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Abstract

This paper considers the issue of GMM estimation of a short dynamic panel data
model when the errors are correlated across individuals. We focus particularly on
the conditions required in the cross-sectional dimension of the error process for the
dynamic panel GMM estimator to remain consistent. To this end, we demonstrate
that cross section independence (or uncorrelatedness) is not necessary — rather,
it suffices that, if there is such correlation in the errors, this is weak. We define
a stochastic scalar sequence to be weakly correlated at any given point in time if
random variables sufficiently far apart in the sequence exhibit very little correla-
tion. Spatial dependence satisfies this condition but factor structure dependence
does not. Consequently, the dynamic panel GMM estimator is consistent only in
the first case. Under weakly correlated errors, an additional set of moment con-
ditions becomes relevant for each i — specifically, instruments with respect to the
individual which unit ¢ is correlated with, denoted by j. We demonstrate that these
extra moment conditions can be particularly useful when the errors are subject to
both weak and strong correlations, a situation that is likely to arise in practice. Sim-
ulated experiments show that the resulting method of moments estimators largely
outperform the conventional ones in terms of both bias and RMSE.

Key Words: dynamic panel data, spatial dependence, factor structure dependence, Gen-
eralised Method of Moments.
JEL Classification: C13; C31; C33.

1 Introduction

In developing the theory of GMM estimation of short dynamic panel data models, it
is commonly assumed that the regression errors are independently distributed across
individuals (see e.g. Anderson and Hsiao, 1981, pg. 598, Arellano and Bond, 1991, pg.
278, Arellano, 1993, pg. 88, Ahn and Schmidt, 1995, pg. 7, Blundell and Bond, 1998,

page 118, and others). This assumption is usually made for identification purposes
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rather than descriptive accuracy with the hope, presumably, that by conditioning on a
sufficient number of explanatory variables, what is left over can be treated as a purely
idiosyncratic disturbance that is uncorrelated across individuals. On the other hand, in
empirical applications of GMM estimation this rather strong assumption is somewhat
relaxed by allowing for common variations in the dependent variable at any given point
in time using two-way error components disturbances (e.g. Arellano and Bond, 1991,
pg. 288, Blundell and Bond, 1998, pg. 137, Bover and Watson, 2005, pg. 1975). In
practice, however, a a; + fi + €;; formulation is unlikely to be adequate to remove all
correlated behaviour in the errors and this may result in misleading inferences and even
inconsistent GMM estimators (Sarafidis and Robertson, 2007)*.

Error cross section dependence may arise for various reasons in practice; for example,
it may be due to the presence of spatial correlations specified on the basis of economic
and social distance (Conley, 1999) or relative location (Anselin, 1988), as well as due to
the presence of unobserved components that give rise to a common factor specification
in the disturbances with a fixed number of factors (e.g. Goldberger, 1972, and Joreskog
and Goldberger, 1975). Methods that account for a multi-factor error structure have
been proposed by Robertson and Symons (2000), Coakley, Fuertes and Smith (2002),
Phillips and Sul (2003), Moon and Perron (2004), Bai (2005), Pesaran (2006) and others.
However, these methods are theoretically justified in panels where the number of time
series observations (7') is large. To the best of our knowledge, no study exists that
accounts for spatial correlations in a short dynamic panel data model.

The present paper deals specifically with the issue of GMM estimation of a short
dynamic panel data model when the errors are not independent across individuals. A
major focus lies on the conditions required in the cross-sectional dimension of the error
process for the dynamic panel GMM estimator to remain consistent. To this end, we
demonstrate that independence, or uncorrelatedness, is not necessary for GMM consist-
ency or asymptotic efficiency — rather, it is sufficient that, if there is such correlation in
the errors, this is weak. We define a stochastic scalar sequence to be weakly correlated
at any given point in time if random variables sufficiently far apart in the sequence ex-
hibit very little correlation. Therefore, a weakly correlated sequence is asymptotically
uncorrelated. Conversely, a sequence is strongly correlated if random variables remain
correlated no matter how far apart the lie in the sequence. We show that the spatial
approach to modelling error cross section dependence, which typically assumes uniform
boundedness of the row and column sums of the weighting matrix, satisfies asymptotic
uncorrelatedness, although it is more restrictive in the sense that the latter does not
require uniform boundedness. On the other hand, under factor structure dependence
the errors are strongly correlated and therefore the GMM estimator is not consistent.
The two-way error components model violates asymptotic uncorrelatedness too?, albeit
the problem can be dealt in this case via time-demeaning of the observations. However,
careful analysis needs to be made in this case because the aforementioned transformation

'In an influential paper, Phillips and Sul (2007) analyse the impact of error cross section dependence
on the dynamic Fixed Effects (FE) estimator.
2 Assuming that the unobserved time-specific individual-invariant effect is treated as stochastic.



induces some dependency among the IV individual equations and therefore the moment
conditions are not valid anymore for finite N, a result that is usually ignored in the
literature.

In addition, this paper shows that when the errors are weakly correlated in the way
defined above, then for each individual i there is an additional set of moment conditions
that becomes relevant — in particular, instruments with respect to the individual which
unit ¢ is correlated with, denoted by j. We demonstrate that these extra moment
conditions can be particularly useful when the errors are subject to both weak and
strong correlations, a situation that is likely to arise in practice. Pesaran and Tosetti
(2007) consider this situation as well, for a model with no lags of the dependent variable
on the right-hand side and T sufficiently large.

The structure of the paper is as follows. The following section specifies the panel
regression model in a way that encompasses common factors and spatial dependence.
Section 3 reviews the standard moment conditions used in GMM estimation under two-
way error components disturbances. Section 4 addresses the issue of consistency for the
dynamic panel GMM estimator when the independence assumption across individuals is
relaxed. Section 5 shows that under weakly correlated errors, additional moment con-
ditions become relevant for each individual 4, which arise from the individual(s) which
unit ¢ is correlated with. Section 6 demonstrates the validity of these extra moment
conditions under both weakly and strongly correlated errors and the following section
analyses the properties of the resulting GMM estimators, including cases where the prob-
lem of weak instruments applies. The performance of these estimators is investigated
in Section 8 using simulated data. A final section concludes.

2 Model Specification

We focus on dynamic panel data models of the following first-order autoregressive form:

Yit = )\yi,t_l +vit, 1=1, ..Nandt=2,...,T

Vit = QT Uit
M N

wie = YOy w4 eie = 0] [diag (Wi x &) x in] + i (1)
m=1 j=1

where y; ; is the dependent variable of individual ¢ at time ¢, A is a fixed parameter to be
estimated with |[A\| < 1, and vy is a composite error term that consists of an individual-
specific time-invariant unobserved effect and a weighted sum of purely idiosyncratic
components, where 6; = (92-1, o GZM)/ is an M x 1 vector,

1 1 1 1 1 1
T Gt G
W, = Ll T2 BNl M x N, € = e C24 Nt : M x N,
M M M M M M
Wil Wiy o Wiy & Sar 0 &Ny



and ips is a M x 1 column vector of ones.
We make the following assumptions:

Assumption 1: «a; ~ iid (0, ai).
Assumption 2: ¢} ~ iid (0,02 ) and g; ~ iid (0, ag).
Assumption 3: E (y;16i¢) =0, fori=1,...,N and t =2,3,...,T.

Assumption 4: 6" is non-stochastic and bounded with limy_, oo [% Zf\il 01} =y #

0, imy_ 00 [% Zf\il QZ-Q;-] = Xy for i = j and 0 otherwise, where 8, = 8; — 0,
¥y is a diagonal positive semi-definite matrix and pg is a M x 1 vector such that
ol < By < .

Assumptions 1-3 are standard in the GMM literature. Assumption 2 can be easily
relaxed by allowing e;; ~ M A(k), where k is a small positive integer. Assumption 3
ensures that sufficiently lagged values of y;; will be uncorrelated with the first-difference
of €;+ and thus they will be available as instruments. Assumption 4 is equivalent to
requiring that 6; has finite mean and variance and it is uncorrelated across ¢ for all m if
0; were stochastic, which would be satisfied under — say — 0; ~ iid (pg, X¢).

Note that all the results discussed below extend in an obvious fashion to higher order
autoregressive processes as well as to panel autoregressive distributed lag models. Model
(1) can be written in a more compact form as follows:

M
y=Ay1ta+u u=>Y 0" (Wiely )& +e (3)

m=1

where y = (y1,...,yn) is a N x (T —1) matrix with y; = (yi2,..,%i7), y-1 =
(yL_l, ceny YN,—l)/ isa NX(T — 1) matrix with Yi—1 = (yi,h ceey yi,T—l)la o = [(051, ceey aN)/ & 1]
with ir_1 being a (T'—1) x 1 column vector of ones, ™ = diag [(07", ...,0%) @ ir_1]
isa N (T —1) x 1 vector, W is a N x N weighting matrix, £&™ = (£7",...,&€%)" with

& = (&7, ...,f?fT)/ and € = (€1, ...,en) with &; = (ei2, ..., gi7)".

The composite error term, u, has a flexible structure in that it can characterise
various forms of cross section dependence, which include dependence that is due to the
presence of unobserved common factors as well as spatial correlations in the error term,
depending on the structure of W7;. Specifically, the multi-factor structure arises from

(3) by setting all elements of WY, denoted by w];, equal to
wi =N fori=1,..,N,m=1,.,M (4)
such that
M N
u= Z ™" + e, where £ = [i® (f3", ..., ff")'] and f" = N~Y2 Z{fft (5)
m=1 =1
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In this case we have E (f*) = 0, var (f{") = 02 and cov (f{", f{",) =0 for 7 > 0 and

Em
all m. Therefore, E (u;;) =0, var (u;t) = Z%zl (0)? ag + 02 and
M- gmgm 52 for t =
cov (Ui,t> ui-i—k,s) —_ Em:l 91 91+k05m or t 3 (6)
0 otherwise

The Spatial Moving Average (SMA) process arises from (3) by setting M =1, 6} = 6
with 0] < 1, &' = ¢ and WL = Wy equal to a sparse matrix populated primarily with
zeros. For instance in a circular® SMA(1) process, u equals

UZQ(WN®IT_1)€+€ (7)
with Wy given by
0 1 0 . . 0]
0 010 . 0
0o o010 . . .0
Wy = (8)
. .. . . 0001
|1 . . . . . 00 0]

In this case we have E (u;;) = 0, var (u;;) = o2 (1 + 6?) and

002 for k =i(modN)+1andt=s
0 otherwise

cov (Ui t, Uitk,s) = { (9)
where i (mod N) is the modulo operator, defined as the remainder after numerical divi-
sion of i by N to obtain integer values. Thus, fori=1,..., N —1,i(mod N)+1=1i+1
and for : = N, N (mod N)+1 = 1. SMA processes of higher order can be accomodated
straightforwardly. Assuming invertibility, the Spatial Autoregressive (SAR) form can
be obtained using an infinite SMA representation®.

The Spatial Error Components (SEC) form arises in a way similar to a SMA form
with the only difference being that &' # e in (7) while (8) includes non-zero values on
the main diagonal. In this case we have E (u;+) = 0, var (u;¢) = o2 + 02021 and

9021 for k =i(modN)+1landt=s

1
0 otherwise (10)

cov (Wi g, Uitk,s) = {

Finally, it follows that by imposing appropriate restrictions on 6;", wlmj and 5;7;, (3)
can easily accomodate mixture cases too, where both spatial correlations and common
unobserved factors are present in the errors. We consider estimation of this type of

models in Section 6.

See e.g. Baltagi, Bresson and Pirotte (2007).

*In this case, Wy is not sparse, however its elements will decline with a distance measure that
increases sufficiently rapidly as the sample increases. For instance, Stetzer (1982) models the distance
decay by a negative exponential function, w;; = exp (—0d;;), 0 < § < oo, with d;; denoting the distance
between individuals ¢ and j.



3 Moment Conditions in Standard GMM Estimation

Typical GMM estimation of linear dynamic panel data models of the form given in (1)
imposes 6" = 0 for all ¢ and m, such that any form of dependence in the error process
across individuals, whether this is spatial or subject to a factor structure, is ruled out’.
Consequently, applying first-differences in (1) yields

Ayir = ANy 1+ Aviy, 1=1,..,Nand t=3,...,T (11)

Under Assumptions 1-3 the following ¢ = (T'— 1) (T' — 2) /2 moment conditions be-
come available

E (yit—sAvis) = E(yi1—sAgiy) =0; fort =3,...,T and s =2, ...,t — 1. (12)

On the other hand, in empirical applications it is common practice to generalise the
error structure by allowing for common variations in the dependent variable using a
two-way error components formulation®:

Vit = + fr +eig (13)

If f; is treated as non-stochastic, the moment conditions given in (12) are not valid
anymore because the expectation of f; is equal to f; itself. Hence

G Ny o -
(1 — + TZ:;) N€it—s—r + Z A ftST) (Afe+ A5i,t)]

=0

E(yit—-sAviy) = E

= Y N fieer Afi £0. (14)

7=0

If, instead, f; is treated as stochastic and serially uncorrelated, the moment con-
ditions given above remain valid because E [> 27 (AT fi—s—+Af;] = 0. However, the
sample counterpart of (14) does not converge to its expectation for finite T for reasons
that will become clear in the next section. Instead,

N 00

1

N 5 [yi,t—SAUi,t] - E )\Tft—s—TAft ﬂ) 0 (15)
i=1 =0

Transforming the observations in terms of deviations from time-specific averages elim-
inates both of these problems by removing the common time effect from the regression
error:

Uy = vit — 0t = (i — @) + (fr — fi) + (it — &) = a; + g4 (16)

However, the cross-sectionally demeaned transformation induces some dependency
among the N individual equations and therefore the moment conditions on the trans-

formed observations are not valid for finite N, i.e. E (gz tfsAQi,t) =F (gi tfsAgiﬂt) # 0,

®See Section 1 for related references.
6Viz. footnote 5.



where Yo = Yit—s — U_s and similarly for the remaining variables. As N grows
large, this dependency disappears; in particular, defining Y . = Yig-s — [y, , and

AvY, = A vy — fi,,], where Ty, . = > 7o N fi—s—r and fi,, = fi, we have

N
1
v Nﬁ E : {Qi,t—sAQi,t}
i=1

N
= \/N% Z [(yi»t—s - /jyt—s) - (?tfs - ﬁyt—s)] A [(Uivt - /jvt) - (Ut - ﬁvt)]
=1
1 o o
= ﬁ Z |:yi7t—sAQi’t} + 0p (1) (17)
i=1

since A (Gy — fi,,,) = Op (N"Y2), 5, —Fi,,_. = Op (N"Y2), N"V2N o =0,(1)

Zit—s
and N~/2 "N Awg = 0, (1). Therefore, given that QZ . Auv?, are independent across
i, a suitable CLT (Central Limit Theorem) ensures that

N

1 o o d 1 o [

/N Z [giyt—sAyi’t} - N <07 Var (\/Nyiﬂf—sAvivt)) (18)
=1

Hence, defining

y, 0 0 0 0 0 Au, s
0 y. 0 0 0 Av

Z@' = 71.’1 e . ; Aﬂi = o ) (19)
0 0 0 - Y1 Yo 7 Yir_o Av; p

and Z= (Zy,Zs, ..., Zy)', the first-differenced GMM estimator equals
3 _[Lay zAyzay | [Lay zayza (20)
DIF GMM = | o RY_ AANLAY NV AANLAY

with Ay = (Ayy,...,Ayn), Ay; = (Ayi’g,...,Ayi’T)/, AX,—l = (Ayly,l,...,AyM_l)'
!

and Ay; 1 = (Ayi2, ..., Ayir—1) jAXN is some weighting matrix that satisfies

Av—Ayx 20 (21)

where A y is a non-stochastic sequence of positive definite matrices. Alternative choices
of Ay lead to different GMM estimators, which are all consistent but they differ in
terms of efficiency. The asymptotically efficient DIF GMM estimator sets _XN equal
to the inverse of the covariance matrix of the moment conditions’ — that is, A;VI =

"See Hansen (1982).



Est.Asy.Var (\/N%Z'AQ), assuming that this matrix exists and is finite positive def-

inite. When &;; is homoscedastic K]_Vl can be approximated by %Z'HZ, where

H=1Iy®H, (22)
and } )
2 -1 0
-1 2 0
Hi=| : : (23)
. . —1
0 0 - -1 2 |

Hence it is clear that the weighting matrix is a function of the Kronecker product
between two distinct matrices, the former of which reflects cross section dependence in
the error structure (which, for large N, is zero in the present case and hence the use of the
identity matrix) while the latter reflects time series dependence in the error structure,
and in particular first-order serial correlation, which is induced by first-differencing the
observations. Note that since the individual equations are independent across ¢ for
large N, A&l can also be written as K]_\,l = % > ZiH; Z; and therefore an equivalent
expression for (20) is given by

/)\\D]F GMM =
| (X N -1 | (X N
o / N ! ! N !
- [N (Z Ayz‘,—1zi> An (ZZiAyi,—1>] [N (Z Ayi,—1zi> AN <Z ZiAyi)
i=1 i=1 i=1 i=1

(24)
When the individual observations are not independent across i, (24) is not equivalent to
(20).

The standard first-differenced GMM (DIF GMM) estimator may have poor finite
sample properties in terms of bias and precision when A — 1 or 02 /02 — c0. As a
result, Blundell and Bond (1998) developed an approach outlined in Arellano and Bover
(1995), which combines the equations in first-differences with the equations in levels,
using Ay; ;—1 as an instrument for the lagged dependent variable, y; ;—1:

E(Ayjt—1vit) =0; for t =3,4,...,T (25)

This approach gives rise to a system GMM (SYS GMM) estimator, which is valid
provided that the deviations of the initial observations from the long-run convergent
values are uncorrelated with the individual-specific, time-invariant effects — that is,

E [ai <y1 - 1%})] = 0. (26)

If common time effects are included in the error process, what is required is that

N
. 1 @
pth_)OON E [ai <yi’1 - )\>] = 0. (27)

i=1




Thus, defining

Z; 0 0
g _ | 0 S R [ o }
- . . . . T v |’

and Z°Y° = (Z3%°, 235", ..., Z52°)', the SYS GMM estimator is given by

- 1 ~ 111 ~
)\SYS GMM — [NYllzsySAN,syszsyS/Yl] [NYllzsysAN,sysZSyS/Y:| (28)

where Y = (Y1, Yo, o, Y) s Yo = (Ay, 3y os AY, 1Yy g oYy ) Yor = (Y01, Yo g,

andY; ;= (Aﬂm’""A%,Tﬂ’ﬂig’“"gz‘jq .

choice of AN gys is given by®

With homoscedastic errors the optimal

~ 1 -1
AN sys — |:ZSyS/HSySZSyS:| (29)
’ N
where H%Y® equals
H C
H%Y® = 30
[ C" Iya-g) } e

with Inr—2)y = IN®Ip—2 and C = Iy ® C1, where (4 takes the value of 1 on the main
diagonal, —1 on the first lower off-diagonal and zero otherwise.

The next section addresses the issue of consistency for the dynamic panel GMM
estimator when the restriction 6" = 0 V i, m is relaxed.

4 The Consistency of the Dynamic Panel GMM Estimator
under Error Cross Section Dependence

When 6™ is bounded and different from zero in (1), the structure of W7} will be critical
upon the asymptotic properties of the GMM estimator. Without loss of generality,
we will impose M = 1 for the remaining of this section, such that the error process
becomes equal to v = a; + 0; Zjvzl w; j€;y + €ir With 10;] < Bp < 00, E(vit) =0
and F (U?’t> < B, < 0o. We firstly define the concept of a weakly correlated process.

Let {fuﬁ, 7> 1} be the scalar sequence (v14, V2, V3¢, ...). There are (1" — 1) such scalar
sequences, for t =2, ..., T.

8For 02 = 0; sce Windmeijer (2000) and Kiviet (2007).



Definition 1 The scalar sequence {vf, 7> 1} is said to be weakly correlated if there

exist non-negative constants {pf{s, K> 0}, where 0 < p’,;’s <1 and

1/2
PZ’S > F (Ui,ta UH—H,S)/ [E (Uzz,t) E (U?+m,s)] / fOT all £ > 0, (31)
such that
o0
> ol <o (32)
k=0

for all t and s.

Notice that pf{s is merely an upper bound for the correlation between v; ; and v, s,
assuming that E (v;;) = 0 for ¢ > 1 and all ¢, s. Since it is only positive correlation
that matters, if v;; and v;;, s are negatively correlated, we can set p',‘;’s = 0. Thus,
Definition 1 implies that random variables sufficiently far apart in the sequence exhibit
very little correlation.

Remark 2 Observe that for > o7 pL® < oo, it is necessary that pl® = o(1) and it is
sufficient that pff =o0 (n_l). Therefore, a weakly correlated process is asymptotically
uncorrelated.  Conversely, a sequence that is not asymptotically uncorrelated — that
is, where random wvariables remain correlated no matter how far apart they lie in the
sequence, is said to be strongly correlated.

Theorem 3 Let {v’;, 7 > 1} be the scalar sequence (V1t,V2t, U3 t,...), where vy = oy +

0; Zj\; w; ;€4 + Eit, with |0;| < By < 00, E (U?,t) < B, < o0 and

N

Wil = max Y fuwi| = o (N'/?) (33)
j=1

Then {vf} s weakly correlated, or asymptotically uncorrelated.

Proof. See Appendix A. =

Note that condition (33) in Theorem (3) is more general than a uniform boundedness
condition for the row and column sums of Wy (typically employed in spatial models),
which is stated as follows®:

N N

Z|wi,j|§Bw<oij and Z|wi7j|§Bw<ooVi (34)
i=1 j=1

This is because uniform boundedness is subject to (33) but not vice versa. For
instance, we may have |w; ;| = N —2/3 % 4, 4, in which case the row and column sums
of W are not bounded because Zf\; | lwij| = N3 and thefore it is growing with N.

See e.g. Kapoor, Kelejian and Prucha (2007, pg. 106) and Lee (2007, pg. 491).
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However, condition (33) is still satisfied. As a result, any spatially correlated process
that satisfies (34) is weakly correlated, or asymptotically uncorrelated. On the other
hand, the factor structure sets |w; ;| = N~/2 V¥ i, j and so it violates (33). Hence it
provides an example of a process that is not weakly correlated. As a matter of fact,
when |w; ;| = N~1/2 there are M unobserved variables, fi* = N~Y2 (3 €0 + ... + &%),
which are common for all ¢+ and therefore their effect does not diminish no matter how
far in the sequence two random variables, v;; and v;4.¢, are. As a result, the factor
structure dependence is an example of a strongly correlated process. The two-way error
components model with stochastic f; is a restricted case of the single-factor structure
because it sets 6; = 1 for all 7 although it retains the same form for w; ;. Therefore, it
provides another example of a strongly correlated process, albeit the correlation can be
removed in this case for large N by transforming the data in terms of deviations from
time-specific averages.

Notice that condition (33) does not imply that the {vﬁ, 1> 1} sequence is spatially
ergodic because the row sums of W need not necessarily be the same, in which case
the elements of the sequence are not identically distributed. Furthermore, condition
(33) does not require that the sequence is a mixing process either in the sense that
the elements of the sequence can be asymptotically uncorrelated but not asymptotically
independent!?.

Remark 4 Pesaran and Tosetti (2007) define the scalar sequence {zf, 1> 1} to be

weakly dependent at any given t if its (weighted) average converges to its expectation
2
(2

1) (N_I/Q) and w1 [ZZ (w’?_l)ﬂ_l =0 (N—1/2) for any i < N, and let I,_1 be the

% i

i quadratic mean. Specifically, let wffl denote a weight that satisfies ), (w

information set at time t — 1 containing at least 211, 282, ... and w'™1, w'=2, ..., where
!/ / .

zi71 = (zi_l, ...,z}fv_l) and w1t = (fw'i_l, ...,fwfv_l) . Then the sequence {zf, i > 1} 18
weakly dependent if

A}iinoo var (Z wf_lzf It_1> =0.

i

Under this definition, the following factor structure process

uis = 0ift + it

where 0; is non-stochastic and bounded

fe~iid (0,0%), gy ~ii.d(0,02), (35)

18 weakly correlated so long as imy_, oo % Zfil 0; = 0L, This is not the case, however,
using Definition 1 since it is straightforward to show that pff -+ 0 as Kk — o0 and
therefore o7, pf.{s is not bounded. Intuitively, no matter how large K is, w;; and Uity
remain correlated in a non-negligible way regardless of whether  — 0 or not.

0Of course, this requires a strengthening of the moment restrictions — namely, E |u;]®> < B, < 0o, as
opposed to — say — F |u;|® < By < oo for ¢ > 1).
"1See Pesaran and Tosetti (2007), Theorem 16, page 15.
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The following theorem (due to White, 2001, Theorem 3.57) provides a law of large
numbers for weakly correlated sequences.

Theorem 5 Let {Uﬁ, 7> 1} = (v1,4, V24, U3¢, ...) be a scalar sequence with weakly cor-
related elements, such that E (v;;) =0 and E (v?}t) < B, < o00. Then

N

1

~ D wip— E(vig) 50 (36)
=1

Proof. It follows directly from Stout (1974, Corollary 2.4.1) and the Kronecker lemma.
|

Theorem 3 shows that so long as (33) holds true, v;; is weakly correlated, or asymp-
totically uncorrelated across ¢. In turn, according to Theorem 5, the latter implies that
the first sample centered moment of v! will converge in probability to zero. The follow-
ing corollary provides the extra condition necessary to validate the moment conditions
given in (12) under weakly correlated errors:

Corollary 6 Let {vﬁ, 7> 1} and {uf, 7> 1} be two scalar sequences (v1t,Vat, V34, -..)
and (1, usg, uzg,...) that satisfy ||W||, = o (NY?) individually and are, therefore,
weakly correlated. The product of these sequences will also satisfy |[W]|, = o (Nl/Q)
and will be weakly correlated.

As a result, we have

1 N T
pthﬂooNZ Z (Yit—sAviy) =

i=1 t=s+1
T 1 N @ 0o
= Z pthﬂooN Z [(1 77‘>\ + Z >\T’U/i7t—5—7’> Auij =
t=s+1 =1 7=0
T 00 1 N
= Z Z ATplimpy_, o — Zum_s_TAuiﬁt =0fors=2,...,T — 1. (37)
N 4
t=s+17=0 i=1

where the last line holds true because both {v; —s—r,7 > 1} and {Av,4, ¢ > 1} = {Au;y, i > 1},
are weakly correlated and so their product is also weakly correlated or asymptotically

uncorrelated across i, with expected value equal to zero. Thus, the moment conditions
used by DIF GMM remain valid.

Remark 7 Observe that when a weakly correlated process is defined as in Remark 4,
the sample average over i of the product between {vit—s—r, i > 1} and {Av;y, i > 1}
does not necessarily converge to its expectation; for instance, for the single-factor pro-
cess given in (35) and assuming that limpy_, o % Zf\il 0; = 0, we have % Zfil Uifs —
E(ujt—s) — 0 and %Zf\; Au;y — E(Auiy) — 0. However, the sample average
% Zfil Ui t—sAui¢ converges to ugft,SAft, where ,ug :pliquoo% Zf\il 9?, despite the
fact that E (u;+—sAu;yg) =0 for s =2,...,t — 1.
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Since asymptotic uncorrelatedness encompasses spatial dependence, it follows that
DIF GMM is consistent under spatially correlated errors. On the other hand, under
factor structure dependence the correlation between v;; and vj; persists no matter how
far apart individuals ¢ and j are. Therefore the law of large numbers provided above
breaks down and plimN_wo% Zf\il Yit—sVit 7 0, despite the fact that F (y;;—svit) =
0'2.

SYS GMM also remains consistent under weakly or spatial correlated errors because

. 1 N T T . 1 N 00 T
pthHooN Z Z (Ay;t—1vit) = thmNHmN Z [( A Aui,t17> Uit] = 0.
i=1 t=3 t=3 i=1 7=0
(38)
In summary, it has been shown that the dynamic panel GMM estimator does not
require cross-sectionally independent errors for consistency — rather, it suffices that, if
there is such dependence, this is weak — in the way defined above — at any given point
in time. Theorem 3 shows that this holds true under condition (33), which is more
general than uniform boundedness of the row and column sums of Wjy. The factor
structure in the error process violates this condition and therefore the standard GMM
estimator is not consistent in this case.

5 Additional Moment Conditions Under Spatial Depend-
ence

Suppose that the errors are spatially correlated but satisfy condition (33). It turns
out that not only DIF GMM and SYS GMM are consistent, but also that there is an
additional set of moment conditions which becomes relevant in this case. In particular,
we consider the basic model given in (3) and for simplicitly we impose a SMA(1) error
process — that is, M = 1, 0} = 0 with |0| < 1, &' = € and Wy is given by (8). Hence,
the model becomes equal to

Vit = \Yig—1+ (i + 04 +¢eiy), i=1,..,Nandt=2,..,T (39)

where j = i (mod N) + 1!3. 1In this case, an interesting result arises, as the following
proposition demonstrates:

Proposition 8 Under Assumptions 1-3, the panel autoregressive model in (39) implies
that for each individual i there is an additional set of moment conditions that becomes
relevant with respect to a different cross section, individual j, both in the first-differenced
equations and those in levels. In particular, we have

Moment Conditions for DIF GMM:

N T
i 1
pth_’OON z;tz;rl Yji—sAvis| =0; for s =2,...,T -1, (40)
i=1 t=s

2See also Sarafidis and Robertson (2007).
3See also (9). SMA processes of higher order can be accomodated in a similar fashion.
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with

pthHOO

Z Z y]t sAyzt 1] :_G(T;As)Ug (41)

i=1 t=s+1
Moment Conditions for SYS GMM (assuming that (26) is also satisfied):

N T
. 1
pth_’OON [Z Z ij,t—lvi,t] =0 (42)

i=1 t=3
with

T-—-2
plimy_, o+ [ZZA%t 1Yit— 1] 29(1_1_)\)0? (43)

=1 t=3

Proof. See Appendix B. =

Note that the error term of the regression model does not necessarily need to be of
a spatial MA form. In fact, it is straightforward to show that these moment condi-
tions are relevant under SAR and SEC errors or under more general spatial processes.
Most notably, these moment conditions remain valid under both weakly and strongly
correlated errors, as it will be shown in Proposition (9).

In the case of (39), we have

E[AvAV'] = E[(0(Wy ® Ir) Ae+Ae) (0 (Wy ® I1) Ae+Ae)']
= [[ (W @ Ir) + In7T) AeAe" [0 (Wy @ Ir) + In7]]

o2[0 (Wy @ Ir) + Int] Iy @ H;) [0 (Wi ® Ir) + InT]
o2[0 (Wy @ Ir) (In ® H;) + InT (In @ Hy)] [0 (W ® Ir) + INnT]

= 39 (Wn ® H;)0 (Wx ® I7) + 020 (Wy ® H;)

o2(In®H;)0 (Wy @ Ir) + 02 (Iy ® H;)

= o2 [PPWNWL +0 (Wy +Wx) + In] ® H; (44)
and therefore [92WNW]’V +0(Wn + W]'V) + 1 N] replaces Iy in the expression for the
weighting matrix of DIF GMM in (22). A similar point applies to Iy in (30) for SYS
GMM. Of course, in practice 6 is unknown; one option is to replace # with an arbitrary

value (say 6 = 0.5) at first stage, and then obtain an estimate of 6 by solving the following
quadratic equation:

~9 —~
Ot Tt (1) — 0 + 1y (1) =0 (45)
where 7, (1) = Est.Correlation (U;4,Uj) and U is the first-stage residual of unit 4 for
~ 1

t=2,..,T. (45) has two solutions for each ¢, but given that ;' (1) = 6; +6, one root

is the reciprocal of the other, which implies that the estimator for 6 at time ¢ equals
~ 1= y/1—4r2 (1)

0, =
27’15 (1)

The other solution can be ruled out since it will have an absolute value greater than
one, which is not possible given the restriction |#] < 1. A simple average 6 = %Z 0,

(46)

can then be constructed to provide an estimate of 9.
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6 Consistent GMM Estimation under both Spatial and
Factor Error Structure

The moment conditions analysed in the previous section can be particularly useful in gen-
eral error processes that include unobserved common factors as well as omitted variables
that are spatially correlated. This is because while the standard moment conditions
in (12) and (25) are invalidated in this case'*, it turns out that the moment conditions
obtained from a different cross section, individual j, are still valid. In particular, con-
sider again the error process of the basic model given in (3) and suppose that while
W7 = N_l/QiNi’N for some m (e.g. m = 1,..., M), there is at least a single W that
satisfies condition (33) of Theorem 3. Let this be denoted by W%I 1 and be equal to
(8), although it should be clear by now that any Wy that satisfies condition (33) or
uniform boundedness will do. In this case, the basic model can be rewritten as

Yit = NYit—1+ Vi,
M
— — moLm
Vig = Qi Uit Ui = Z 07" f{" +eip +bejq (47)
m=1

with f* = N"V2 (el + ... +R,), j = i(mod N) + 1 and |0 < 1. A similar error
process that is subject to both spatial correlations and common unobserved factors is
studied by Pesaran and Tosetti (2007).

Expressing (47) in terms of deviations from time-specific averages and using first-
differences yields

M
P T AAY T AL, Avgy = Z OF A S + Agi + 00z, (48)

m=2

Ay

24,

The following proposition demonstrates an important result:

Proposition 9 Under Assumptions 1-4, the panel autoregressive model in (48) can be
estimated consistently using method of moments estimators that rely on the following
moment conditions

Moment Conditions for DIF GMM:

N T
1
plimy oo - > Y., Av,| =0 fors=2,..,T 1, (49)
=1 t=s+1
with N
, 1 (T —5s)
pth_)OON [;tglyj,t—SAyi,t—ll = —014_7/\08 (50)

4 The use of other instruments with respect to individual ¢ will not help either, unless these instruments
are not functions of (lagged values of) y and certain regularity conditions hold true, such as those in
Sarafidis, Yamagata and Robertson (2007).
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Moment Conditions for SYS GMM:

N T
. 1
plimy_ o+ [ZZAyﬂlw,t] =0 (51)

with

N T
lim i ZZA —G(T_2)0'2 (52)
PUMN 00 37 | Yj-1Yig—1| =V 175 %

Proof. See Appendix C. =

The above implies that the model given in (47) can be estimated consistently using a
simple IV estimator that employs Y, pasan instrument for AQZ. . ppora first-differenced
GMM estimator that instruments Agi 1 by Yo s for s = 2,3, ..., and a system GMM

estimator that uses ij ., as an instrument for in the levels equations. This

Yip—
is because the correlation between Y; . and Aya ., (or between Agj., ., and Y,y 0

levels) is non-zero while the correlation between Y Jand Av;, (and Agj . qand v,

1
in levels) remains zero. Therefore, defining Zy = (ZiMM, ...,Z]]\\?M), with ZZMM =

!/
(gj’l, Yjgro EJ}T*Q) as well as the following matrices of instruments

Y 0 0 0 0 0 Av, 5
0 vy Y. 0 0 0 Av
Z! = ne | o an= | T 69)
00 0 Yjr Yja Yy Avir
and
zl 0 0
0 Ay 0
Z;rsys = ‘ . . | : fys _ [ Qiz ] ’ (54)
0 0 e ij’T
Proposition 9 implies that the following moment estimators are valid:
~f -1
Aty = <Z/MMAX_1> (ZhynAy) (55)
f 1 / At -1 T / NI -1
ADIF GMM = NAX,IZ (AN> Z Ay ﬁAXqZ (AN) Z' Ay (56)
and
N | sys [ AT -1 sys! ! 1 sys (AT -1 sys!
)‘SYS GMM — NX—lz (AN,sys> Z X—1 NX—IZ (AN,sys) Z X .
(57)
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-1
(AR) is the weighting matrix of the two-step first-differenced GMM estimator,

which can be estimated from
Al =2/ [(AvAY) © H)] Z (58)

where H; has been defined in (23) and Av is an N x (T — 2) matrix of residuals, obtained
from a first-step first-differenced GMM estimator. Notice that the least-squares estimate
of AGAD' in (58) is rank deficient because it is an N x N matrix and has rank T — 2.
The matrix inside the square brackets of (58) is also rank deficient because it is a square
matrix of order N (T' — 2) and has rank (7" — 2)2 . However, A;rv is a square ¢ x ¢ matrix,

which has rank equal to min (C (T — 2)2). Therefore, provided that we do not use too

many instruments, i.e. ¢ < (T'—2)*, (58) will be of full rank and the weighting matrix
will exist.

Y -1
(A}vasys is the weighting matrix of the two-step system GMM estimator, which
can be estimated from R R
Al =2 (Q) 2w (59)
with Q being equal to
~ (ADAY') ® (H;) 0
= - PN 60
“ [ 0 (@%) @ (Ir-2) (60)

7 Properties of GMM Estimators

To investigate the properties of these moment estimators we follow the approach by
Blundell and Bond (1998) and we consider the case where T' = 3, for which there is only
a single instrument available for the endogenous regressor, both in the first-differenced
equations and those in levels. In this way, DIF GMM and SYS GMM reduce to simple
instrumental variable estimators and the corresponding first-stage regressions may help
to analyse the ‘strength’ of the instruments used as a function of the parameters of
interest in more general cases.

7.1 Equations in First-Differences

For the equations in first-differences, the first-stage regression is given by

Ay, ,

d
=7y, T wi (61)
where w; is an error term. The ordinary least-squares estimate of 7%, which reflects the
strength of the relation between the instrument and the endogenous regressor, is equal
to

N
~d _ Zi:l yjylAyi,z 62
TSN ”
=1 yj;
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Using Assumptions 1-4 in model (47) it is straightforward to show that the plim of
74 equals

plimy o (7)
. 1 N : 1
()\ - 1) pth—woN Zi:l g]‘71gi,1 + pth—woN zij (Qi,Q - )‘yM)
. N
pth—»oo% >ic1 %2-,1

o2 o2 02 -1
= (A—1)—= a 1+ 62 >
A=D0"% [(1—>\)2+1—)\2( )W "Wl]

K

[03/03 + (1 + 92) K+ (1 — )\2) k[w) (2g/0?) wl]]
where k = %jr—f\‘ and wi =Y o0 A°f_g.

Thus, we can see that for fixed T the plim of 74 depends on various parameters,
namely A, 0, 02, 3y and 02. For example, as A — 1 the plim of the estimator converges
to zero, Wthh 1mphes that the correlation between Yo and Agi 1 becomes weak.

— (A-1)6

(63)

The intuition behind this is illustrated in the following 7ﬁgure, which shows two cases of
A when the values of 02, 39, 02 and 6 are held fixed:

Case 1. A+ 1 Case 2 A — 1
ﬂ.},ir—l S ﬁ"}"_;-':r—l ‘ﬁ.}"i:—lq_ ‘ﬁ}’ﬁ—l

T

FYiu-a +— Vp-2 Yi-z —— Va2

Weak instruments with cross section
dependence.

When XA - 1, Y is correlated with Agi’z and since Cov (gjjl, Agig)) =0 Y is a

)

valid instrument. Note that the use of Y, , as an instrument is not valid here because

¥y # 0 and therefore Cov (y 1Ay, 3> # 0. On the other hand, as A\ — 1 the correlation
between Y1 and Ay becomes weak; this is because the link between Ay 2 and Ay, 2
is not effectlve anymore since y . | is poorly correlated with Ay 2 while the hnk between
Y1 and Yis does not help elther because Yiq is poorly correlated with Ay 2

When there is no variation in the factor loadmgs across ¢, 29 = 0 and the plim of 74
remains non-zero but of course in this case Yiq is also valid as instrument. On the other

hand, for a glven non-zero value of § and |)\| < 1 the plim of the estimator converges to
zero as either (02 /02) — oo or (Xg/02) — co. The former result is similar to Blundell
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and Bond (1998). Interestingly, the same appears to apply for the ratio between X
and 2. Intuitively, this is because the contribution of the spatial component of the
error process in Av; 5 (and thereby the correlation between Ay and y;1) diminishes
with high values of 3y and increases with high values of 2.

7.2 Equations in Levels

For the equations in levels the first-stage regression is given by

)

Yo =T AY, + ] (64)

and the least squares estimator of 7! equals

Ay..y.
— —J,4=% (65)
Using Assumptions 1-4, it is straightforward to show that the plim of 7 equals

plimy_. (7)
. 1 N . 1 N : 1 N
pth—wOW Zi:l ng%,g — Aplimy_, N Zz‘:l ijlﬂm = plimy o N Zi:l ijQL?
2
: 1 N
plimpy_, o 5 >ic1 (Ang)
0

T (1167 1 (11 ) [Awh (Se/o?) Aw) (66)

where Awy = Zio ATAfy_ .. Here we can see that as A — 1 the above expression
converges to
lim (%d) _1 o (67)
PHIN —00 2 (1+6%) + Aw, (Se/02) Aw,

and so Ay remains informative as an instrument for y. i provided of course that 6 # 0.

In addltlon when 3y = 0 the random element in (67) disappears and the expression
becomes equal to a constant number — specifically, plimy_. o (77) =40/ [ ( + 92)].
Similarly to (63), the plim of 7 converges to zero as (29/02) — oo for the same reason

that has been discussed previously — that is, because the contribution of the spatial
component of the error process in v;3 diminishes.

8 Small Sample Properties of Moment Estimators

This section investigates the finite-sample performance of the various estimators pro-
posed in this paper using simulated data. The main focus of the analysis lies on the
impact of the relative importance of the unobserved factors in the total error process for
different values of N, T and .
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8.1 Monte Carlo Design

The underlying data generating process is given by

Yit = NYir—1 + o + U,
Uit = ¢th + Eit + HSjt, 1= 1, 2, ceey N,t = *48, *47, 7T‘ (68)

where «; ~ iidN (0,03), git ~ 1dN (0,0?), ft ~ iidN (0,0%) and j = i(modN).

Also, the factor loadings are drawn from
¢; ~ 11dU [—0.25,0.25] (69)

The performance of GMM estimation depends crucially upon the ratio of the two
variance components, a; and w;;, on var(y;) as shown in (63). This implies that as the
value of A increases, or the amount of cross-sectional dependence decreases, the impact
of a;; on var (y;;) will tend to become larger and thereby comparisons across experiments
with different levels of cross section dependence will not be valid. To control this ratio
we use the following simple result

2

_ a; S\ __ o s
var (y) = var T + ; Ujt—s | | = 1 )\)2 + 2 (70)

and we set 02 = [(1 —\) /(1 + )] 02 with ¢ = 115,

In addition to 02 /o2, the performance of the estimators will depend on the proportion
of o2 attributed to the factor structure in u; — hereafter this proportion is denoted by
C@> d=1,...,4. Therefore, noticing that

02 = (u¢)2 O'?c + Uéa?« + o2 (1+ 92) (71)
and normalising a?c = 1, we can produce the following result
2
(1= @) (n) + 3

= 72
o Cap (1467 4L

Since the values of (,u¢)2 and 035 are determined solely by (69) and so they are fixed,
normalising # = 0.5 implies that o2 will change only according to ¢ (@)- As this ratio
increases, the impact of the factor structure in the error process will rise. We choose
the following values for ((g):

Low impact of factor structure on w;: Cay=1/3
Medium impact of factor structure on w: (o =1/2
Medium-to-high impact of factor structure on u;: (3 = 2/3
High impact of factor structure on w;: Cay=3 /4

5See Kiviet (1995) and Bun and Kiviet (2006).

20



We consider N = 400, 800 and T" = 6, 10, since our focus is T fixed, N — oco. A
alternates between 0.5, 0.7 and 0.9. The initial value of y;; has been set equal to zero
but the first 50 observations have been discarded before choosing the sample, so as to
ensure that the initial zero values do not have an impact on the results. All experiments
are based on 2,000 replications.

8.2 Results

Tables 1-2 report the simulation results in terms of the mean value of /)\\r, where r de-
notes the rt" replication, and RMSE for each of the estimators used in the experiment.
FE is the fixed effects estimator, IV is the simple instrumental variables estimator that
uses y;+—o as an instrument for Ay;;—1 and DIF and SYS denote the first-differenced and
system GMM estimators respectively!6. The superscript “*’ indicates that the corres-
ponding estimator uses instrument(s) with respect to another cross section, unit j.

As expected, the performance of all estimators depends on ( (d)» the value of A and
the size of T and N. Specifically, as the value of { increases for a given value of A\, T'
and N, the estimators suffer a rise in bias and in RMSE. This is natural because as the
relative impact of the factor structure in the total error process increases, the invalidity
of the instruments used with respect to unit ¢ itself (such as in IV, DIF and SYS) is
magnified. For the estimators that make use of instruments with respect to unit j, the
rise in bias and RMSE is also intuitive because as ( increases, the contribution of the
spatial component in the error process — and thereby the correlation between Ay 1
and y;;—2 — diminishes.

Having said that, two things are clear from these results; first, IV*, DIF* and SYS*
outperform IV, DIF and SYS respectively under all circumstances. Second, the relative
performance of IV*, DIF* and SYS* improves with larger values of (. This is also
intuitive — ultimately, as ¢ — 0 the factor structure in the error process diminishes and
the asymptotic bias of IV, DIF and SYS approaches zero. Notice also that in terms
of RMSE, SYS* performs better than DIF*, which performs better than IV*, with the
relative difference in performance being increased according to the value of A. As T
rises, the performance of the estimators improves without exception.

Finally, it is important to emphasise that as the size of N increases, the bias and
RMSE of IV*, DIF* and SYS* decreases considerably. This is not the case for the
conventional estimators, IV, DIF and SYS, the performance of which — if anything —
deteriorates with larger values of N.

9 Concluding Remarks

Error cross section dependence is an increasingly popular research topic in the analysis
of panel data. Despite this fact, the issue has mot attracted much attention in GMM

DIF and SYS are estimated in two steps and they use yi;_2 and yi;_3 as instruments for Ays_1
in the first-differenced equations. Furthermore, SYS GMM uses the optimal weighting matrix (when
o2 =0), as derived in Windmeijer (2000).
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estimation of short dynamic panels, where it is commonly assumed that the regression
errors are are independent across 7. This paper has shown that, in fact, independence or
uncorrelatedness is not necessary for GMM consistency or asymptotic efficiency — rather,
it is sufficient that, if there is such correlation in the errors, this is weak in the sense
that any two errors that lie sufficiently far apart in the stochastic sequence exhibit very
little correlation at any given point in time. If this condition is not satisfied, the errors
are said to be strongly correlated. Spatial dependence presents an example of weakly
correlated errors while the factor structure dependence provides an example of strongly
correlated errors. Therefore, the standard dynamic panel GMM estimators that exist in
the literature remain consistent under spatially correlated errors but not so under a factor
structure. When the errors are weakly correlated there are additional moment conditions
that arise — in particular, instruments with respect to the individual(s) which unit ¢ is
correlated with. We demonstrate that these moment conditions can be particularly
useful when the errors are subject to both weak and strong correlations, a situation
that is likely to arise in practice. The properties of these GMM estimators have been
analysed under different circumstances. Simulated experiments have shown that the
resulting estimators outperform the conventional ones, in terms of both bias and RMSE.
This result is magnified as the impact of the factor structure in the total error process
increases. In addition, larger values of N are accompanied by a considerable decrease
in bias and RMSE for the estimators put forward in this paper. This is not the case
with the conventional estimators, the performance of which is naturally not affected by
the size of V.
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Appendices

A  Proof of Theorem 3

The error process is given by vi: = a; + 6; Z;\le wi,jijt + i, where E(v;:) = 0. Note that for

Eui|*> < By < 00, we must have ||W]||__ < B./? < co. Hence there are two cases; if the number of
non-zero elements in W is finite, such that C; = O (1) for all i, where C; is the number of non-zero
elements in row i of W, then |w; ;| can be any real number so long as it is sufficiently bounded. When

C; grows with N, |w; ;| = O <N71/27€) for some € > 0.

The correlation coefficient between v} and vi,, is given by

ts _ Cov (Vit, Vitk,s) _ E (v;,tVitk,s)
" [Var (vig) Var (vigr.s)]*? [E (vZ,) E (U§+H,3)] 1/2

0i0i 108 (T0q wijwite,j)

fort=s
1/29
[(U(Qﬁ‘e?"g ;'\]:1 w?,j+”g) ("?x+9?+nf’§ Z;’V:I “’?—pﬁ,,j*"’g)}

0 otherwise

The condition > 2 ) pp

t
K

zero values of W are sufficiently bounded. When C; grows with N, the condition |[W]| = o (N1/2)

® < oo is automatically satisfied when C; = O (1) for all ¢, given that the non-
i i P - -1/2 Y [ -1 N o] =
implies that |w; ;| = o (N ) and therefore |w; jwiyr ;| =0 (N7"). As a result, 2o jm (Wi jwig i =

o(1) and [(0’3 +070% E;V:l wy; + U?) (ai + 07, .07 Z;.V:l Wi+ a?)} = O(1). Since 0;0;1r07 =
O (1), it follows that p%° = o(1) for x sufficiently large and t = s.

B Proof of Proposition 8
Assuming that the y; : process has started a long time ago, it can be shown that

Qa; = s - s
j)\ +4 SZ:; A Ejt—s—2 T 0; A Ejlit—s—2 (73)

Yjt—2 = 1

where
j'=j(mod N)+1 (74)

and j =i (mod N) + 1. Hence, for DIF GMM we have

i=1 t=3
T 1 N o oo oo
= ZplimNHooN Z [(1 S+ S Nejirs 0> ,\rgj,i_T_s) (A + eAsj,t)} =0,
t=3 =1 =0 =0
(75)

25



using 2-5 for s = 2,...,7 — 1. Furthermore, the covariance between y;;—2 and Ay; 1 is different from
zero since

pthHoo |:Z Z Yjt— SAyli 1:| =

i=1 t=s+1

T
t=s+1
: <Z N Agiro1+ GZATAEJ-,HN

)

—9(1+)\) #0; fors=2,...,T —1. (76)
For SYS GMM we have
N T
plimy oo~ ij,th-,t} =
i=1 t=3
T 1 X
= D plimy o> KZ N Agjir1 +GZ>\ Agjiire 1) (i + it +95j,t)] =0. (77)
t=3 i=1 7=0 7=0

Furthermore, the covariance between Ay;¢—1 and y;¢—1 equals

pthﬁooN [ZZA?J]J 1Yi,t— 1] =

1=1 t=3

T N oo ¢S]
. 1 ., .
E pth_)ooN E [(E AN Agj—7_1+0 E A Asj/,t71>
t=3 i=1 =0 T=0
G T = T _ (T 2) 2
. (TE_O)\ Eit—r—1 + GTEZO)\ Ej717—1>:| 9 + by O 75 0 (78)

C Proof of Proposition 9

Define 87 = 6; — py and af = a; — i, = «;. Under Assumptions 1-4 and we have E [87af] =
0°F (a?) = 0 since 0; is non-stochastic. ~Furthemore, Var[8%a?] = E[02a°a?0%] = 6°0% 02 and
Cov [0 al,0%a O] = Q;’Q;"E [gg’g?] =0 for i # j. Hence, from a Weak Law of Large Numbers we have

Q7595
Nz[elfl

Furthermore, following an approach similar to (17) we have
1 1 -
\/ﬁﬁ Z [Qigi} = \/NN Z [Qlo - (9 - He)] [Q;) - (a - ﬂa)] =
i i=1
1 - 1 & 1o~
NZ a*ﬂa)\/ﬁﬁzgz?*(9*1‘9)mﬁZQf*”ﬁZ(efﬂe)(a*No)

= NZ a —|—op (79)

where the last line follows from the fact that (8 —p,) = O, (N_l/Q)7 (@—p,) = Op (N_1/2)7
N7Y25N 82 = 0,(1) and N2 N a? = O,(1). In the same way we have E[07¢7,] =

i =1,t
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07E (g7,) =0, Var [07¢7 ] = 070¢'cZ and Cov [87¢7,,0%5 | = 0707'F [£7,,£5 ] =0fori # jand V¢,

o Asaresult, & 3 (0360, 2 0 and VAR S, [02,0] = VA S0, 0367, + 0, (1) Tn addition,

NZL L leger,] % 0and VN >N, e ,] = VNL PO 1 97€7 +o0p (1). With these results in mind,
the moment conditions given in (49) are equal to

pthHOON |:Z Z Y, Av;, t:| =

i1=1 t=s+1
T
= ZpllmNHOONZ{< Z)‘ ft T+Z)‘jtrs+02)‘ajtra>
t=s+1
(0;Af + Ag, , +0Ag;,)] =0; for s =2,...,T -1, (80)

since plimNﬂoo% Zil [QiQ;] =0 and
L [&
= Z plimy o+ Z [( 0 Z Nf s+ Z Nejar+0Y )\ng/ytsf>
=0 =0 T=0
+92)\ Ac, — 0T =52 g1
1 _ ~ =i, t—1—7 =j,t—1—71 1 + by €

t=s+1
T7=0

For SYS GMM we have

N

T
pthHoo% |:Z Z y] t— 121 t:| =

i=1t

A
a 1
= anmNWNZKo ZATAft 1- T+ZA Ag, g T—i—GZ)\TAaj,t - T>
oy +0f +e,, +0g,)] = (82)

and

N oo =) oo
= thmN*}w% Z |: Q; Z )\TAft—l—T + Z >\TA§j,t—l—T 4+ 92 )\TAgj/,t—l—T>

7=0 7=0 7=0

] S S | = E I
=0 =0 =0
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