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Abstract

The parameters in duration models are usually estimated by a Quasi Maximum Likelihood
Estimator [QMLE], which is available in standard econometric software and is widely used in
practice. This estimator is efficient if the errors are iid and exponentially distributed. If the
error distribution is unknown, then it may not be the most efficient. Motivated by this, a class of
semiparametric estimators have been introduced recently by Drost and Werker (2004) to improve
upon the QMLE. Their method is based on the theory of efficient semiparametric estimation. A
thorough evaluation of the finite sample properties of this method is not yet available. Further,
although some parameters in several standard duration models are known to be nonnegative, the
aforementioned semiparametric estimator does not incorporate such nonnegativity constraints.
The purpose of this paper is to address these two issues. In particular, we propose a new
semiparametric estimator for the case when there are inequality constraints on parameters,
and report the results of simulation studies to evaluate the aforementioned two semiparametric
estimators. The results lead us to conclude the following when the error distribution is unknown:
(i) If the model does not impose inequality constraints on parameters then the Drost-Werker
estimator is better than the QMLE, and (ii) if the model does impose inequality constraints on
parameters then the estimator proposed in this paper is better than the Drost-Werker estimator
and the QMLE.

1 Introduction

The availability of intraday tick-by-tick financial data increased substantially during the past two
decades, which in turn has had a phenomenal impact on research in financial market microstructure.
Such high frequency data are usually analyzed using essentially two classes of models: generalized
autoregressive conditional heteroscedasticity [GARCH] models and duration models. In GARCH
type models, the response variable is observed at equally spaced time points. An example is the
hourly Dow-Jones index. By contrast, in duration models, the duration between two consecutive
events, such as financial transactions, is the response variable. A range of econometric models has
been proposed and studied in the literature to model the data generating process of durations. The
objective of this paper is to evaluate a recently developed method of estimating duration models and
propose an improvement when there are inequality constraints on some parameters, for example
the parameters may be nonnegative.

To introduce the basics of the duration model, let Xi denote the duration between (i − 1)th

and the ith events, Fi denote the information generated by the observations up to time i and
ψi = E(Xi | Fi−1), the expected duration. A duration model is usually expressed as Xi = ψiεi

where E(εi) = 1 and εi is referred to as the error term. The main objective of duration analysis
is to model ψi as a function of {. . . , Xi−2, Xi−1; . . . , ψi−2, ψi−1}. For example, a special case of the
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well-known linear autoregressive conditional duration[ACD] model of Engle and Russell (1998) is
the following ACD(1,1) model:

ψi = α + βXi−1 + γψi−1. (1)

More generally, ψi may take the form g(. . . , Xi−1; . . . , ψi−1; θ) where g is a given function and θ is
an unknown parameter. Further, g may also depend on exogenous variables.

For simplicity, let us temporarily assume that the error terms, ε1, . . . , εn, are independently
and identically distributed with f denoting their common probability density function[pdf]. If f is
known then the model can be estimated by maximum likelihood (for example, see Bauwens and Giot
(2000)). On the other hand, if f is unknown, as is usually the case in practice, the quasi maximum
likelihood estimator[QMLE] based on the likelihood corresponding to exponential distribution for
the error terms, is consistent and asymptotically normal. This amounts to setting f(t) = exp(−t)
for t > 0 in the likelihood function. However, such a QMLE is not necessarily the most efficient if
f deviates from the exponential distribution and/or the error terms are not independent. This is
important because the time-series nature of {Xi} suggests that the error terms {εi} are unlikely to
be independent and identically distributed with a known density function.

Recently, Drost and Werker (2004) proposed an efficient estimator of θ when the error distri-
bution is unknown and ε1, . . . , εn may not be independent. Their development is based on the
general theory of efficient semiparametric inference. Detailed accounts of this topic are given in
Bickel et al. (1993) and Tsiatis (2006). While Drost and Werker (2004) provided the theoretical
derivations of their estimator, a detailed evaluation of the finite sample properties of the proposed
estimator is not yet available. One of the objectives of this paper is to carry out such an evaluation.

In efficient semiparametric inference, the objective is to achieve high efficiency for inference on
a finite dimensional parameter in the presence of an unknown function such as the distribution of
the error terms. The theory on this topic is elegant and powerful. However, there is a significant
gap between this elegant theory and its implementation for use in empirical studies.

Motivated by these considerations, we conducted a large scale simulation study to evaluate
the performance of the Drost-Werker estimator[DW-estimator] for several duration models under a
range of scenarios and experimented with different methods of implementation. Our results suggest
that the DW-estimator is better than the usual QMLE overall, except when the true parameter
is restricted by inequality constraints, such as θ1 ≥ 0, θ2 ≥ 0, and their true values are close to a
certain boundary of the parameter space. This is indicated briefly in the next paragraph in the
context of the model (1).

By definition, duration Xi is nonnegative, and hence ψi ≥ 0. Consequently, the parameters
α, β and γ in (1) must be nonnegative as well. Further, we also have α + β ≤ 1. However, the
DW-estimator is not specifically designed to incorporate such inequality constraints and hence it
may turn out to be negative even when the true parameter is known, a priori, to be nonnegative.
If the DW-estimator β̂ of β turns out to be negative, one may be tempted to simply truncate it and
redefine it as β̂ = 0. Such a method of truncating an estimator is crude, particularly because there
is already a well-developed body of statistical theory for incorporating such inequality constraints.
A book-length treatment of this is given in Silvapulle and Sen (2005). In this paper, we propose
an inequality constrained estimator θ̄ of θ. A feature of our constrained estimator is that if the
DW-estimator satisfies the inequality constraints on the parameters, then the two estimators are
the same. Otherwise, the constrained estimator is the point on the boundary of the parameter
space that is ”closest” to θ̂ in some sense. A theoretical result provides the asymptotic distribution
of the inequality constrained estimator θ̄ and shows that it is likely to be closer to the true value
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than the unconstrained DW-estimator θ̂. The simulation results show that if the true value of the
parameter is far from the boundary of the parameter space, θ̂ tends to be an interior point of the
parameter space and consequently there is hardly any difference between θ̂ and θ̄. On the hand, if
the true value is close to the boundary of {θ} then our proposed constrained estimator θ̄ performs
better than the unconstrained DW-estimator θ̂, as expected.

This paper makes two significant contributions: (i) It provides an extensive evaluation of the
semiparametrically efficient DW-estimator, and (ii) it develops a new semiparametric estimator
when some parameters are known to be non-negative, or more generally when there are constraints
of the form h(θ) ≥ 0 where h is a vector function. The main findings of this paper may be
summarised as follows:

1. The errors are iid and the common distribution is exponential: The QMLE is equal to the
MLE and hence one would expect that the QMLE would be the best. The simulation results
are consistent with this, but the differences between QMLE and the semiparametric estimators
[SPE] tend to be generally small.

2. There are no constraints on parameters and the errors are not iid with error distribution being
exponential: Overall, the DW-estimator performed better compared to the QMLE.

3. There are inequality constraints on parameters: The constrained semiparametric estimator
introduced in this paper is better than the unconstrained DW-estimator.

4. There are inequality constraints on parameters and the errors are not iid with error distri-
bution being exponential: In this case, the QMLE was obtaineded by maximizing the quasi-
likelihood over the constrained parameter space leading to a constrained-QMLE. We consid-
ered the linear ACD model (1) and the Power ACD model defined by ψλ

i = α+βXλ
i−1+γψλ

i−1,

for which α, β and γ are nonnegative. We observed that the performance of the constrained
semiparametric estimator introduced in this paper relative to the constrained QMLE, de-
pends on the the ratio β/α. If this ratio is too close to zero, then none of the estimators is
uniformly best because the constrained semiparametric estimator is better for β but not for α

and γ. For all other scenarios, we observed that the constrained estimator θ̄ is at least as good
as, and often better than, the constrained QMLE. Overall, the constrained semiparametric
estimator θ̄ is better than the unconstrained DW-estimator and the constrained QMLE.

We conclude that the semiparametric estimator of Drost and Werker (2004) and the inequality
constrained estimator proposed in this paper are better than the QMLE that is available in standard
econometric software and is widely used in practice.

The plan of the paper is as follows. Section 2 deals with the methodological aspects. In subsec-
tion 2.1, we recall some known results, and in subsection 2.2 we define the inequality constrained
semiparametric estimator. Section 3 provides the results of a simulation study, section 4 provides
an empirical example to illustrate the new constrained semiparametric estimator, and section 5
concludes.

2 Semiparametric Estimation of Duration Models

As in the previous section, Xi denotes the ith observation of a duration variable X, Fi denotes
the information generated by the observations up to and including Xi, ψi = E(Xi | Fi−1) and
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εi = Xi/ψi. Fernandes and Grammig (2006) provided a survey of such duration models. A simple
example of each of the five main types that they studied, is given below.
1. Log-ACD Type I Model: log ψi = α + β log Xi−1 + γ log ψi−1

2. Log-ACD Type II Model: log ψi = α + βεi−1 + γ log ψi−1

3. Box-Cox ACD Model: log ψi = α + βευ
i−1 + γ log ψi−1

4. Linear ACD Model: ψi = α + βXi−1 + γψi−1

5. Power ACD Model: ψλ
i = α + βXλ

i−1 + γψλ
i−1

Let θ denote the unknown parameter; for example, θ = (α, β, γ)T for the linear ACD(1,1) model
in (1). Within the framework of this paper we do not assume that the error distribution belongs to
any known parametric family. Hence θ does not include parameters of the error distribution. To
ensure that the parameters are identified, we assume that E(εi | Fi−1) = 1. Usually, the errors are
assumed to be independently and identically distributed [iid] for simplicity. However, the nature
of the durations in practice suggests that this is unlikely to be the case in most practical situations
and hence it would be desirable for the method of inference to be robust against the violation of the
assumption of iid errors. To this end, let Hi−1 ⊂ Fi−1 and assume that the conditional distribution
of εi given the past depends only on the information in the set Hi−1. Thus, the smaller information
set Hi−1 contains the relevant past variables that are assumed to affect the distribution of εi given
the past. Now, with ψi = E(Xi | Fi−1), the semiparametric[SP] model is defined formally by

Xi = ψiεi, ψi = g(. . . , Xi−1; . . . , ψi−1;θ), and L(εi | Fi−1) = L(εi | Hi−1)

where g is a known function and L(εi | Fi−1) refers to the distribution of εi given Fi−1. The special
case of independently and identically distributed errors is obtained by settingHi equal to the trivial
field {φ,Ω}.

2.1 Semi-parametric Estimation

This subsection provides the essentials to formulate the inference problem, and states the relevant
semiparametric results in a concise form for convenience, but does not contain new theoretical
results. Let fi denote the probability density function [pdf] corresponding to L(εi | Hi−1). We
shall assume that fi is smooth, for example, it has continuous first derivative. It follows that
the conditional pdf of Xi given Fi−1 is ψ−1

i fi(x/ψi) and hence the loglikelihood `(θ) is given by
`(θ) =

∑
`i(θ), where `i(θ) = ln{ψ−1

i fi(Xi/ψi)}. If fi were known, then the maximum likelihood
estimator [MLE] of θ would be argmaxθ `(θ) and it would be asymptotically efficient. In practice,
fi is usually unknown. In this setting, the model is semiparametric and θ can be estimated consis-
tently by a quasi maximum likelihood estimator[QMLE] obtained by choosing the quasi likelihood
equal to the loglikelihood when fi is the exponential distribution with unit mean (see Bauwens and
Giot (2001)). Efficient estimation in general semiparametric models has a specialized but a growing
literature. Comprehensive accounts are given in Bickel et al. (1993) and Tsiatis (2006). An impor-
tant result in this area is that a desirable estimator of an unknown finite dimensional parameter θ

in semiparametric models is the so called, semiparametrically efficient estimator, which essentially
means that the estimator of θ is efficient in some sense for the model with the density function of
errors treated as unknown nuisance functions. Detailed discussions of these estimators are given
in Tsiatis (2006) and Newey (1990). Here we shall state the main relevant results, without the
technical details.

To introduce the semiparametrically efficient estimator of Drost and Werker (2004), first let us
suppose that the error density function is known. Let ġ(θ) denote (∂/∂θ)g(θ) for any function g,
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and let θ̃ denote a n1/2-consistent estimator of θ, for example it could be the QMLE introduced ear-
lier. The estimator, {θ̃n + {n−1Σn

i=1
˙̀
i(θ̃n) ˙̀

i(θ̃n)T }−1n−1Σn
i=1

˙̀
i(θ̃n)}, is called the one-step estima-

tor. It is asymptotically equivalent to the MLE, and is obtained by applying the Newton-Raphson
iteration once, starting from any n1/2-consistent estimator (see Bickel et al. (1993)).

Now, let us relax the assumption that the error density function is known. Consequently, ˙̀
i in

the foregoing expression for the one-step estimator is also unknown. Results on semiparametrically
efficient estimation suggests to replace ˙̀

i by ˜̀̇∗
i , a suitable estimator of ˙̀∗

i which is given by

˙̀∗
i (θ) =

εi − 1
var{εi|Hi}E

[
∂

∂θ
log(ψi)|Hi

]
−

(
1 + εi

f ′i(εi)
fi(εi)

)[
∂

∂θ
log(ψi)−E

[
∂

∂θ
log(ψi)|Hi

]]
.

This is the semiparametrically efficient score function, which corresponds to the efficient score
function in classical parametric inference with finite dimensional nuisance parameters. This result
is due to Drost and Werker (2004). Let ˜̀̇∗

i denote a ’suitable’ estimator of ˙̀∗
i . This essentially

means that the former converges to the latter with respect to integrated mean squared error.
For our computations in the next section, we adopted the following method. First compute

the residuals as ε̃i = Xi/ψi(θ̃), (i = 1, . . . , n), and then apply the nearest neighbor method to
the residuals for estimating unknown densities. For the local bandwidth at x, choose the standard
deviation of the 2k + 1 points near x, where k = n4/5/

√
2 and the neighbourhood is chosen so

that k points are on each side of x. The conditional moments and variances appearing in the
foregoing expression for ˙̀∗

i (θ) can be estimated using Nadaraya-Watson estimator. For example,
to estimate E[∂/∂θ log(ψi) | Hi], we regress (∂/∂θ) log(ψ̃i) on ψ̃i. These steps lead to the following
DW-estimator:

θ̂ = θ̃n +
(
n−1

n∑

i=1

˜̀̇∗
i (θ̃n)˜̀̇∗i (θ̃n)T

)−1
n−1

n∑

i=1

˜̀̇∗
i (θ̃n) (2)

We close this section with three special cases of the set Hi and the corresponding expressions
for ˜̀̇∗

i (θ̃n). The cases Hi equal to {φ, Ω}, σ(εi) and Fi correspond to iid, Markov and Martingale
errors. For these three cases, ˙̀∗

i (θ) is given by the following three expressions respectively:

{εi − 1/var(εi)}ψ̇i − {1 + εif
′
i(εi)/fi(εi)}(∂/∂θ)log(ψi)− ψ̇i (3)

εi − 1
var{εi|εi−1}E

[
∂

∂θ
log(ψi)|εi−1

]
−

(
1 + εi

f ′i(εi)
fi(εi)

)[
∂

∂θ
log(ψi)−E

[
∂

∂θ
log(ψi)|εi−1

]]
(4)

{(εi − 1)/var(εi|Hi)}(∂/∂θ) log(ψi) (5)

where ψ̇i = E[(∂/∂θ) log(ψi)|Hi].
The estimator θ̂ in (2) with ˜̀̇∗

i being an estimate of ˙̀∗
i given in the foregoing three cases will

be denoted by θ̂iid, θ̂Mark and θ̂Mart respectively. The estimator θ̂ corresponding to these these
three cases will be evaluated in the simulation study discussed later in this paper.

2.2 Estimation subject to inequality constraints

In the linear ACD(1,1) model ψi = α + βXi−1 + γψi−1, the parameters α, β and γ are nonnegative
because ψi ≥ 0 and Xi ≥ 0 for every i. However, their estimators in (2) may not satisfy such
nonnegativity constraints. Therefore, it would be essential to modify the approach in Drost and
Werker (2004) to ensure that such constraints are satisfied. To this end we adopt ideas that underlie
constrained statistical inference; for a detailed account see Silvapulle and Sen (2005). There is no
unique way to define suitable constrained estimators. We propose the following.
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Let Θ denote the parameter space of θ. We shall assume that Θ is convex. Some of the
results presented here would hold even if Θ is not convex, but is Chernoff Regular (for example,
see Silvapulle and Sen 2005). However, we will not consider such general shapes for Θ here. For
the linear ACD(1,1) model in (1), we have Θ = {θ : θ = (α, β, γ)T , α ≥ 0, β ≥ 0, γ ≥ 0, β + γ ≤ 1},
which is convex. We make the mild assumption that n1/2(θ̂ − θ0)

d→ Z where Z ∼ N(0, V )
for some positive definite matrix V. To motivate the ideas underlying the constrained estimator
to be introduced, let us temporarily suppose that n1/2(θ̂ − θ0) is distributed exactly as N(0, V ).
Therefore, θ̂ is distributed exactly as N(θ0, n

−1V ) and we may interpret θ̂ as one observation from
the population N(θ0, n

−1V ) with θ0 ∈ Θ. The log likelihood based on this single observation from
N(θ0, n

−1V ) is (−1/2)(θ̂ − θ)T V −1(θ̂ − θ) and hence the corresponding MLE of θ0 is

θ̄
∗ = arg min

θ∈Θ
(θ̂ − θ)T V −1(θ̂ − θ). (6)

Therefore, θ̄
∗ is the projection of θ̂ onto Θ with respect to the inner product 〈x, y〉V = xT V −1y.

The left panel in Figure 1 illustrates this for the simple case of two-dimensions and Θ equal to the
first quadrant {θ1 ≥ 0, θ2 ≥ 0}.

Now, let us relax the assumption that n1/2(θ̂−θ0) is distributed exactly as N(0, V ) and assume
that the latter is only the limiting distribution and that V is unknown. Then, motivated by θ̄

∗, a
natural constrained semiparametric estimator is

θ̄ = arg min
θ∈Θ

(θ̂ − θ)T W−1
n (θ̂ − θ) (7)

where Wn is positive definite. Ideally, Wn should be a consistent estimator of V , the limiting
covariance matrix of n1/2(θ̂−θ0). Even if this were not true, θ̄ would still be a consistent estimator
of θ0 as will be seen later.

-θ1
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θ2

q

p p p p p
p p p p p

p p p
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q θ̄∗ θ̂ = θ̄
∗
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Figure 1: (a) The unconstrained estimator θ̂ and the constrained estimator θ̄
∗ of θ0 subject to

θ ∈ Θ = {(θ1, θ2) : θ1 > 0, θ2 > 0}, when V = (1, 0.5 | 0.5, 1) for two possible values of θ̂, one in
Θ and the other outside Θ. (b) The unconstrained estimator θ̂ and the constrained estimator θ̄

subject to θ ∈ Θ = {(α, β, γ) : α ≥ 0, β ≥ 0, γ ≥ 0, β + γ ≤ 1} with θ̂ lying outside Θ and θ̄ lying
on the face spanned by the rectangle ABCD of the wedge-shaped Θ.

Let T (Θ;θ0) denote the tangent cone of Θ at θ0 which is defined by

T (Θ;θ0) = {v : ∃tn ¼ 0,∃θn ∈ Θ such that θn → θ0 and t−1
n (θn − θ0) → v}.

Intuitively, the tangent cone T (Θ;θ0) is constructed as follows: First approximate the boundaries
of Θ at θ0 by tangents, and then approximate Θ by the cone formed by these tangents. This is



7

¡
¡

¡
¡

@
@

@
@¾ -T

r
O(≡ 0)

¡
¡

¡
¡

@
@

@
@¾ -A

¾ -Θ

B(≡ θ0)

Figure 2: The tangent cone, T , and the approximating cone, A, of Θ at B.

called the approximating cone of Θ at θ0. Now, translate the parameter space so that θ0 moves
to the origin, and hence the cone has its vertex at the origin (see Silvapulle and Sen 2005, section
4.7). These are illustrated in Figure 2.

For any x ∈ Rp, a p× p positive definite matrix W and a set C, let

‖x‖W = {xT W−1x}1/2 and ΠW {z | C} = arg min
θ∈C

‖(z − θ)T ‖W .

Thus, ΠW {z | C} denotes the projection of z onto C. A simple illustration of Π(θ̂ | R+2), which is
equal to θ̄

∗, is given is given in Figure 1 when C is the positive orthant in two dimensions. Now,
we provide a result about the distribution of θ̄.

Proposition 1. Suppose that Θ is convex and that n1/2(θ̂−θ0)
d→ Z where Z ∼ N(0, V ) for some

positive definite matrix V and Wn
p→ W where W and Wn are positive definite. Then

n1/2(θ̄ − θ0)
d→ ΠW {Z | T (Θ;θ0)}. (8)

Further, θ̄ is closer to the true value θ0 than θ̂ in the following sense:

pr{n1/2‖θ̄ − θ0‖W < δ} ≥ pr{n1/2‖θ̂ − θ0‖W < δ}+ o(1) (9)

for any δ > 0.

Proof. A proof of (8) when the observations are independently and identically distributed is given
in (Silvapulle and Sen, 2005, section 4.9). The proof therein is not directly applicable to prove (8),
but the essentials of the approach are applicable. Here, we indicate the main steps. The technical
details of the proof of (8) uses the result that the parameter space Θ can be approximated by
its approximating cone at the true value for the purposes of deriving the first order asymptotic
properties. For example, the projections of θ̂ onto Θ and onto the approximating cone A(θ0) of Θ
at θ0 are asymptotically equivalent: n1/2(θ̄−θ†) = op(1) where θ† = ΠWn(θ̂ | A(θ0)). Now treating
θ0 as the origin, we have

n1/2(θ† − θ0) = ΠWn{n1/2(θ̂ − θ0) | A(θ0)− θ0} d→ ΠW (Z | T (θ0)),

the last step follows because ΠW (z | T ) is a continuous function of (z,W ).
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Now, applying Proposition 3.12.3 on page 114 in Silvapulle and Sen (2005)) for the inner
product defined by 〈x, y〉 = xT W−1

n y, we have that (θ̄ − θ0)T W−1
n (θ̂ − θ0) ≤ 0. Therefore,

‖θ̂ − θ0‖Wn ≥ ‖θ̄ − θ0‖Wn . Since Wn
p→ W and (θ̂ − θ0) = Op(n−1/2), we have, by Lemma 4.10.2

on page 216 in Silvapulle and Sen (2005) that n1/2‖θ̂ − θ0‖Wn = n1/2‖θ̂ − θ0‖W + op(1) and
n1/2‖θ̄ − θ0‖Wn = n1/2‖θ̄ − θ0‖W + op(1). Now, the proof of (9) follows.

The general approach to constructing a constrained estimator exploits the fact that one needs
to use only the local behaviour of the objective function in an n−1/2-neighbourhood of the true
value θ0. The foregoing θ̄ adopts this approach. It is also possible to construct other estimators
in such local neighbourhoods. For example, another estimator may be defined as θ̂(λ0) where
θ̂(λ) =

[
θ̃n +λ

(
n−1

∑n
i=1

˜̀̇∗
i (θ̃n)˜̀̇∗i (θ̃n)T

)−1
n−1

∑n
i=1

˜̀̇∗
i (θ̃n)

]
for 0 ≤ λ ≤ 1 and λ0 is the maximum

value of λ in [0, 1] for which θ̂(λ) lies in Θ. This says that the iteration moves from θ̃n in the
direction suggested by the DW-estimator but stops before crossing the boundary of Θ.

Another estimator may be defined as arg maxθ∈Θ q(θ) where

q(θ) = (θ − θ̃n)T n−1
n∑

i=1

˜̀̇∗
i (θ̃n)− 2−1(θ − θ̃n)T

(
n−1

n∑

i=1

˜̀̇∗
i (θ̃n)˜̀̇∗i (θ̃n)T

)
(θ − θ̃n),

which may be seen as a pseudo likelihood with score function n−1
∑n

i=1
˜̀̇∗
i (θ̃n) and information(

n−1
∑n

i=1
˜̀̇∗
i (θ̃n)˜̀̇∗i (θ̃n)T

)
. Since the unconstrained maximum of q(θ) is the DW-estimator θ̂, the

foregoing estimator arg maxθ∈Θ q(θ) can be seen as a constrained version of the DW-estimator.

3 Simulation Study

In this section, we report the results of a simulation study conducted to evaluate and compare the
semiparametric estimators, θ̂ and the constrained semiparametric estimator θ̄ with the standard
QMLE for duration models, namely the one that corresponds to f(t) = exp(−t), t > 0.

Design of the study:

We studied the five duration models introduced at the beginning of section 2. For each of these
models, the following error distributions were studied:

(a) εi ∼ exp(1), (b) εi ∼ Γ(λ−2
i , λ2

i ) and (c) εi ∼ LN(−2−1log(1 + λ2
i ), log(1 + λ2

i )),

where Γ(a, b) is the Gamma distribution with parameters (a, b), and LN(µ, σ2) is the lognormal
distribution. For the gamma and lognormal error distributions in the foregoing settings (b) and
(c), we set λ2

i = 0.1 + 0.9εi−1. The estimation methods that are compared in this paper do not
require the exact form of dependence of λi on other variables. This would enable us to evaluate
the robustness of the estimators to departures from the usual assumption that the errors are iid.

Without loss of generality, the unconditional mean of Xi was set equal to 1. All the computations
were programmed in MATLAB, and the optimizations were carried out using the optimization
toolbox in MATLAB.
Number of values of θ0 : (i) Linear ACD models : 15 different values of θ0, with some values close
to the boundary of the parameter space. (ii) Linear Power ACD Model: same as for the linear
ACD model. (iii) Linear ACD Type 1 : 6 values. (iv) Linear ACD Type 2: 7 values. (v) Box-Cox
ACD model: 4 values.
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Table 1: MSE-efficiency of θ̄ relative to QMLE for the linear ACD model

True value ε ∼ EXP ε ∼ NG ε ∼ LN

α0 β0 γ0 α β γ α β γ α β γ

0.05 0.30 0.65 103 96 97 179 182 182 153 147 151
0.05 0.05 0.90 99 96 95 156 193 162 143 194 149
0.10 0.20 0.70 106 99 101 174 188 173 144 164 148

*0.25 0.05 0.70 58 96 61 78 162 86 65 212 76

0.10 0.15 0.75 109 99 103 169 195 170 148 174 151
0.05 0.10 0.85 102 97 97 238 207 209 181 184 174
0.20 0.20 0.60 104 101 99 149 168 145 127 155 132

*0.20 0.05 0.75 76 95 76 89 170 98 79 215 91

0.30 0.10 0.60 76 98 78 86 166 89 78 166 85
0.10 0.10 0.80 104 98 98 147 196 151 138 184 143
0.70 0.20 0.10 87 103 90 107 153 103 111 139 114
0.70 0.25 0.05 88 104 94 150 156 147 122 145 127

0.80 0.10 0.10 82 100 83 106 172 98 101 174 97
0.80 0.12 0.08 86 103 87 120 166 110 106 171 103
0.80 0.15 0.05 89 103 91 143 165 131 112 164 110

MSE-efficiency for θi is defined as MSE(QMLE)/MSE(θ̄).

Since our main objective is to compare the QMLE with the semiparametric estimators, we shall
report estimates of Relative MSE Efficiency which we define as {MSE of QMLE/ MSE of the estimator}.

The results of the simulation study are based on sample size n = 500 and 500 repeated samples,
for the linear ACD and the power ACD models with nonnegative parameters. For the other models,
n = 2000 and 500 repeated samples. Typically with tick-by-tick data, the number of observations
is usually large and hence n = 2000 is quite realistic.

Results:

The simulation was carried out for θ̂iid, θ̂Mark and θ̂Mart. We observed that θ̂Mart performed
better. Therefore, in the rest of this section, we shall present the results for θ̂Mart only and write
θ̂ for θ̂Mart. The results for the other estimators are available in an working paper.

The histograms of relative MSE of θ̂ are shown in Figures 4 - 8. Each figure has three diagrams:
the one on left, middle and right correspond to εi being exp(1), Γ(λ−2

i , λ2
i ) and LN(−2−1log(1 +

λ2
i ), log(1 + λ2

i )), respectively.
The errors are iid with common error distribution exp(1):

Recall that the QMLE is equal to the MLE in this case. Since this setting is ideal for QMLE,
we would expect the QMLE to perform at least as well as, if not better than, the semiparametric
estimators [SPE]. The diagram on the left of each of Figures 4 - 8 show that, as expected, the
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Table 2: MSE-efficiency of θ̄ relative to QMLE for the linear Power ACD model

ε ∼ EXP ε ∼ NG ε ∼ LN

θ0 = (α0, β0, γ0, λ0) α β γ λ α β γ λ α β γ λ

0.05, 0.30, 0.65, 2 121 94 93 91 1197 136 204 142 498 120 165 110
0.05, 0.05, 0.9, 2 72 84 96 69 352 136 176 101 1108 139 216 93
0.1, 0.2, 0.70, 1.5 107 96 96 92 226 149 200 207 165 128 171 119
*0.25, 0.05, 0.70, 1.5 81 86 82 47 83 117 92 53 90 127 98 59

0.1, 0.15,0.75, 2 104 89 95 85 579 132 211 136 221 122 179 105
0.05, 0.1, 0.85, 2 73 90 95 83 893 123 189 123 350 129 167 106
0.20, 0.2, 0.60, 1.5 110 97 98 90 182 144 191 198 127 125 141 120
*0.20, 0.05, 0.75,1.5 89 91 88 56 106 123 115 76 102 146 110 66

0.3, 0.1, 0.6, 0.5 94 97 95 90 92 123 95 153 82 125 89 92
0.1, 0.1, 0.8, 0.5 115 95 110 85 136 160 140 164 142 150 150 140
0.7, 0.2, 0.1, 0.5 91 99 95 89 107 115 108 136 110 114 113 129
0.7, 0.25, 0.05, 1.5 91 100 96 87 136 111 129 117 111 116 114 99

0.8, 0.1, 0.1, 0.5 91 99 92 90 99 88 93 120 110 119 107 82
0.05, 0.05, 0.9, 0.5 97 92 99 84 158 177 157 123 130 194 142 85
0.8, 0.15, 0.05, 0.5 91 104 92 104 119 97 113 155 113 112 114 101

MSE-efficiency for θi is defined as MSE(QMLE)/MSE(θ̄i).

QMLE performed at least as well as the the semiparametric estimator. However, the differences
were small in most cases.
Log ACD-Type I (Figure 3):

When ε ∼ exp(1), the QMLE performs at least as well as θ̂, as expected, but the differences
between QMLE and θ̂ are small. When the error distribution is Γ(λ−2

i , λ2
i ) or LN(−2−1log(1 +

λ2
i ), log(1 + λ2

i )), θ̂ perform significantly better than the QMLE. These results show that for the
Log ACD-Type I model, the semiparametric estimator is better than the QMLE.

Log ACD-Type II (Figure 4):
When ε ∼ exp(1), the MSE-efficiency of θ̂ is less than 100%. The reduction in efficiency is

not negligible, but not very large. When the error distribution is Γ(λ−2
i , λ2

i ) or LN(−2−1log(1 +
λ2

i ), log(1 + λ2
i )), θ̂ performs significantly better than QMLE. These results show that for the Log

ACD-Type II model, θ̂ is better than QMLE overall.

Box-Cox ACD Model (Figure 5):
When ε ∼ exp(1), the MSE-efficiency of the two semiparametric estimators fell to about 70% for

some parameter values. When the error distribution is Γ(λ−2
i , λ2

i ) or LN(−2−1log(1 + λ2
i ), log(1 +

λ2
i )), θ̂ performs significantly better than QMLE. Overall θ̂ performs better than QMLE.
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Linear ACD and Power ACD Models (Figures 6-9):
In these models, Θ = {(α, β, γ) : α ≥ 0, β ≥ 0, γ ≥ 0, γ + β ≤ 1}. Figures 6 and 7 show that

constrained estimator θ̄ performed at least well as the unconstrained DW-estimator θ̂ for all true
parameter values and significantly better when the true parameter value is near the boundary of
Θ. The cases for which the relative efficiencies are equal to 100% or slightly higher, correspond
to the case when the parameter value is away from the boundary and lie well in the interior of
the parameter space. Similarly, relative efficiencies that are higher than 100% correspond to the
case when the parameter value is close to the boundary. Therefore, as expected, the constrained
estimator θ̄ is better than the unconstrained estimator θ̂.

If the true value of θ is not in the set A, where

A = {(α, β, γ) : β and (β/α) are close to zero, and α and γ are not close to zero }
then θ̄ performs better than QMLE. Even if the true parameter lies in the set A (eg., see the rows
marked with ’*’ in Tables 1 and 2), QMLE does not dominate θ̄ as is clear from Tables 1 and 2
that QMLE is better than θ̄ for (α, γ) but not for β.

In several empirical studies reported in the literature, for example Engle and Russell (1998),
Engle and Russell (1997), Fernandes and Grammig (2006) and Zhang et al. (2001), the estimated
value of θ turned out to be away from A. Therefore, it appears that θ̄ performs better than QMLE
in the part of the parameter space that is of practical relevance.

Finally, let us make the following comment. It may appear surprising that even though errors
were generated to have Markov structure, θ̂Mart performed better than θ̂Mark. A possible explana-
tion is that ˜̀̇∗

i (θ) for Martingale error has a much simpler form compared to that for the Markov
error. Hence, it is likely that the various Nadaraya-Watson estimators for the conditional moments
to compute θ̂MARK may be not be very good. This together with the fact that the θ̂Mart is derived
under much weaker assumption lead us to recommend θ̂Mart over θ̂Mark.
Summary of the results:

For Log ACD Types I and II models, the semiparametric DW-estimator θ̂ performed better
than the QMLE. For the Box-Cox ACD model, θ̂ appears to be a better estimator overall. For the
Linear ACD and Power ACD models, for which α, β and γ must be nonnegative and β + γ ≤ 1,
the constrained estimator θ̄ performed better than the unconstrained estimator θ̂ and also better
than QMLE in the part of the parameter space that appears to be relevant based on past empirical
studies.

4 An empirical example

In this section we use the IBM transaction data for November 1990, to illustrate the constrained
estimator θ̄. In this example, we do not plan to model the data in order to draw substantive
conclusions about IBM transactions, therefore we do not carry out diagnostics to evaluate goodness
of fit. Such issues for these data have been discussed in other studies, including Engle and Russell
(1998). We estimated the parameters in the linear ACD(2,2) model

ψi = α + β1Xi−1 + β2Xi−2 + γ1ψi−1 + γ2ψi−2, (10)

by QMLE and the semiparametric methods. The parameter space Θ is given by

Θ = {θ : θ = (α, β1, β2, γ1, γ2)T ; α ≥ 0; 0 ≤ β1, β2, γ1, γ2, β1 + β2 + γ1 + γ2 ≤ 1}.
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Table 3: Estimates of parameters for the ACD(2,2) model for the IBM transaction data
α β1 β2 γ1 γ2

Unconstrained Estimators

QMLE 0.561 0.098 0.018 0.375 0.492
θ̂MART 0.321 0.108 -0.041 1.005 -0.082
θ̂MARK 0.423 0.108 -0.048 0.984 -0.059

θ̂IID 0.613 0.095 -0.026 0.806 0.103

Constrained Estimators

θ̂MART 0.471 0.099 0.000 0.616 0.270
θ̂MARK 0.609 0.096 0.000 0.547 0.336

θ̂IID 0.668 0.088 0.000 0.568 0.320

The computed values are given in Table 3, where θ̂MART , θ̂MARK and θ̂IID are the estimators
corresponding to the three cases in (3)- (5). To compute the QMLE, we maximized the log likelihood
corresponding to the assumption εi ∼ exp(λ). Since the unconstrained QMLE, given in Table 3, is
an interior point of Θ, it is also equal to the QMLE under the constraint θ ∈ Θ.

Although the unconstrained QMLE satisfies the constraint θ ∈ Θ, the DW-estimator θ̂ corre-
sponding to Martingale, Markov and iid errors, are outside their allowed ranges. This is an example
of the type of settings where a constrained estimator such as θ̄ would be essential. Since constrained
estimator θ̄ is not asymptotically normal when the true parameter lies on the boundary of the pa-
rameter space, it is not particularly meaningful to provide standard errors for θ̄. If a measure of
variability is desired, a confidence region can be constructed by inverting an inequality constrained
test based on θ̄. This is not a trivial task, but possible to do.

Note that, based on the semiparametric estimators corresponding to Martingale errors, the
estimate of β2 has now moved from −0.041 to its boundary β2 = 0, the estimate of γ2 moved
from −.082 to 0.27 a value that is interior to its allowed range, and the estimate of γ1 moved from
1.005 to 0.616, a value that is also interior to its allowed range. This example illustrates that when
there are several estimates that are outside their allowed range, the constrained estimation method
introduced in this paper offers a methodologically sound way of constructing an efficient estimator
of θ.

5 Conclusion

We studied estimation of parameters in a large class of duration models. Our work is centered
around the semiparametrically efficient estimator of Drost and Werker (2004) for situations where
the error distribution is unknown and the errors themselves may not be independent either. Since
such situations are expected to be common in practice, this semiparametric method of estimation
is of significant practical importance. To evaluate this estimator, we carried out a large scale
simulation study.

Using the theoretical results of Drost and Werker (2004) as building blocks, we proposed a new
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semiparametric estimator for duration models for cases when some parameters are known to satisfy
inequality constraints, for example nonnegativity constraints as in the standard linear ACD model
of Engle and Russell (1998). We showed that our proposed constrained estimator is asymptotically
better than the unconstrained DW-estimator when there are inequality constraints on parameters.
We carried out a simulation study to compare our estimator with the DW-estimator and the QMLE.

For the Log ACD Models of types I and II and the Box-Cox ACD models, for which there
are no inequality constraints on parameters, the DW-estimator performed better than the QMLE
overall. For the Linear ACD and Power ACD Models, in which some parameters are known to be
nonnegative, the inequality constrained estimator proposed in this paper performed better than the
DW-estimator. Further, in these models, the constrained estimator θ̄Mart performed better than
the QMLE in most cases of empirical interest.

In summary, the DW-estimator is better than the QMLE when there are no inequality con-
straints, such as nonnegativity constraints. If there are inequality constraints, then the constrained
estimator proposed in this paper is better.

Since statistical inferences based on the semiparametric estimators θ̂ and θ̄ are valid under
quite weak and very realistic assumptions, but they perform better than QMLE overall, and only
marginally worse than QMLE even under the ideal conditions for QMLE, these semiparametric
estimators are serious competitors to QMLE, and the indications are that they are better than
QMLE.
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Figure 3: MSE of θ̂ relative to QMLE for the LACD-1 model.
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Figure 4: MSE of θ̂ relative to QMLE for the LACD-2 model.

50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

Errors ~ exp(1)
100 120 140 160 180 200
0

1

2

3

4

5

Errors ~ Normalized Gamma
70 80 90 100 110 120 130
0

0.5

1

1.5

2

2.5

3

3.5

4

Errors ~ Log Normal

Figure 5: MSE of θ̂ relative to QMLE for the BCACD model
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Figure 6: MSE of θ̄ relative to θ̂ for the ACD model.
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Figure 7: MSE of θ̄ relative to θ̂ for the PACD model.
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Figure 8: MSE of θ̄ relative to QMLE for the ACD model
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Figure 9: MSE of θ̄ relative to QMLE for the PACD model


