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Abstract

Many universities in the US o¤er on-campus housing opportunities to incoming as well
as already enrolled students. Most common student assignment mechanism used in the
US has been shown to su¤er serious e¢ ciency losses. In this paper we �rst show that a
particular placement mechanism which is in use at the MIT for about two decades is in fact
equivalent to a natural adaptation of the well-known Gale-Shapley mechanism of two-sided
matching theory to this framework. Motivated from the increasing popularity and success of
the Gale-Shapley mechanism in a number of markets, we next experimentally compare the
performances of the MIT mechanism with that of the leading theory mechanism Top Trading
Cycles. Contrary to theory, the MIT mechanism performs better in terms of e¢ ciency and
participation rates, while we observe no signi�cant di¤erence between the two mechanisms
in terms of truth-telling rates.

1 Introduction

A house allocation problem consists of a set of agents and a set of indivisible objects (e.g., houses)
that needs to be distributed among agents. Typical examples are assignment of tasks to workers,
o¢ ces to professors, houses to prospective tenants, etc. A commonly observed example of this
problem in the universities in the US is the assignment of housing units (or, dormitory rooms)
to students. Speci�c to this application, not all of the participants have equal right over each
house prior to the central assignment procedure. There may, for example, be existing tenants,
who may already be occupying a house, and who may still be seeking a better one. This variation
of the problem is known as the house allocation problem with existing tenants (Abdulkadiroglu
and Sönmez, 1998).
A house allocation problem with existing tenants consists of two pieces of information: (1)

a priority ordering over all participants, determined by the assignment policies of the particular
university based on seniority, GPA, result of a lottery draw etc.; (2) a list of preferences of each
participant over housing types, typically a rank-ordered-list of housing types which a participant
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decides upon comparing di¤erent housing types available. An assignment mechanism is a system-
atic procedure that chooses an assignment of participants to available housing units based on the
aforementioned two pieces of information.
The performance of a mechanism is basically evaluated on four merits: (1) individual rational-

ity (i.e., an existing tenant should be encouraged to participate by giving the guarantee of a house
that is no worse than her current house); (2) e¢ ciency (i.e., resources should be optimally allo-
cated according to the likings of participants);(3) fairness (i.e., the assignment should respect the
priority order), and (4) incentive compatibility (i.e., participants should be induced to act straight-
forwardly and reveal true preferences). Abdulkadiroglu and Sönmez (1998) examine some of the
real-life mechanisms used in universities in the US, and show that most mechanisms currently in
use lack either e¢ ciency or individual rationality. They show that, quite surprisingly, the most
common mechanism in the US, the random serial dictatorship with squatting rights (RSDwSR)
lacks both of these properties, mainly because it discourages existing tenants from participating
in the assignment procedure, and consequently leads to potential losses from trade. Abdulka-
diroglu and Sönmez (1998) propose an alternative mechanism called the top trading cycles (TTC)
mechanism1. TTC fully achieves the �rst three properties. It achieves fairness in a weak2 sense.
Chen and Sönmez (2002) experimentally compare the performances of TTC and RSDwSR, and
�nd TTC to be signi�cantly more e¢ cient than the popular real-life mechanism RSDwSR.
The school choice problem is an important extension of the present problem. Di¤erently than a

house allocation problem, in a school choice problem each school has a multiple capacity of students
it can adnmit, and typically a distinct priority ordering (which, for each school, is determined
acccording to speci�c policies of school districts). After being advocated as a promising school
choice mechanism by the pioneers of school choice, the well-known Gale-Shapley mechanism of
two-sided matching theory has gained increasing popularity also among school districts in the US
and replaced two de�cient mechanisms in the New York City (Abdulkadiro¼glu, Pathak, and Roth,
2005) and Boston (Abdulkadiro¼glu, Pathak, Roth, and Sönmez, 2005).
Motivated by the success of the Gale-Shapley mechanism in school choice as well is in two-

sided matching markets (such as the National Resident Match; Roth and Peranson, 1997), we
o¤er a natural and intuitive adaptation of the Gale-Shapley mechanism to the present context. In
terms of our desireta, this adaptation achieves individual rationality, incentive compatibility, and
fairness.
First we show that this adaptation of the Gale-Shapley mechanism is in fact equivalent to a

mechanism that has already been in use at MIT for about two decades (Theorem 1). To the
best of our knowledge, this is the second reported equivalence of the well-known Gale-Shapley
mechanism to a real-life mechanism. The �rst such report is due to Roth (1984) who showed that
the mechanism used by the National Resident Matching Program in the US between 1954 and
1986 to assign medical interns to hospital positions is actually an equivalent of the Gale-Shapley
mechanism.
Our equivalence result in turn implies that the mechanism used in MIT is indeed Pareto

superior to any mechanism that respects the given priority ordering of participants (Corollary 1).

1Top trading cycles based mechanisms have been extensively studied in recent inidivisible goods allocation
problems. Two such problems that attracted much attention are the school choice problem and the kidney exchange
problem.

2Precisely speaking, in the following sense: Given a priority ordering of agents, under TTC it is possible that
an agent may get a house worse for him than the house an agent with lower priority gets. In fact, when this is the
case, the lower priority agent is an existing tenant.
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Finally, in order to compare the performances of the MIT mechanism with the leading theory
mechanism TTC when participants are boundedly rational, we conduct a laboratory experiment
to test the two mechanisms. We �nd that the MIT mechanism performs better in terms of
participation rates and it is at least as good as TTC in terms of e¢ ciency. We do not observe any
signi�cant di¤erence between the two mechanisms in terms of truth-telling rates.

2 The Model

Prior to the centralized assignment procedure each existing tenant chooses whether to participate
or not. Then a house allocation problem (with existing tenants) (Abdulkadiroglu and Sönmez,
1998) is given by

� a �nite set of existing tenants IE+who have chosen to participate,
� a �nite set of existing tenants IE�who have chosen not to participate,
� a �nite set of new applicants IN ;
� a �nite set of occupied houses HO = fhigi2IE+[IE� ;
� a �nite set of vacant houses HV ;
� an ordering f over all agents but the non-participating existing tenants, and
� a list of strict preference relations P = (Pi)IE+[IN and,

Often times we will suppress the �rst six components assumming that they are exogenously
given and �xed. Let I = IE+ [ IE� [ IN denote the set of all agents, and H = HO [HV [ fh0g
denote the set of all houses plus the null house. Every existing tenant i 2 IE is endowed with
(i.e., currently lives in) the occupied house hi 2 HO: For expositional simplicity, we assume that
the null house is the last option for each agent.

An allocation � is a list of assignments such that (1) every agent is assigned one house; (2) no
house other than the null house is assigned to more than one agent; and (3). Let �(i) denote the
assignment of agent i under �:

A mechanism ' is a systematic procedure that chooses an allocation for each problem. Let
'(P ) denote the allocation chosen by ' for the problem P:

2.1 Properties of mechanisms

We next de�ne four desirable properties of mechanisms:

Individual rationality: No participating existing tenant ever gets a house that is worse than
her endowment. (i.e., for every i 2 IE+ and every problem P; 'i(P ) Ri hi.)

Pareto e¢ ciency: The outcome cannot be Pareto improved, i.e., there is no allocation at which
all agents are at least as well o¤ and at least one agent is strictly better o¤. (i.e., for every problem
P; there is no � such that �(i) Ri 'i(P ) for all i 2 I and �(i) Pi 'i(P ) for some j 2 I:)
Fairness: Among all the agents but the non-participating existing tenants, if an agent ever prefers
another agent�s assignment, then either of the following two should be true: (1) the other agent
has higher priority (according to the priority ordering); (2) the other agent is an existing tenant
who is assigned her own house. (i.e., for every problem P and every i; j 2 IE+ [ IN ; if 'j(P ) Pi
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'i(P ); then either (1) f(j) < f(i) or, (2) 'j(P ) = hj:)

Incentive compatibility (strategy-proofness): Among all the agents but the non-participating
existing tenants it is a dominant strategy for each agent to truthfully report her preferences. (i.e.,
for every problem P; every i 2 IE+ [ IN ; and every P 0i ; 'j(P ) Ri 'i(P 0i ; P�i):)
We start with a negative result. It turns out any three of the above four properties are

compatible except for the �rst three:

Proposition 1: No mechanism is individually rational, Pareto e¢ cient, and fair.

3 Two mechanisms

3.1 Top Trading Cycles

Abdulkadiroglu and Sönmez (1998) propose the top trading cycles (TTC) mechanism which is
based on Gale�s top trading cycles idea. Mechanisms based on this idea have been proposed and
extensively studied in the recent literature mainly for two other important problems: the school
choice problem (Abdulkadiroglu and Sönmez, 2003) and the kidney exchange problem (Roth,
Sönmez, and Ünver, 2005).
TTC works as follows: Consider a given house allocation problem with a given priority ordering

f of agents. Assign the �rst agent (according to f) his top choice, the second agent his top choice
among the remaining houses, and son on, until someone demands the house of an existing tenant.
If at that point the existing tenant whose house is demanded is already assigned a house, then
do not disturb the procedure. Otherwise modify the remainder of the ordering by inserting him
to the top and proceed. Similarly, insert any existing tenant who is not already served at the
top of the line once his or her house is demanded. If at any point, a loop forms, it is formed by
exclusively existing tenants and each of them demands the house of the tenant next in the loop.
(A loop is an ordered list of agents (i1; i2; : : : ; ik) where agent i1 demands the house of agent i2;
agent i2 demands the house of agent i3; : : : ; agent ik demands the house of agent i1:) In such cases
remove all agents in the loop by assigning them the houses they demand and proceed.
TTC is Pareto e¢ cient, individually rational, and incentive compatible. Chen and Sönmez

(2002) report that TTC is signi�cantly more e¢ cient than the popular real-life mechanism RSD-
wSR.

3.2 MIT-NH4 Mechanism

The following mechanism is in use at residence NH4 of MIT. Consider a given house allocation
problem with a given priority ordering f of agents:

1. The �rst agent (according to f) is tentatively assigned his top choice among all houses, the
next agent is tentatively assigned his top choice among the remaining houses, and so on, until a
squatting con�ict occurs.

2. A squatting con�ict occurs if it is the turn of an existing tenant but every remaining house
is worse than his current house. That means someone else, the con�icting agent, is tentatively
assigned the existing tenant�s current house. When this happens
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(a) the existing tenant is assigned his current house and removed from the process, and

(b) all tentative assignments starting with the con�icting agent and up to the existing tenant
are erased.

At this point the squatting con�ict is resolved and the process starts over again with the
con�icting agent. Every squatting con�ict that occurs afterwards is resolved in a similar way.

3. The process is over when there are no houses or agents left. At this point all tentative
assignments are �nalized.

It is not much di¢ cult to show that the MIT-NH4 mechanism achieves all the desirable prop-
erties except Pareto e¢ ciency.

4 A modi�ed Gale-Shapley mechanism & an equivalence

The Gale-Shapley mechanism has long dominated two-sided matching theory due to its attractive
stability3 and incentive features. It has also been adopted by a number of real-world matching
markets (see Roth and Rothblum, 1998 for an extensive list of these markets) as a much more
satisfactory alternative to the de�cient mechanisms it replaced. The most recent success of the
Gale-Shapley mechanism has been in school choice problems. Shortly after its proposal for school
choice by Abdulkadiroglu and Sönmez (1998), the Gale-Shapley mechanism has attracted the at-
tention of education authorities in NYC and Boston, and replaced two controversial school choice
mechanisms in these places. Even though school choice and the present problem are mathemati-
cally similar,4 no counterpart of the popular Gale-Shapley mechanism has so far been considered
for house allocation.
We �rst transform the present problem into a school choice problem, and next propose a direct

adaptation of the Gale-Shapley mechanism. In a school choice problem, for each school there
is a (possibly di¤erent) priority ordering determined based on certain criteria of school districts.
Using the given priority ordering f of agents, �rst construct a priority ordering for a given house
as follows:

(1) if it is a vacant house, then the corresponding ordering for this house is also f ,

(2) if it is an occupied house, then assign the highest priority for this house to the corresponding
existing tenant, and do not change the relative ordering of the remaining agents.

Given the constructed priority ordering for each house, the outcome of the modi�ed Gale-
Shapley mechanism is computed by applying the following deferred acceptance algorithm (Gale
and Shapley, 1962):

Step 1: Each agent applies to his top choice house. For each house, consider its applicants.
The agent with the highest priority according to the priority ordering for that house is tentatively
placed. The rest are rejected.

3In two-sided matching a matching is stable if no two partcipants from the two sides of the market would refuse
their current matches and rather form a blocking coalition with each other. See Kelso and Crawford for a large
domain of preferences ensuring existence of stable matches and Roth and Sotomayor (1991) for a comprehensive
survey on two-sided matching.

4The only di¤erences between the two are: (1) in school choice for each school there is a separate (often di¤erent)
priority ordering of students, and (2) in school choice individual rationality is irrelevant since there is no counterpart
of existing tenants .
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In general;

Step k: Each rejected agent applies to his next top choice house. For each house, consider its
applicants at this step together with the agent (if any) who is currently tentatively placed to it.
Among these, the agent with the highest priority according to the priority ordering for that house
is tentatively placed. The rest are rejected.

The process is over when no agent is rejected any more.5

Much to our surprise the above natural modi�cation of the Gale-Shapley deferred acceptance
procedure in fact yileds the same outcome with the MIT-NH4 mechanism.

Theorem 1: The MIT-NH4 mechanism and the modi�ed Gale-Shapley mechanism are equivalent.

Theorem 1, to the best of our knowledge, is the second time the Gale-Shapley deferred accep-
tance procedure is shown to coincice with a real-life mechanism. Roth (1984) showed that the Na-
tional Resident Matching algorithm used in the US between 1954 and 1986 is a hospital-proposing
deferred acceptance procedure. Interestingly, the MIT-NH4 mechanism is an agent-proposing
(intern-proposing in the context of Roth, 1984) procedure.
The equivalence in Theorem 1 allows MIT-NH4 to claim all the attractive properties of Gale-

Shapley mechanism. By Balinski and Sönmez (1998) the following corollary is now immediate.

Corollary 1: The MIT-NH4 mechanism (as well as the modi�ed Gale-Shapley mechanism) Pareto
dominates any other fair mechanism.

The leading theory mechanism for house allocation TTC and MIT-NH4 both satisfy three of
the four properties in our desireta. Theory suggests that TTC has the edge in terms of e¢ ciency
and NH4 in terms of fairness. Our next goal will be to experimentally contrast the two mechanisms.
This is the subject of the next section.

5 Experimental Design

Our design compares the performance of NH4 and TTC in terms of e¢ ciency, participation of
existing tenants and truthful preference revelation. We implemented two treatments which di¤er
only in the house allocation mechanism. We tried to keep our design as close as possible to the
one in Chen and Sönmez (2002).
We run �ve replications, or �ve independent groups, for each treatment. Each replica was run

in a separate session at the CLER experimental lab, Harvard Business School during Spring and
early Summer 2006. We used Urs Fischbacher�s z-Tree package [Fischbacher (2007)]. Each group
consists of 12 participants. Participants #1 to #8 are existing tenants. Participants #9 to #12
are newcomers. There are also 12 houses of 8 di¤erent types to be allocated. House types go from
A to H. Participants #1 to #12 are existing tenants, each living in a house type A to H. There
are four additional vacant houses of types A, B, C and D. Table 1 shows the payment for each
participant as a result of the house type she gets at the end of the experiment. A square bracket,
[ ], shows that the participant is an existing tenant of a house of the speci�ed type. For instance,
participant #2 lives in a type B house. She gets $10 at the end of the experiment if she ends

5Note that since the capacity for the null house is unlimited, any agent who applies to it, is assigned this house.
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up in the same house. Note that our payments are a scaled-up version of the Chen and Sönmez
(2002) setup as we added $5 to each payment on top of the payments in their design. This was
done in order to meet the payment criteria of the CLER laboratory. Our payo¤ parameters have
the following implications:

1. There are nine Pareto-e¢ cient house allocations. The aggregate payo¤ adds up to 231 for
each Pareto-e¢ cient allocation.

2. Existing tenants� houses range from their second to the seventh choice. Otherwise the
decision to participate becomes trivial.

3. There is a monetary salient di¤erence of $14 between the top and the last choice.

Both treatments, NH4 and TTC, are implemented as one shot games of incomplete information.
Each participant knew its own payo¤ table but not the others�payo¤ table. Participants did
know the number of existing tenants and newcomers and that payo¤ tables may di¤er. In both
treatments existing tenants are given an option to keep their houses and then not participate in
the allocation mechanism.
The experiment was conducted as follows. Once each participant was allocated to a computer

the experimenter read the instructions aloud and questions were answered. Then, participants
saw their own payo¤ table in the computer screen. Participants had 10 minutes to go over the
instructions and make decisions. Existing tenants had the option to keep their current house (by
choosing �out�) or to participate in the mechanism (by choosing �in�). Existing tenants who chose
�in�and newcomers submitted their list of preferences. Their ID numbers were introduced in a
bowl by the experimenter, and one randomly chosen participant drew them one by one in order
to generate the initial priority order. At this point the assignment of the houses was computed
manually. At the end of the experiment participants were informed about the resulting assignment
and were paid accordingly.

Table 1. Payoff Table for All Agents
Types of Houses A B C D E F G H

Existing Tenants #1 [11] 8 13 14 20 10 6 17
#2 11 [10] 14 13 8 17 20 6
#3 6 8 [14] 20 10 11 17 13
#4 10 14 20 [17] 8 11 13 6
#5 10 6 17 14 [8] 20 13 11
#6 20 11 14 13 6 [17] 8 10
#7 8 10 11 17 6 13 [14] 20
#8 14 20 10 17 11 8 6 [13]

Newcomers #9 6 10 17 14 11 20 13 8
#10 11 6 17 14 10 20 8 13
#11 20 10 14 6 17 11 13 8
#12 13 20 8 10 11 14 17 6

6 Experimental Results

To evaluate the aggregate performance of NH4 vs. TTC, we compare the e¢ ciency generated by
each mechanism. We look at three di¤erent e¢ ciency measures - observed e¢ ciency, expected
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e¢ ciency and the recombinant estimation of mean e¢ ciency. Observed e¢ ciency is calculated by
taking the ratio of the sum of actual earnings of all subjects in a session and the Pareto optimal
earnings of the group. The unique Pareto optimal group earning is 231. Column 3 in Table 2
shows the observed e¢ ciency for each group in the two treatments.

Table 2. Efficiency (Standard Errors in Brackets)
Mechanisms Group Observed e¢ ciency Expected e¢ ciency Recombinant estimation of mean e¢ ciency
NH4 NH4-1 1 1 (0)

NH4-2 :8701299 :8738139 (0:025) b� = 0:893 (0:0923)
NH4-3 :9047619 :8874434 (0:028) �2 = 0:0045
NH4-4 :8528138 :8445917 (0:028) ' = 0:0036
NH4-5 :8138528 :8050089 (0:033)

TTC TTC-1 :8095238 :8166418 (0:025) b� = 0:813 (0:0545)
TTC-2 :8398268 :8742235 (0:017) �2 = 0:0018
TTC-3 :7705628 :7692916 (0:022) ' = 0:0012
TTC-4 :8354979 :8287112 (0:021)
TTC-5 :7532467 :7902112 (0:020)

Result 1 (Observed E¢ ciency): A permutation test shows that the observed e¢ ciency of NH4
is signi�cantly higher than that of TTC: p = 0:0167 (one-tailed) for the original treatment.
Observed e¢ ciency only takes into account the particular priority order randomly determined

in the experimental lab. In order to obtain a measure as independent as possible of a particular
priority order we calculate the expected e¢ ciency for each of the �ve groups in our two treatments.
Expected e¢ ciency is computed by randomly generating 1 million priority orders for each group.
Hence each priority order results in one allocation. For each allocation the ratio of the sum of total
earnings is calculated. Finally, the expected e¢ ciency for each group is the average calculated
over the 1 one million ratios. Column 4 in Table 2 summarizes expected e¢ ciency for each group.

Result 2 (Expected E¢ ciency): A permutation test shows that the expected e¢ ciency of NH4
is signi�cantly higher than that of TTC: p = 0:0498 (one-tailed) for the original treatment.

The truly one-shot nature of the experimental design allows for the use of the recombinant test
techniques described in Mullin and Reiley (2006). The basis of this method is to recombine the
strategies of di¤erent players in order to obtain the result if the grouping had been di¤erent. We
randomly generated two million groups for each treatment and one priority order for each group.
Then we estimated the mean, variance and covariance (see column 5 in Table 2) of the data in
order to compute the recombinant z-value.

Result 3 (Mean E¢ ciency): A recombinant test shows how the mean e¢ ciency of NH4 does
not signi�cantly di¤er from than of TTC. The recombinant estimation of mean e¢ ciency is 89.3%
for NH4 and 81.3% for TTC. Estimated variance is 0.0045 for NH4 and 0.0018 for TTC. The es-
timated covariances are 0.0036 and 0.0012 for NH4 and TTC respectively. Thus, the recombinant
z-test yields z = 0:21 and p = 0:42.

We also tested whether participation rates and truthful revelation di¤er from NH4 to TTC.
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Table 3. Participation and Truthful Preference Revelation
Mechanisms Group Participation rate Proportion of truth
NH4 NH4-1 8=8 10=12

NH4-2 5=8 8=9
NH4-3 6=8 7=10
NH4-4 6=8 9=10
NH4-5 6=8 7=10

TTC TTC-1 4=8 6=8
TTC-2 5=8 6=9
TTC-3 3=8 5=7
TTC-4 4=8 6=8
TTC-5 3=8 4=7

Table 3 shows participation rates in column 3 and proportions of truthful preference revelation
for each group in column 4.

Result 4 (Participation): Existing tenants under NH4 are signi�cantly more likely to partici-
pate than those under TTC. The existing tenants�overall participation rate is 77.5% under NH4,
but only 47.5% under TTC.

A T-test of proportions show that the participation rate of existing tenants under NH4 is
signi�cantly higher than that of TTC: z = 2:7713 (p = 0:0028).

Result 5 (Truthful Preference Revelation) : The overall proportion of truthful preference rev-
elation is 80.4% under NH4, and 69.0% under TTC. The di¤erences in proportions of truthful
preference revelation under NH4 and TTC are not statistically signi�cant.

T-tests of proportions shows that the proportion of truthful preference revelation under NH4
is not signi�cantly di¤erent from that of TTC: z = 1:2250 (p = 0:1103).
Results 1 to 3 show e¢ ciency is at least not lower in NH4 than in TTC. Since we do not �nd

signi�cant di¤erences in truthful preference revelation, result 5, we can conclude that participation
is the key to understand why NH4 is outperforming TTC even the theory does not support this
result.

7 Conclusion

Chen and Sönmez (2002) proposed TTC as a serious candidate to replace RSDwSR in house
allocation systems often used by universities to allocate graduate students to campus housing.
They had good reasons to do so: both in theory and in laboratory experiments TTC outperforms
RSDwSR. TTC is Pareto e¢ cient, individually rational and incentive compatible, but not fair.
We analyzed the MIT house allocation mechanism known as NH4. We �nd out that NH4 is
individually rational, incentive compatible and fair, but not Pareto e¢ cient. By our equivalence
result, NH4 is, however, the most e¢ cient of all mechanisms that are fair. We designed an
experiment in which NH4 and TTC go head to head in terms of comparing e¢ ciency. Despite
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the theoretical advantage of TTC, NH4 turns out to be no worse than TTC in terms of e¢ ciency.
Part of this can be explained by the higher participation rate we �nd in NH4. This, we believe,
might be because boundedly rational individuals may �nd NH4 much easier to understand than
TTC feeling more reluctant to participate.
Our �nding is also consistent with that of Chen and Sönmez (2006) whose experiments showed

that for school choice applications (again, contrary to theory) the Gale-Shapley mechanism per-
forms better in terms of e¢ cieny than TTC. A second reason to be optimistic about the e¢ ciency
performance of NH4 comes from a result due to Ergin (2002): the Gale-Shapley mechanism tends
to be more e¢ cient as priority orderings for each school tend to be more �correlated.� A feau-
ture of the modie�ed Gale-Shapley mechanism that might contribute to this possibility is that all
the priority orderings for the modi�ed Gale-Shapley mechanism (the equivalent of NH4) are, by
construction, generated from the same ordering.
In practical terms, NH4 outperforms TTC which in turn outperforms RSDwSR. Our result

suggests that a widespread replacement of RSDwSR by NH4 could be bene�cial.

8 Appendix

Proof of Proposition 1: Suppose IN = f1; 2g; IE+ = f3g; HV = fa; bg; and HO = fh3g: Let
the priority ordering f be 1-2-3. Suppose the preferences of the agents are as follows:

R1 R2 R3
h3 a a
a h3 h3
b b b

Any Pareto e¢ cient mechanism has to assign either agent 2 or agent 3 to house a for otherwise
agent 1 gets house a; and is made better o¤) when she swaps it with the agent that gets house h3
(who is also made better o¤ by this swap). Then since agent 2 has higher priority, by fairness she
should be assigned to house a. This means, by individual rationality agent 3 should be assigned
to house h3. Then agent 1 is assigned to house b: But this clearly violates fairness.

Q.E.D.

Proof of Theorem 1: It is easy to show that for a given house allocation problem an allocation
is individually rational, fair, and non-wasteful6 if and only if it is stable for the corresponding
marriage problem where house preferences are constructed from the priority ordering in the way
described previously. Modi�ed Gale-Shapley mechanism is stable, and therefore individually ra-
tional, fair, and non-wasteful. It is well-known that the outcome of the Gale-Shapley mechanism
is preferred by each agent to any other stable allocation. Hence, it Pareto dominates any other
stable mechanism.
We give a direct proof of Proposition 1. We show that for any given house allocation problem

the set of existing tenants who are allocated their own house are the same under the two mecha-
nisms. Then since both algorithms�outcomes are fair and non-wasteful, they have to choose the
same allocation.

6An allocation is non-wasteful if no agent other than a non-participating existing tenant prefers an unassigned
house to her current assignment.
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McVitie and Wilson (1970) show that under the DA algorithm, the ordering according to
which agents make proposals to their mates on the other side of the market has no e¤ect on the
outcome, and provide an equivalent version of the DA algorithm, where agents make their proposals
according to any given ordering. Take any house allocation problem with a given ordering f of
agents. To prove Proposition 1 we use the McVitie-Wilson version of the DA algorithm in which
agents propose in turn according to the ordering f and where the priority order for each house is
constructed as described previously in the text.
First consider the NH4 algorithm applied to the given problem. Consider the tentative (partial)

assignment that is obtained at the end of the �rst squatting con�ict. Suppose it is the turn of
existing tenant i1 with house hi1 ; and all available houses are worse for him than hi1 : Since both
algorithms are fair and non-wasteful, at this point the tentative assignment of each agent under
the NH4 algorithm who has higher priority than agent i1 is the same as her tentative assignment
under the DA algorithm right before agent i1 starts to make proposals (*).
For the NH4 algorithm suppose it is some agent j 6= i1 who is currently assigned hi1 : Then

agent i1 is permanently assigned house hi1 and removed from the process, all tentative assignments
starting with agent j and up to agent i1 are erased, and the process starts over with agent j. Note
that this is the same as removing agent i1 (with his house hi1), without changing the relative
ordering of the remaining agents under f; and starting the NH4 algorithm all over from the
beginning.
By (*), under the DA algorithm when it is the turn of agent i1 to move, he starts his proposals

with his top choice house, and in turn gets rejected from every house that she prefers to hi1
(because each such house is now tentatively assigned to some agent who has higher priority for it
than i1). Then she proposes to hi1 : Since she has the highest priority for hi1 ; she is permanently
assigned to hi1 ; and from this point on any agent whomever proposes to hi1 is rejected. Since the
ordering of agents�moves under the DA algorithm has no e¤ect on the outcome, the outcome does
not change if we start the algorithm over, and apply it to the reduced problem which is obtained
by removing agent i1 (with her house hi1) without changing the relative ordering of the remaining
agents under f:
We next apply the NH4 algorithm to the reduced problem and identify the �rst squatting

con�ict. Using the above argument once again we show that the existing tenant that participates
in this con�ict is permanently assigned his house under both algorithms, and remove him from
the problem. Applying this argument repeatedly we conclude that the set of existing tenants who
are allocated their own house must be the same under the two algorithms.

Q.E.D.
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