deriving the asymptotic distribution of
√

n(θ̃−θ0),

we first assume that γ is a scalar and rewrite (6) as

√
n(θ̃ − θ0) = P1 + P2 + P3 + op(1) (7)

where

P1 = {J̈n(θ̄)}−1
√

n

∫
{C̃n(u)− Cn(u)}Ċ(u; θ0)W (u, γ̃) du (8)

P2 = {J̈n(θ̄)}−1
√

n

∫
{Cn(u)− C(u; θ0)}Ċ(u; θ0)W (u, γ0) du (9)

P3 = {J̈n(θ̄)}−1An

√
n(γ̃ − γ0) (10)

An =

∫
{Cn(u)− C(u; θ0)}Ċ(u; θ0)Ẇ (u, γ0) du, (11)

where Ẇ (u, γ) = (∂/∂γ)W (u, γ).

Lemma 1.

√
n

∫
{C̃n(u)− Cn(u)}Ċ(u; θ)W (u, γ̃) du = op(1), θ ∈ Θ. (12)

Since Cn is the empirical copula process based on independently and identically

distributed random variables, we can use existing results for empirical copula, for

example see Tsukahara (2005), to write

P2 = n−1/2
∑

ζi + op(1) (13)

where ζ1, . . . , ζn are iid and ζi is a function of εi; explicit expressions for ζi are given

below. We make the mild assumption that the preliminary statistic γ̃ used in the

weight function can be expressed as

√
n(γ̃ − γ0) = n−1/2

∑
ξ∗i + op(1) (14)

for some independent random variables ξ∗1 , . . . , ξ
∗
n where ξ∗i is a function of εi. There-

fore, we have

P3 = n−1/2
∑

ξi + op(1) (15)
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where ξi = J̈0(θ0)
−1Aξ∗i and A = plimAn. Now, combining (7)-(15), we have

√
n(θ̃ − θ0) = n−1/2

∑
(ξi + ζi) + op(1). (16)

Therefore,
√

n(θ̃−θ0) converges to a normal distribution. These heuristic arguments

hold when θ and γ are vectors as well. The relevant results are stated below briefly.

Let θ = (θ1, . . . , θk)
T and γ = (γ1, . . . , γm)T . Now, P1, P2 and P3 in (9, 10,

11), Ċ, J̇n are vectors, and A in (11) and J̈n are matrices. Let
√

n(γ̃ − γ0) =

n−1/2
∑

ξ∗i + op(1) and ξi = J̈0(θ0)
−1Aξ∗i . Let

ζi(θ) =

∫
b(u,θ){d1i(u,θ)− d2i(u,θ)} du, (17)

where

d1i(u, θ) = I(F(εi) ≤ u)− C(u; θ) (18)

d2i(u, θ) =
k∑

p=1

(∂/∂up)C(u; θ){I(F (εij) ≤ up)− up} (19)

b(u, θ) = K(θ)−1Ċ(u,θ) (20)

K(θ) =

∫
Ċ(u,θ)Ċ(u, θ)T W (u,γ0) du. (21)

This ζi corresponds to the the ζi in (13). Next, we state the main result.

Proposition 1. Under some regularity conditions, we have
√

n(θ̃−θ0)
d→ N(0, V ),

where V = lim n−1
∑

var(ξi + ζi).

For statistical inference on θ, we also need to be able to estimate the asymptotic

covariance matrix V . In most practical situations, this can be done in a straight

forward way. First, note that if the weight function W in the definition of Jn does

not depend on a preliminary statistic, then ξi = 0 and hence V = var(ζ). Since

ζi is a function of (θ, β, εi), a consistent estimator of V is the sample variance of

ζ̃1, . . . , ζ̃n, where ζ̃i = ζi(θ̃, β̃, ε̃i).

A slight modification of this method can be applied when the weight function W

depends on γ̃. To illustrate this let us assume that n−1/2(γ̃ − γ) = n−1/2
∑

Diτ
∗
i +

op(1) where {Di : i = 1, 2, . . .} are some matrices of constants and {τ ∗i : i = 1, 2, . . .}
are iid. As an example, this condition is satisfied when β̃ is the least squares or an

M -estimator and the weight function assigns a positive weight only to the region
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where the residuals are negative. Now, we have P3 = n−1/2
∑

Eiτ i + op(1) where

{Ei : i = 1, 2, . . .} are some matrices of constants and {τ i : i = 1, 2, . . .} are iid.

Therefore, we have

V = var(ζ) + (n−1ΣDi)var(τ )(n−1ΣDi)
T + (n−1ΣDi)cov(ζ, τ ).

Now, var(ζ), var(τ ), and cov(ζ, τ ) can be estimated as above by sample moments

and this leads to the consistent estimator

Ṽ = ṽar(ζ) + (n−1ΣDi)ṽar(τ )(n−1ΣDi)
T + (n−1ΣDi) ˜cov(ζ, τ ). (22)

Now, we consider the more general case of nonlinear time series models with

heteroscedastic errors.

2.2 Nonlinear time series models with GARCH errors

Let {yi : i = 0,±1,±2, . . .} denote a vector time series, where yi = (y1i, . . . , yki)
T ,

and let the data generating process be

yij = µij(α1j) +
√

hij(αj)εij, (23)

where {(εi1, . . . , εik) : i = 1, . . . , n} are n independently and identically distributed

random variables, αj = (αT
1j, α

T
2j)

T , and µij and hij may depend on past observa-

tions and covariates. Here, we shall adopt the notation in Koul and Ling (2006).

Throughout, we shall assume that the functional forms of µij(αj) and hij(αj) are

known and that they are twice continuously differentiable functions of α1j and αj

respectively. Further, we shall assume that the series {yij} is strictly stationary and

ergodic, and that y0j is independent of all previous observations, for every j. Let

α = (αT
1 , . . . , αT

k )T and α0 denote the true parameter value of α.

Let Fj be the cumulative distribution function of {εij} and let fj denote the

corresponding density function. Let C0(u) and c0(u) denote the copula of ε and

the corresponding density function, respectively, where u = (u1, . . . , uk)
T and ε =

(ε1, . . . , εk)
T . Let F = (F1, . . . , Fk), and F(ε) = (F1(ε1), . . . , Fk(εk)).

We assume that the time series model (23) can be estimated for each margin

separately, and let α̃j denote a
√

n−consistent estimator of α0
j , (j = 1, . . . , k). ( see
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Koul and Ling (2006)). Now, define the residuals corresponding to {εij} by

ε̃ij = [yij − µij(α̃j1)]/
√

hij(α̃j). (24)

Let F̃nj(t) = (n + 1)−1Σn
i=1I(ε̃ij ≤ t) and F̃n(ε) = (F̃n1(ε1), . . . , F̃nk(εk))

T ; thus,

F̃nj(t) is the edf of the residuals {ε̃ij}.
Now we define the minimum distance estimator θ̃ as the minimizer of Jn(θ)

as in the previous subsection except that C̃ now is the empirical copula of the

residuals ε̃1, . . . , ε̃n. Let Cn denote the empirical copula of the unobserved errors

ε1, . . . , εn. Now, the heuristic arguments presented in the previous subsection for

the regression model are just as applicable to the present time-series models as

well. The technical details required to provide a rigorous proof of the asymptotic

normality of the estimator of θ in the next result are considerably more complicated,

however.

Proposition 2. Under some regularity conditions, we have
√

n(θ̃− θ0)
d→ N(0, V )

where V as in Theorem 1. A consistent estimator of V is (22) with ε̃ji in (24).

This theorem says that the MD method provides an asymptotically normal es-

timator of the copula parameter, which in turn can be used for estimating various

quantities of interest such as the probabilities of joint events. The MD estimator

is consistent when the parametric family is correctly specified. To illustrate an ap-

plication of this estimator, we may think of the random error components as the

risky parts that are not in our control. In this context, the risk manager may be

interested to estimate the probability that both these fall below their respective 30%

quantiles. In other words, we wish to estimate Pr[ε1,T+1 ≤ F−1
1 (0.3) and ε2,T+1 ≤

F−1
2 (0.3) | FT ] where F1 and F2 are the distribution functions of ε1,T+1 and ε1,T+1 re-

spectively. An estimate of this is C[F̃−1
1 (0.3), F̃−1

2 (0.3); θ̃] where F̃j is the empirical

of the residuals of the jth component (j = 1, 2).

Instead of stating the event in terms on the error terms we may wish to state it

in terms of the observed variables. Suppose that we wish to estimate pr[Y1,T+1 ≤
b1 and Y2,T+1 ≤ b2 | FT ] for some given b1 and b2. This may be estimated by

C(a1, a2; θ̂) where a1 = b1 − µ̂1 and a2 = b2 − µ̂2. Bootstrap methods maybe used

for computing standard errors.
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3 Simulation Study

A simulation study was carried out to compare the IFM method with the MD

method. Since our purpose of introducing the MD method was broader than esti-

mating the unknown parameter, there is no unique criterion for such a comparison.

In this simulation we will compare how well the probability of the lower tail of a

bivariate distribution is estimated by this method, particularly when the parametric

family of copulas is misspecified.

Design of the study: There are two parts to this simulation study. In the first, we

considered bivariate independently and identically distributed observations. In the

second, we considered a bivariate GARCH model. These are described below in

turn.

To describe the iid setting, let Yt = (Y1t, Y2t)
T denote a bivariate random vari-

able. Assume that Y1, . . . , Yn are iid with cdf C0(F1(y1), F2(y2), where F1 and F2

are the marginal distributions and C0 is the copula of Y. The following pairs of dis-

tributions were studied for (F1, F2): (i) N-N: Y1, Y2 ∼ N(0, 1); (ii) T-T: Y1, Y2 ∼ tr;

(iii) T-ST: Y1 ∼ tr and Y2 ∼ skew tr with skewness = 0.5; (iv) T-C: Y1 ∼ tr and

Y2 ∼ χ2
5.

For the copulas, the followings families were studied: Frank, Clayton, Gumbel,

Joe, and symmetrized Joe-Clayton. The value of the copula parameter was chosen

so that the Kendall’s τ is 0.5.

The IFM method assumed that the marginal distributions were normal with un-

known means and standard deviations. Therefore, when the marginal distributions

are N-N, they are correctly specified for the IFM. In this case, if the copula is also

correctly specified then the IFM would be consistent. When the error distribution

is T-T, or T-ST, or T-C, the marginal distributions are misspecified for the IFM.

Therefore, in these three cases, IFM estimates are unlikely to be consistent.

The objective of the simulation study was to evaluate how well the methods

perform for estimating C0(a, a) for a range of values of a near 0.5; we chose a =

0.3, 0.4, 0.5, 0.6. Since the quantity being estimated, namely C0(a, a) = pr[Y1 ≤
F−1

1 (a) and Y2 ≤ F−1
2 (a)], is a probability associated with the lower tail, we would

like to fit the data well for the lower tail region. To this end, we chose a weight
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function that assigns a positive weight to the lower tail, {u ≤ 0.75 and v ≤ 0.75},
in the domain [0, 1]2 of the copula. More specifically we chose w(u, v) = I{u ≤
0.75 and v ≤ 0.75}[{C(u, v; θ̃)+0.01}{1.01−C(u, v; θ̃}]−1 where θ̃ is a n1/2-consistent

estimator of θ.

In the second part of the study, we considered the following GARCH model:

Y1t =
√

h1tη1t and Y2t =
√

h2tη2t where h1t = 0.2 + 0.1y2
1,t−1 + 0.15h1,t−1, h2t =

0.1 + 0.1y2
1,t−1 + 0.15y2

2,t−2 + 0.1h2,t−1, and (η1t, η2t) are iid with distribution func-

tion C0{F1(y1), F2(y2)}, where F1, F2 and C0 as in the previous part of the de-

sign for iid observations. The quantity being estimated is C0(a, a) = pr[η1,t+1 ≤
F−1

1 (a) and η2,t+1 ≤ F−1
2 (a) | Ft] for a = 0.3, 0.4, 0.5, 0.6, which corresponds to that

in the previous part for the iid setting.

Since the simulations were computing intensive, the MD method was applied

only with data generated from the normal distribution for the error terms. We

could have evaluated the method with data generated from T-T, T-ST, and T-C.

Fortunately, the simulation results to be presented show that this is not necessary.

Our focus is on the realistic setting when the copula and marginal distributions

are misspecified. Consequently, the copula parameter itself is not of much interest

and every method studied in this paper is inconsistent. The relevant question is,

how large is the difference between what would like to estimate and what is being

estimated. Therefore, we focus on the asymptotic bias.

Results:

(i). Marginal distributions and the copula are correctly specified: These results

are in Table 1 under the heading N-N for IFM. The results in these tables under

the headings T-T, T-ST and T-C correspond to the cases when the margins are

misspecified for IFM since IFM requires teh marginal distributions to be specified

by a parametric family, and we chose the normal distribution for this purpose. These

results show that the parameters being estimated are equal to the true parameter

values.

(ii). The copula is correctly specified, but the marginal distributions are incorrectly

specified for the IFM: These results are also in Table 1, but under the headings

N-N, T-T and T-ST. They indicate that estimates based on the IFM method are

inconsistent, but the bias is small.
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When the observations are iid, the empirical copula is the same for different

marginal distributions. Therefore, the MD and the semiparametric estimates would

remain unchanged for different marginal distributions. This is not the case for the

GARCH model. It is reassuring to note that Table 1 shows that the estimates for

MD and semiparametric methods under GARCH structure are the same as those

under iid observations.

(iii). The copula is incorrectly specified: These results are given in Tables 2 - 5.

Since the copula is incorrectly specified, the ’pseudo likelihood’ used by IFM and

the semiparametric methods are incorrect irrespective of whether the margins are

correctly specified or not. Here the term ’pseudo likelihood’ is used loosely. However,

the results for different marginal distributions are useful to assess the sensitivity of

IFM to the specification of the marginal distributions. For the semiparametric and

MD methods, the exact forms of the marginal distributions are not required because

they are estimated by the empirical distributions of the residuals. The results show

that the MD method performs better than the others. This was precisely what we

expected as was motivated in the previous sections.

In addition to estimating the tail probability C0(a, a) for different values of a,

we also estimated the global measures, Kendall’s τ and Spearman’s ρ. Although

estimation of these global measures were not our prime goal, it is encouraging to

note that the MD estimates are closer to the true value than the others, in almost

all cases.

4 An example

Let us consider an example to indicate the nature of the topic studied in this paper.

The following example is a slightly modified version of that studied by Patton (2006).

Some of the following discussions are similar to those for the illustrative example in

Kim et al. (2008).

Let E1,t and E2,t denote the DM-USDollar and Yen-USDollar exchange rates

respectively. Let Y1t = logE1,t − logE1,t−1 and Y2t = logE2,t − logE2,t−1. Thus, Y1t

and Y2t can be seen as measures of returns of the two investments. Consider the
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model

Y1t = µ1 + ε1t, ε1t =
√

h1tη1t, h1t = α11 + α12ε
2
1,t−1 + α13h1,t−1,

Y2t = µ2 + ε2t, ε2t =
√

h2tη2t, h2t = α21 + α22ε
2
2,t−1 + α23h2,t−1,

(25)

where {η1t, η2t} are iid. Let C0(u1, u2) denote its copula.

We use the data for the period Jan 1991 - Jan 1999, a period prior to the intro-

duction of the Euro. The total number of observations is 2046. Let us suppose that

we are interested to estimate probabilities of events such as P (y1n ≤ log(t), y2n ≤
log(t)), and P (η1n ≤ t, η2n ≤ t). Since these events correspond to the lower tail, we

use the same weight function as that in the simulation study.

We estimated several copulas and evaluated their goodness of fit. The Gaussian

copula family appears to fit well. The copulas estimated by the semiparametric and

minimum distance methods are C(F̃1n(η̃1), F̃2n(η̃2); 0.53) and C(F̃1n(η̃1), F̃2n(η̃2); 0.55)

respectively, where F̃1n and F̃2n are the empirical distribution functions of the resid-

uals {η̃1t} and {η̃2t} respectively, and C(u1, u2; θ) is the Gaussian copula. In this

particular instance, the semiparametric and MD estimates are close, and hence any

estimates based on the methods would also be close. However, in general, this would

not be case.

While the SP estimator converges to a point, say θa, it is difficult to interpret

exactly what this point represent. By contrast, we know that the MD estimator

also converges to θ0 and this is the point such that the true copula C0 is closest to

C(·; θ0) in terms of the distance J0 defined in (5). Therefore, intuitively the MD

results are more appealing to the context of the present example. It reassuring that

the SP and the MD methods led to results that are close in this particular case.

However, in general, they could be very different.
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Table 1: Comparison of minimum distance, semiparametric and IFM methods with

a correctly specified copula.

Population IFM IFM IFM IFM SP MD

Parameter Value (N-N) (T-T) (T-ST) (T-C)

True and fitted copula:Frank; iid observations

C0(0.3, 0.3) 0.1967 0.1967 0.2004 0.1990 0.1968 0.1967 0.1966

C0(0.4, 0.4) 0.2906 0.2905 0.2949 0.2933 0.2908 0.2906 0.2905

C0(0.5, 0.5) 0.3889 0.3887 0.3933 0.3916 0.3890 0.3888 0.3888

C0(0.6, 0.6) 0.4906 0.4905 0.4949 0.4933 0.4908 0.4906 0.4905

τ 0.4999 0.4998 0.5169 0.5105 0.5008 0.5000 0.4999

ρ 0.6945 0.6945 0.7139 0.7067 0.6955 0.6946 0.6945

True and fitted copula: Frank; GARCH margins

C0(0.3, 0.3) 0.1967 0.1966 0.2004 0.1989 0.1967 0.1966 0.1967

C0(0.4, 0.4) 0.2906 0.2905 0.2948 0.2932 0.2907 0.2905 0.2906

C0(0.5, 0.5) 0.3889 0.3887 0.3932 0.3915 0.3889 0.3887 0.3888

C0(0.6, 0.6) 0.4906 0.4905 0.4948 0.4932 0.4907 0.4905 0.4906

τ 0.4999 0.4997 0.5167 0.5102 0.5003 0.4996 0.4999

ρ 0.6945 0.6943 0.7136 0.7062 0.6950 0.6942 0.6946
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Table 2: Comparison of minimum distance, semiparametric and IFM methods with

incorrectly specified copula when the observations are iid.

Population IFM IFM IFM IFM SP MD

Parameter Value (N-N) (T-T) (T-ST) (T-C)

True copula:Frank; fitted copula family: Clayton

C0(0.3, 0.3) 0.1967 0.1805 0.1716 0.1902 0.1926 0.1807 0.2079

C0(0.4, 0.4) 0.2906 0.2544 0.2448 0.2648 0.2675 0.2545 0.2844

C0(0.5, 0.5) 0.3889 0.3376 0.3283 0.3478 0.3504 0.3377 0.3673

C0(0.6, 0.6) 0.4906 0.4322 0.4242 0.4412 0.4435 0.4324 0.4587

τ 0.5003 0.3494 0.3140 0.3881 0.3979 0.3500 0.4608

ρ 0.6952 0.4995 0.4528 0.5491 0.5613 0.5003 0.6375

True copula:Gumbel; fitted copula family: Clayton

C0(0.3, 0.3) 0.1822 0.1790 0.1719 0.1890 0.1909 0.1792 0.1959

C0(0.4, 0.4) 0.2737 0.2527 0.2451 0.2635 0.2656 0.2530 0.2712

C0(0.5, 0.5) 0.3752 0.3360 0.3287 0.3465 0.3486 0.3362 0.3540

C0(0.6, 0.6) 0.4856 0.4309 0.4245 0.4401 0.4419 0.4311 0.4468

τ 0.4995 0.3433 0.3154 0.3832 0.3910 0.3443 0.4115

ρ 0.6816 0.4916 0.4546 0.5429 0.5527 0.4928 0.5782
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Table 3: Comparison of minimum distance, semiparametric and IFM methods with

incorrectly specified copula when the observations are iid.

Population IFM IFM IFM IFM SP MD

Parameter Value (N-N) (T-T) (T-ST) (T-C)

True copula: Joe; fitted copula family: Clayton

C0(0.3, 0.3) 0.1679 0.1651 0.1387 0.1796 0.1895 0.1654 0.1830

C0(0.4, 0.4) 0.2677 0.2379 0.2104 0.2534 0.2641 0.2382 0.2571

C0(0.5, 0.5) 0.3786 0.3217 0.2963 0.3366 0.3470 0.3220 0.3402

C0(0.6, 0.6) 0.4969 0.4186 0.3976 0.4314 0.4405 0.4188 0.4345

τ 0.4998 0.2887 0.1870 0.3459 0.3852 0.2897 0.3594

ρ 0.6798 0.4187 0.2730 0.4949 0.5454 0.4200 0.5124

True copula: Gumbel; fitted copula family: Frank

C0(0.3, 0.3) 0.1822 0.1966 0.2018 0.2018 0.2015 0.1966 0.1872

C0(0.4, 0.3) 0.2737 0.2905 0.2964 0.2965 0.2961 0.2905 0.2796

C0(0.5, 0.5) 0.3752 0.3887 0.3949 0.3950 0.3945 0.3887 0.3773

C0(0.6, 0.6) 0.4856 0.4905 0.4964 0.4965 0.4961 0.4905 0.4796

τ 0.4995 0.4996 0.5230 0.5233 0.5216 0.4997 0.4573

ρ 0.6816 0.6942 0.7206 0.7210 0.7191 0.6944 0.6441
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Table 4: Comparison of minimum distance, semiparametric and IFM methods with

incorrectly specified copula when the margins follow GARCH models.

Population IFM IFM IFM IFM SP MD

Parameter Value (N-N) (T-T) (T-ST) (T-C)

True copula: Frank; fitted copula family: Clayton

C0(0.3, 0.3) 0.1967 0.1801 0.1712 0.1894 0.1921 0.1805 0.2076

C0(0.4, 0.4) 0.2906 0.2539 0.2443 0.2640 0.2669 0.2544 0.2841

C0(0.5, 0.5) 0.3889 0.3372 0.3279 0.3470 0.3498 0.3376 0.3670

C0(0.6, 0.6) 0.4906 0.4319 0.4239 0.4405 0.4430 0.4323 0.4584

τ 0.4999 0.3479 0.3124 0.3852 0.3959 0.3495 0.4596

ρ 0.6945 0.4975 0.4507 0.5453 0.5588 0.4996 0.6361

True copula: Gumbel; fitted copula family: Clayton

C0(0.3, 0.3) 0.1822 0.1788 0.1717 0.1886 0.1908 0.1791 0.1960

C0(0.4, 0.4) 0.2737 0.2525 0.2449 0.2631 0.2655 0.2528 0.2712

C0(0.5, 0.5) 0.3752 0.3357 0.3285 0.3461 0.3484 0.3361 0.3540

C0(0.6, 0.6) 0.4856 0.4306 0.4244 0.4397 0.4418 0.4309 0.4468

τ 0.4995 0.3424 0.3147 0.3818 0.3905 0.3437 0.4116

ρ 0.6816 0.4903 0.4537 0.5411 0.5520 0.4921 0.5783
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Table 5: Comparison of minimum distance, semiparametric and IFM methods with

incorrectly specified copula when the margins follow GARCH models

Population IFM IFM IFM IFM SP MD

Parameter Value (N-N) (T-T) (T-ST) (T-C)

True copula: Joe; fitted copula family: Clayton

C0(0.3, 0.3) 0.1679 0.1649 0.1393 0.1793 0.1893 0.1653 0.1831

C0(0.4, 0.4) 0.2677 0.2377 0.2110 0.2531 0.2639 0.2381 0.2571

C0(0.5, 0.5) 0.3786 0.3216 0.2968 0.3363 0.3469 0.3220 0.3402

C0(0.6, 0.6) 0.4969 0.4185 0.3980 0.4312 0.4404 0.4188 0.4346

τ 0.4998 0.2880 0.1891 0.3447 0.3848 0.2895 0.3596

ρ 0.6798 0.4178 0.2762 0.4934 0.5448 0.4199 0.5126

True copula: Gumbel; fitted copula family: Frank

C0(0.3, 0.3) 0.1822 0.1965 0.2017 0.2017 0.2013 0.1965 0.1873

C0(0.4, 0.4) 0.2737 0.2904 0.2964 0.2964 0.2960 0.2904 0.2796

C0(0.5, 0.5) 0.3752 0.3886 0.3948 0.3949 0.3944 0.3886 0.3773

C0(0.6, 0.6) 0.4856 0.4904 0.4964 0.4964 0.4960 0.4904 0.4796

τ 0.4995 0.4994 0.5226 0.5229 0.5211 0.4993 0.4574

ρ 0.6816 0.6940 0.7202 0.7205 0.7185 0.6938 0.6443

True copula: Symmetrized Joe-Clayton; fitted copula family: Clayton

C0(0.3, 0.3) 0.2088 0.2172 0.2177 0.2153 0.2039 0.2172 0.2217

C0(0.4, 0.4) 0.2933 0.2950 0.2956 0.2929 0.2800 0.2951 0.3002

C0(0.5, 0.5) 0.3881 0.3781 0.3787 0.3759 0.3628 0.3782 0.3835

C0(0.6, 0.6) 0.4933 0.4686 0.4692 0.4666 0.4547 0.4687 0.4737

τ 0.5828 0.5004 0.5026 0.4925 0.4444 0.5007 0.5203

ρ 0.7658 0.6828 0.6852 0.6739 0.6180 0.6832 0.7047
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Table 6: Semiparametric [SP] and Minimum Distance [MD] estimates of the proba-

bilities of various events in the lower tail for the DM-USD and Yen-USD exchange

rates example.

Method t 0.2 0.3 0.4 0.5

SP pr(η1n ≤ t, η2n ≤ t) 0.0744 0.1475 0.2325 0.3398

MD pr(η1n ≤ t, η2n ≤ t) 0.0751 0.1487 0.2339 0.3414

SP pr(η1n ≤ t | η2n ≤ t) 0.2279 0.2266 0.3095 0.4143

MD pr(η1n ≤ t | η2n ≤ t) 0.2279 0.3101 0.4148 0.4997

t 1 0.9 0.7 0.3

SP pr(y1n ≤ log(t), y2n ≤ log(t)) 0.3328 0.2469 0.1056 0.0052

MD pr(y1n ≤ log(t), y2n ≤ log(t)) 0.3343 0.2484 0.1067 0.0053

SP pr(y1n ≤ log(t) | y2n ≤ log(t)) 0.4981 0.4250 0.2683 0.0641

MD pr(y1n ≤ log(t) | y2n ≤ log(t)) 0.4982 0.4254 0.2691 0.0649


