
 1

A Simple Hybrid Bootstrap Test for Predictive Ability Based 

on Autoregressions 

 

 

Ching-Chuan Tsong∗ 

National Chi Nan University 

Cheng-Feng Lee∗∗ 

National Kaohsiung University of Applied Sciences 

Biing-Shen Kuo∗∗∗ 

National ChengChi University 

May 2007 

 

                                                 
∗ Department of Economics, National Chi Nan University, Puli 545, Taiwan; Tel: (886 49) 2910 960 

ext. 4920, Fax: (886 49) 291-4435, Email: tcc126@ncnu.edu.tw 
∗∗ Department of Business Administration, National Kaohsiung University of Applied Sciences, 

No.415, Jiangong Rd., Sanmin District, Kaohsiung City 80778, Taiwan (R.O.C.); Tel: (886 7) 
381-4526 ext. 7310, Fax: (886 7) 396-1245, Email: jflee@cc.kuas.edu.tw 

∗∗∗ Department of International Trade, National Chengchi University, Taipei 116, Taiwan; Tel: (886 2) 
2939 3091 ext. 81046, Tel: (886 2) 2939 3091 ext. 81029, Fax: (886 2) 2938 7699, Email: 
bsku@nccu.edu.tw 



 2

 

Abstract 

It has been by far well-documented that the extant tests for predictive ability suffer 

from size distortions. It results from the sensitivity of the tests to the choice of kernel 

functions in the estimation of the long-run variance. This paper proposes a bootstrap 

testing procedure using autoregression to overcome this problem. The regression 

approach transforms testing for the null of equal predictive ability into testing for an 

zero intercept in the estimated autoregression, which is easy to implement. To 

respectively account for autocorrelation and to retain heteroskedasticity of unknown 

from in forecast errors, the proposed resampling scheme combines both 

autoregressive sieve and wild bootstraps. We establish the bootstrap consistency by  

showing that the suggested test and the asymptotic counterpart have the same 

normality limit in distributions. Simulations revealed that our bootstrap testing 

procedure has a robust size performance to correlated forecast errors with conditional 

variance of GARCH or SV, in contrast to the existing tests adopting a moving block 

bootstrap.  

 

JEL classification: C22; E32 

Keywords: sieve bootstrap; wild bootstrap; predictive accuracy test, encompassing test 
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1. Introduction 

Prediction has drawn a considerable amount of attention for decades, particularly 

in the fields of economics and finance. Forecasts of variables are useful, not only to 

know the future path of the economy but also for choosing the most proper 

specification among competing empirical models. For these purposes, we require 

some criteria to evaluate the out-of-sample forecast performances of given models. A 

common, though informal, criterion for identifying the best model is to select the one 

with the minimum mean square prediction error (MSPE) or mean absolute error 

(MAE) (Meese and Rogoff, 1983; Akgiray, 1989) among models. However, merely 

using MSPE or MAE appears to be inappropriate, since they are all random variables 

with potentially unknown distributions. We cannot make any statistical inference 

regarding the realizations without knowing their distributions. 

Two formal approaches can be used to evaluate the forecast performance. One 

option involves adopting the predictive accuracy test proposed by Diebold and 

Mariano (1995) (henceforth DM) in order to test the null hypothesis that the 

population means of the economic loss functions for two different models are equal. 

The alternative option is to apply the forecasting encompassing test (see Chong and 

Hendry, 1986; Clements and Hendry, 1993) (henceforth ENC) to decide if the 

preferred model contains more useful information than the other ones. Both tests have 

the same asymptotic standard normal distribution even though they are constructed 

differently. 

It is well known that the forecast errors generated from many predicting models 

are usually serially correlated and conditionally heteroskedastic, particularly when the 

forecast horizon is long. DM and ENC tests deal with the dependence of forecast 

errors by using a non-parametric method in order to estimate the long-run variance, 
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wherein a suitable choice of kernel function and bandwidth is involved. Using 

simulations, Clark (1999) pointed out that the results from DM are considerably 

affected by the selection of different kernels in finite samples. The idea of 

implementing these tests without non-parametrically calculating the long-run variance 

is appealing to empirical researchers. 

For the purpose of illustration, let us assume that two forecast errors, denoted by 

te1  and te2 , are obtained from two competing models. Both DM and ENC tests are 

conducted to test the null hypothesis that the sample mean of series dt
1 equals zero. 

By borrowing this idea from the Augmented Dickey-Fuller (ADF) unit root test, we 

have proposed a new testing procedure for the extant tests in this paper. We have 

treated series dt  as a covariance stationary process with moving average (MA) 

properties. Under some general conditions (e.g. Bühlmann, 1995, Lemma 2.1), it can 

be expressed as an infinite-order autoregressive (AR(∞ )) process with possibly 

conditional heteroskedastic errors. In ideal circumstances, it is feasible to approximate 

the AR(∞ ) model with a p -order AR model, where order p  should increase with 

the sample size at a certain rate. The intercept in the AR( p ) model, which stands for 

the population mean of series dt , is the parameter on which we will focus. 

To be specific, we have tested the null hypothesis by first fitting series dt  with 

the AR( p ) model with an intercept. As determined by Akaike Information Criteria 

(AIC), order p  needs to be sufficiently long to account for serial correlation. 

Thereafter, we have estimated the model using OLS and tested for zero intercept using 

t-statistics (henceforth ctAR − ). The proposed ctAR −  statistics, which can be 

shown to have the same asymptotic standard normal distribution as DM and ENC 

tests, can be easily used in major standard econometric software.  

                                                 
1 2

2
2

1 ttt eed −=  and )( 211 ttt eee −  for DM and ENC tests, respectively. 
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Our simulation results reveal that the ctAR −  test outperforms DM and ENC in 

size and shows a comparable power across a wide variety of cases. However, it 

continues to encounter a size distortion problem, particularly when the sample size is 

small and forecast horizon is long. Hence, a new bootstrap procedure, aimed at 

estimating the finite sample distribution of ctAR −  test, is proposed to cope with 

such size distortions. Our bootstrap is a hybrid one, in which we have combined the 

autoregressive sieve bootstrap and wild bootstrap (WB) for different purposes. The 

AR sieve bootstrap is first used to account for the serial correlations in series td , 

which is accomplished by fitting the series with a finite AR process so that its order 

increases with the sample size. In turn, the conditional heteroskedasticity of unknown 

form in td  is addressed by applying the wild bootstrap to the residuals of the AR 

sieve regression.  

The two bootstrap methods employed in our research have been widely used in the 

literature regarding this topic. Chang and Park (2003) established the use of the sieve 

bootstrap for an ADF unit root test with general linear processes. With possible 

conditional heteroskedasticity of unknown form for autoregressive processes, 

Goncalves and Kilian (2004) contributed to the study of three easy-to-implement wild 

bootstrap proposals and demonstrated their asymptotic validity. With the help of 

simulations, Flachaire (2005) investigated and compared the finite sample 

performances of wild bootstrap as well as pairs bootstrap. In the research by O’Reilly 

and Whelany (2005), the wild bootstrap has been applied to generate critical values 

for testing parameter stability. Kapetanios and Psaradakis (2006) studied the 

properties of the sieve bootstrap for a class of linear processes that exhibit strong 

dependence and formulated the asymptotic validity of the sieve bootstrap in the case 

of sample mean and sample autocovariances. Richard (2006) proposed the use of an 

MA sieve bootstrap for the ADF test and demonstrated that the test based on this 
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bootstrap was consistent. 

A bootstrap procedure remains incomplete if its consistency is not provided, in the 

sense that the asymptotic distribution of the ctAR −  test is the same as that of its 

bootstrap counterpart. In this paper, we show that the ctAR −  test based on the AR 

sieve and wild bootstraps is asymptotically valid. In addition, another bootstrap 

method for dependent data, called moving block bootstrap (MBB, Künsch, 1989), is 

also investigated for the sake of comparison. The MBB is implemented by dividing 

the data into blocks, sampling the blocks randomly with replacement and laying them 

end-to-end in order to produce the bootstrap sample. We employ MBB in DM and 

ENC tests and compare their respective performances with that of the bootstrapped 

ctAR −  test. 

Simulation results indicate that despite the conditionally heteroskedastic forecast 

errors, our bootstrap procedures can effectively reduce the size distortions of the 

ctAR −  test in various combinations of sample size and forecast horizon. Moreover, 

the size results of DM and ENC with MBB are apparently inferior to those of the 

bootstrapped ctAR −  test. As expected, MBB heavily depends on the choice of 

different block lengths. 

This paper proceeds as follows. DM and ENC tests are briefly reviewed in Section 

2. We have introduced the ctAR −  test in Section 3 and studied its asymptotic 

behaviour by deriving the limiting distribution. In Section 4, we have proposed 

bootstrap procedures for the ctAR −  test and developed the asymptotic distribution 

of its bootstrap test. Simulation results pertaining to size and power are presented in 

Section 5. Section 6 concludes the paper, and mathematical proofs are collated in the 

appendix. 
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2. The Review of Forecast Tests 

In this section, we have briefly reviewed two predictive performance tests—the 

predictive accuracy test and forecast encompassing test. 

With two forecasting models for the same variable ty , researchers are often 

concerned about how to discriminate between them in terms of their out-of-sample 

prediction performance. Diebold and Mariano (1995) pioneered the work of 

comparing the predictive accuracy of two forecasts in a statistical framework. The 

asymptotics for DM test are established by assuming the model parameters without 

estimation. This can be outlined as follows. 

Suppose ntee tt ...,,2,1),,( 21 =  are h -step forecast errors of models 1 and 2, 

respectively. Taking MSPE as a measure of prediction loss, the loss differential from 

the two models can be expressed as 2
2

2
1 ttt eed −= . The DM test is implemented to 

compare whether the population mean of td  is equal to zero. The null hypothesis of 

DM test is [ ] 0=tdE , as against the alternative hypothesis [ ] 0≠tdE . 

DM test can be formulized as commonly used t -statistics by using the sample 

mean of td  to test the null hypothesis as follows. 

)(dVar

dDM = ,                             (1) 

where d  refers to the sample mean of td  and )(dVar  is a consistent estimator for 

the long-run variance of td . 

The alternative method for forecast evaluation involves the use of ENC test, which 

is based on the fact that the competing forecasts could have a different information 

content than the preferred one. Harvey et al. (1998) proposed the use of t -statistics to 

test for the population covariance of te1  and )( 21 tt ee − . If we define 

)( 211 tttt eeed −= , ENC test shows the same form as (1). Under the null hypothesis 
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that the forecast of model 1 encompasses that of model 2, [ ]tdE  will be less than or 

equal to 0. However, if the alternative hypothesis that the model 2 forecast contains 

more information holds true, then [ ]tdE  should be positive. 

As stated earlier, DM and ENC  require an estimation of long-run variance for 

series td , since the optimal h -step forecast errors are )1( −h -dependent. DM test 

uses a non-parametric method of estimation, using the uniform kernel equipped with 

bandwidth )1( −h . Its estimator assumes the form ∑ −

−−=
=

1

)1(
ˆ1)( h

hk kn
dVar γ , where 

kγ̂  denotes the sample auto-covariance of td  with lag k . Finally, under the null 

hypothesis, both test statistics follow a limiting standard normal distribution. 

 

3. Autoregressive Testing Procedure 

In this section, we have proposed an autoregressive procedure to construct both 

DM and ENC tests in (1). We will begin with the following example to illustrate the 

test idea. Supposing series td  to be expressed as tt cd η+= , where c  is a constant 

and tη  is iid(0, ησ 2 ), nt ,...,2,1= . As explained in Section 2, the extant tests are 

conducted to verify whether 0)( =tdE , which is equivalent to testing the null 

hypothesis 0:0 =cH ; this can be done using t -statistics in the regression context. 

Under some general conditions, the t -statistics can be shown to have an asymptotic 

standard normal distribution. 

In cases wherein series td  is a covariance stationary process with possible serial 

correlations and conditional heteroskedasticity, we can adopt a parametric approach 

by fitting td  with the )( pAR  model, where order p  is determined by AIC, after 

which we test the )( pAR  model for zero intercept using t -statistics.  

The AR testing procedure proposed by us has twofold advantages. First, it can be 

conducted in major standard software. Second, it prevents the final result from being 
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affected by the selection of kernel function and bandwidth and therefore generates a 

more robust result than DM and ENC. The literature pertaining to unit root tests also 

documents that in the estimation of the long-run variance for finite samples, the 

parametric approach may produce a better performance than the non-parametrical one. 

Hence, our ctAR −  test, which is a parametric approach, is expected to perform well 

in this aspect.  

In order to obtain the asymptotic distribution for the t -statistics in the AR 

procedure, we require the following assumptions. 

Assumption 1: Suppose tdt Ld εψμ )(+= , where dμ  is a constant, 

∑∞

=
=

0
)(

j
j

jLL πψ , 10 =π  and possesses the following properties: 

 1. ),( tt ℑε  is a martingale difference sequence with some filtration )( tℑ , 

satisfying (a) 22 )( σε =tE , (b) )1(2
1

21
p

n

t t on +=∑ =
− σε  and )(c  the existence of 

some 4≥r  and 0>K  such that KE r
t <ε . 

 2. 1≤∀L , 0)( ≠Lψ  and 2>∃s  such that∑∞

=
∞<

0j j
sj π . 

Assumption 1 allows td  to be generated by means of a general linear process, 

including a finite order ARMA as a special case with kπ  decaying geometrically; the 

assumption also ensures that td  is covariance stationary. It should also be noted that 

Assumption 1(1) sets tε  as a martingale difference sequence, which includes a 

variety of second order stationary ARCH and GARCH models that are widely used in 

empirical finance. Assumption 1(2) is commonly seen in literature; it can be satisfied 

by assuming appropriate mixing conditions, allowing for some types of serial 

correlations. Under Assumption 1(2), according to Bühlmann (1995), td  can be 

written as follows. 

tdtdt dLd εμαμ +−+= ))((  ,         (2) 
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t
i

ditid d εμαμ +−+= ∑
∞

=
−

1

)( ,         (3) 

∑
∞

=
− ++≡

1i
titidc εα ,           (4) 

where )(/1)(1 LL ψα =−  and 1)( ≠Lα  for all 1≤L . Moreover, there exists 1≥s  

such that ∑∞

=
∞<

1j j
sj α  and )1(

1∑∞

=
−=

i idc αμ  in (4). Since ∑∞

=
≠

1
1

i iα , testing 

the null hypothesis of zero mean of td  is equivalent to testing the following 

hypothesis. 

0:0 =cH .                               (5) 

As in the ADF test, we can approximate (4) by )( pAR  with order p  increasing at a 

certain rate as the sample size increases. In empirical applications, LS is used to 

estimate an approximating )( pAR  model, and we obtain 

∑
=

− ++=
p

k
tpktkpt dcd

1
,, ˆˆˆ εα ,                       (6) 

where ĉ  and kp,α̂  for =k 1, 2, … , p  are the LS estimators, and tp,ε̂  is the LS 

residual. Correspondingly, the test statistics, denoted by ctAR − , are formalized as 

follows.  

)ˆ(
ˆ
cSE

ctAR c =− ,          (7) 

where )ˆ(cSE  is the standard error of ĉ . 

 In addition to Assumption 1, we also require the following assumption to obtain 

the asymptotics of ctAR − . 

Assumption 2: Let ∞→p  and )( 3/1nop =  as ∞→n . 

Assumption 2 states that when approximating td  with )( pAR , the order p  should 

increase with n  at a smaller rate than 3/1n . It should be noted that we do not impose 

any lower bound on the divergence rate for the order p . This condition is weaker than 

that in Said and Dickey (1984), in which they assume the lower rate of p  to be rn /1  
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for some 0>r  in order to ensure the accuracy of the approximation. Assumption 2 

is merely required in theory; it does not indicate how to choose p  in practical terms. 

Two common information criteria, such as AIC or BIC, are recommended. In such a 

forecasting context, however, Shibata (1980) claims that AIC may be a better choice 

than BIC because the former results in a more efficient asymptotic order estimate for 

some infinite-order autoregressive processes. Further, as shown by Park (2002), if we 

select the order p  with AIC, the order p  satisfies the condition )( )1( snop +−=  

a.s. , and Assumption 2 holds if 2>s . Therefore, throughout this paper, we have 

used AIC to select the order p . The limit distribution of ctAR −  is stated in Theorem 

1. 

Theorem 1: Let Assumption 1 and 2 hold. Under the null hypothesis (5), we have 

)1,0(NtAR d
c ⎯→⎯− .       (8) 

Theorem 1 shows that the asymptotic distribution of ctAR −  is standard normal, 

similar to those of DM and ENC, even when the error pertaining to td  is subjected 

to a martingale difference sequence. 

 

4. Bootstrap Asymptotics 

As in DM and ENC tests, ctAR −  suffers from size distortions at small samples with 

long forecast horizons. In this section, we intend to propose an appropriate bootstrap 

procedure, after taking into account both the dependence and heteroskedasticity of 

unknown form in the forecast errors, to estimate the empirical distribution of our test. 

Following this, we have provided a proof of bootstrap consistency to ensure the 

correctness of this procedure. Throughout this paper, the notation * denotes the 

bootstrap samples. Moreover, *P  and *E  denote the probability and expectation, 

respectively, that are conditional on the realization of the original sample. In this 
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section, we will describe our resampling schemes in detail. 

1. Suppose a sample { }n
ttd 1=  is considered. Use LS to estimate the )( pAR  model 

with p  chosen by AIC and obtain the LS residuals as follows. 

∑
=

−−−=
p

k
ktkpttp dcd

1
,, ˆˆˆ αε , for nppt ,...,2,1 ++= ,   (9) 

where ĉ  and kp,α̂  for =k 1, 2, … , p  are LS estimates. 

2. Generate WB residual according to 

ttptp ηεε ,
*

, ˆˆ = , for nppt ,...,2,1 ++= ,                    (10) 

where tη  is any iid(0,1) random variable with a bounded fourth moment with respect 

to the probability measure *P . We set tη  to be iid )1,0(N  in the follow simulations. 

3. Generate a bootstrap sample *
td  using autoregression, 

∑
=

− +=
p

k
tpktkpt dd

1

*
,,

* ˆˆ εα , for =t 1, 2, … , n ,             (11) 

where each kp,α̂  is the LS estimate in (9) and ]',...,[ 1 pdd  serve as the initial values 

of *
td . 

4. Compute the bootstrap counterpart of ctAR − , denoted by *
ctAR − , by regressing 

*
td  on ],1[ ,tpx′ , where ],...,,[ 21, ′= −−− pttttp dddx . 

5. Repeat Steps 2 to 4 NB times. 

6. Compute the empirical distribution function (edf) of NB values of *
ctAR −  and use 

this empirical distribution function as an approximation of the cumulative distribution 

function (cdf) of the bootstrap null distribution for the test statistics. 

7. Make an inference based on the bootstrap critical value. 

 

We will now discuss the bootstrap procedure. Step 1 involves an estimation of the 
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)( pAR  in order to account for the autocorrelation in td . It is also important to note 

that we have included an intercept in the model regardless of whether the data is from 

the null or alternative hypothesis. Step 2 generates WB innovations by multiplying the 

LS residuals from Step 1 with an iid N(0,1) series, which enables us to mimic the 

heteroskedasticity of unknown form possibly existing in the td  series. This step is 

important for the sieve bootstrap to work efficiently in the next step, since the 

conditional heteroskedasticity in the original LS residuals does not meet the sieve 

bootstrap procedure’s requirement of independent re-sampling with replacement. With 

the help of WB, and in accordance with Wu’s (1986) claim, we may succeed in 

repairing the unknown structure of heteroskedasticity in the residuals, which would 

lead to good performance as regards size. 

Step 3, suggested by Kreiss (1997), is called the fixed-design wild bootstrap, 

wherein a bootstrap sample *
td  is generated by maintaining the regressors at the 

fixed value of their sample values in each re-sampling. It should be noted that in this 

step, we have imposed the condition of zero intercept on the generation of the 

bootstrap sample in order to be consistent with the null hypothesis of ctAR − . In Step 

4, the fixed-design regression is conducted by regressing the bootstrap sample on the 

fixed regressors; the bootstrap counterpart of ctAR −  is subsequently calculated. 

Goncalves and Kilian (2003) have proved that the fixed-regressor WB is less 

restrictive than the conventional recursive bootstrap. In addition, we found that the 

sieve autoregression with fixed regressors can also successfully account for the serial 

correlation. Therefore, in this paper, we have merely considered the fixed-regressors 

scheme in Steps 3 and 4.  

 In theory, it is necessary to prove that the distribution of our bootstrap test is 

equivalent to the corresponding limit distribution of the original asymptotic test. This 
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is because bootstrap distribution is used to approximate the unknown finite-sample 

distribution of ctAR − . Therefore, if the bootstrap procedure is correct, the 

large-sample bootstrap distribution should be very ‘close’ to the limit distribution. 

Theorem 2 provides a proof for bootstrap consistency that ensures the correctness of 

our bootstrap procedure. 

Theorem 2: Under Assumptions 1, 2 and 3 and the null hypothesis (6), we have 

 )1,0(** NtAR d
c ⎯→⎯−  in Prob.         (12) 

As shown in Theorem 2, the bootstrapped *
ctAR −  has an asymptotic standard 

normal distribution. Additionally, the convergence holds for almost each td  with 

respect to probability. As compared with Theorem 1, ctAR −  and *
ctAR −  have the 

same asymptotic distribution; this ensures the first-order asymptotic validity for the 

proposed bootstrap procedure. 

 

Remark 1: Moving Block Bootstrap. It is well known that MBB is an alternative 

method of analysing dependent data, in which the bootstrap is implemented by 

dividing the data into blocks and randomly sampling the blocks with replacement. We 

will now describe it briefly. Let ),...,,( 11 −++= biiii dddB  be the block of b  

consecutive observations starting from id , for =i 1, 2, … , 1+− bn . With these 

1+− bn  overlapping blocks, the bootstrap sample *
td can be obtained by randomly 

re-sampling bn /  blocks with replacement and laying them end-to-end in the order in 

which they are sampled. The bootstrap version of DM and ENC tests can be easily 

obtained by using the standard bootstrap procedure. Some points regarding MBB need 

to be mentioned in this context. First, the testing results from MBB are sensitive to the 

choice of block lengthb . Although Hall and Jing (1996) have shown that although the 
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optimal block length should be proportionate to 4/1n  for a one-sided test (e.g. ENC) 

and 5/1n  for a two-sided test (e.g. DM), this is not readily applicable in practice. In 

the following text, we will explore whether the choice of different block lengths has a 

severe impact on DM and ENC tests. Second, as implemented in Step 3, while 

conducting MBB, the bootstrap sample *
td  continues to be generated with the 

imposition of the null hypothesis, without which the bootstrap test would have no 

power. This can be done purely by applying the MBB procedure to the de-mean series 

td , instead of the original td  series. 

 

Remark 2: Throughout this paper, we have derived the asymptotics for the ctAR −  

test and its bootstrap version under the assumption that no estimation errors occur in 

the forecast errors. This technique was first utilised by DM (1995) in their test, after 

which Harevey, Leybourne and Newbold (1997, 1998) and Harvey and Newbold (2000) 

followed suit. In contrast, numerous papers in the related literature establish their 

predictive tests while taking into account parameter estimation errors (see West, 1996; 

West and McCracken, 1998; McCracken, 2000, 2006; Clark and McCracken, 2001). 

With the help of this assumption, we can pay more attention to the development of 

bootstrap asymptotics for our test. However, we are aware that this assumption is 

slightly stricter and is likely to lead to a limited empirical utility for the test. This is 

because in most applications, it is usually necessary to obtain the parameter estimation 

of a model before making the forecast. However, this limitation of our test is 

alleviated, as pointed out by West (2005), that the estimation errors can be ignored if 

the ratio of the numbers of out-of-sample observations to that of in-sample 

observations is less than 0.1. 
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5. Monte Carlo Analysis 

5.1 Experimental Design 

This section is devoted to investigating the finite-sample performance of our proposed 

test. Our simulation featured the use of bootstrap methods to provide a good control 

over size for DM, ENC and ctAR − tests. As a comparison, we applied MBB to both 

DM and ENC tests, denoted by DM* and ENC*. The sample size and forecast 

horizons were chosen to be )256,128,64,32,16(=n and )8...,,2,1(=h . 

Rejection frequencies based on 5% asymptotic and bootstrap critical values were used 

to evaluate the test performance. Monte Carlo replications were 5,000 for the results 

of DM, ENC and ctAR − ; however, while conducting the bootstrap tests, both Monte 

Carlo and bootstrap replications were set to be 1,000 for the computer time saved. 

Meanwhile, the optimal lag p  for ctAR −  was chosen using AIC, with the 

maximum order set as 5, while the block length of MBB was set to be ][ 5/1
1nc  for 

DM* and ][ 4/1
1nc  for ENC*, wherein =1c 1, 3. In contrast, the long-run variance of 

DM and ENC was non-parametrically estimated by adopting the Bartlett kernel with 

the bandwidth set to h-1; there was no pre-whitening. The experimental designs were 

borrowed from Harvey et al. (1997, 1998), with some extensions to the GARCH-type 

and SV-type innovations driving the forecast error processes. GARCH and SV models 

are widely used in empirical finance due to their ability to account for some stylized 

facts in financial series, such as fat tail and variance clustering. 

 As seen in Harvey et al. (1997), the forecast errors ),( 21 tt ee  for DM, ctAR − , 

*
ctAR −  and DM* were generated by 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

t

t

t

t

ke
e

2

1

2

1

0
01

υ
υ

.       (13) 

While computing the type I error, we set 1=k  to meet the null hypothesis of 
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0)( =tdE . However, k  was selected for each sample size in order to obtain powers 

that allowed meaningful comparisons. Hence, we set k  = 2, 1.5, 1.375, 1.25 and 

1.1875 to correspond to =n  16, 32, 64, 128 and 256, respectively. 

The experimental design for the forecast encompassing test was the same as in 

Harvey, Leybourne and Newbold (1998). To generate the forecast errors ),( 21 tt ee , let 

the covariance matrix be ⎥
⎦

⎤
⎢
⎣

⎡
=

ωδ
δ1

R , δ=),cov( 21 tt ee  and 2
2 )var( δω >=te . 

Thereafter, the forecast error can be generated by  

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡

t

t

t

t

e
e

2

1
2

2

1 01
υ
υ

δωδ
,       (14) 

where the first matrix on the right hand side of the equal sign is the Choleski factor for 

R . Since the value of ω  is not likely to affect the simulation result without the loss 

of generality, ω  is set to be 5. We let 1=δ  and 0.5 for size and power 

computations, respectively. Harvey, et al. (1998) pointed out that for any sample size, 

the powers of the tests depend solely on the single parameter δ
δω

−
−= 1

2
k . For 

any sample size, we choose k to be such that the size-adjusted powers are 

approximately 30%. In such a situation, the k  of 3, 4.25, 6.25, 9, 12.75 must 

correspond to the n  of 16, ... , 256, respectively.  

 To allow ),( 21 tt ee  in (13) and (14) to have MA property, we assume 

∑
−

=
−=

1

0
,,

h

l
ltilti επυ , =i 1, 2, =h 1, 2, … , 8,   (15) 

with 0.4) 0.3,- 0.3, 0.2,- 0.2, 0.1,- 0.1, (1,),...,,( 710 =πππ . In addition, three types of 

ti,ε  are considered below. 

1. The standard normal distribution. That is, the innovations ti,ε  are generated from 

N(0,1). 

2. The GARCH process. That is, 
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 tititi hu ,,, =ε ,             (16) 

 2
1,1,, −− ++= tititi bahwh ε ,           (17) 

where tiu ,  is standard normal, and 0.2) 0.13, (0.15,),,( =baw . 

3. The SV process. To be specific, 

 ti
titi u ,5.0
,, exp αε = ,            (18) 

 1,1,, −− += tititi ξφαα ,            (19) 

where tiu ,  and 1, −tiξ  are )1,0(N , assumed to be serially uncorrelated and 

independent of each other. Moreover, φ  is set to be 0.5. 

The GARCH and SV specifications help us to investigate the usefulness of the 

ctAR −  test, when applied to financial time series data. 

 

5.2 Simulation Results 

All the simulation results are displayed in Tables 1-1 to 4-3. The results presented in 

Tables 1-1 to 1-3 are of the predictive accuracy tests with the forecast errors generated 

by MA, GARCH and SV processes, respectively. We have also presented the size and 

power results based on 5% asymptotic and bootstrap critical values. It should be noted 

that the asymptotic powers reported are size-adjusted. Similarly, the results of the 

encompassing tests are presented in Tables 2-1 to 2-3. Moreover, in Tables 3-1 to 3-3 

and 4-1 to 4-3, we have displayed the dependence of DM*or ENC* on the choice of 

block length to illustrate the superiority of sieve and wild bootstraps. 

A number of conclusions emerge from the above-mentioned simulations. In 

Table 1-1, when forecast errors are homoskedastic, DM and ctAR −  are revealed to 

be subject to substantial size distortions that increase along with h  for a fixed n . 
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Moreover, as the sample sizes increase, each attains an actual size that is closer to the 

5% nominal size. For example, for combinations of )1,16(),( =hn  and 

)8,16( —which are of practical interest—the actual sizes for DM and ctAR −  are 

0.067, 0.363 and 0.349, 0.398, respectively. Moreover, we observe that for a fixed 

1=h , as n  increases from 16 to 256, the respective sizes of ctAR −  are 0.349, 

0.135, 0.083, 0.068 and 0.059, which confirms the validity of Theorem 1. The same 

observations can be made for the other horizons h  as well.  

Thereafter, we have adopted a bootstrap method to overcome the size distortions 

of the ctAR −  test. From the entries labelled under ‘bootstrap’ in Table 1-1, two 

observations emerge. First, the bootstrap test exhibits an excellent control over the 

empirical sizes for cases where the sample size is small ( 16=n ) and a long horizon 

( 8=h ), with size numbers of 0.349 and 0.060 corresponding to ctAR − and *
ctAR − , 

respectively. Overall, the sizes for *
ctAR −  are between 0.044 and 0.082, and they 

steadily vary, in contrast with those of ctAR −  and DM. Second, the *
ctAR −  test 

has bootstrap powers that are comparable or higher in some cases, as compared to its 

asymptotic size-adjusted counterpart. Additionally, the powers for both ctAR −  and 

*
ctAR −  increase as the sample sizes increase. 

 Similar observations regarding the size and power can also be made from Tables 

1-2 and 1-3, where the forecast errors are generated from the process that reveals a 

moderately persistent, conditional hetroskedasticity. Both ctAR − and DM tests show 

a poor size performance when the sample size is varied between 16=n  and 32, 

along with longer horizons. Despite this, our bootstrap test shows an excellent 

performance in size and power. For example in Table 1-2, when 16=n , the sizes of 

ctAR −  vary between 0.361 and 0.451. In contrast, the bootstrap sizes of *
ctAR −  
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range between 0.053 and 0.073. 

 The results displayed in Tables 2-1 to 2-3 correspond to the encompassing tests. 

In general, the findings from in Tables 1-1 to 1-3 continue to hold for Tables 2-1 to 

2-3, where moderate size distortions persist for the asymptotic tests, irrespective of 

the DGPs of the forecast errors. As expected, our proposed bootstrap scheme shows a 

good control over the size performance of ctAR −  and exhibits a comparable 

bootstrap power in comparison with the asymptotic one.  

 To further investigate the manner in which the sizes of DM and ENC tests are 

affected by the choice of block length in MBB, we have changed them using the rule 

5/1
1ncb =  for DM and 4/1

1ncb =  for ENC, with 1c  set to be 1 or 3. In addition, we 

have also considered three kinds of forecast errors. The results are presented in Tables 

3-1 to 4-3. First, it is evident that on the whole, DM* and ENC* produce less accurate 

sizes than *
ctAR − . This is particularly obvious when forecast errors are subject to a 

moderate persistent SV process in Table 3-3, where the sizes for DM* are not as good 

as expected even when 256=n . Second, a change in block length has a substantial 

impact on the size performance of both tests. Considering all cases, on an average, 

assuming a shorter length ( 11 =c ) in MBB appears to produce a better size for both 

tests. However, these results cannot be treated as a practical rule solely on the basis of 

our limited simulations. Based on these facts pertaining to MBB, in this paper, we 

have recommended a practical guideline for the evaluation of forecast performance by 

combining the ctAR −  test with sieve and wild bootstraps. 



 21

6. Application 

In this section, using data from Taiwan, we will illustrate the practical use of our 

ctAR − test as an application to exchange-rate forecasting. The data set comprises 

monthly observations of spot and 1-, 2-, 3-, 4- and 6-month forward NTD/USD 

exchange rates for the period from 1992:1 to 2003:12, which makes a total of 114 

observations for each series. The data is sourced from the AREMOS database of the 

Ministry of Education, Taiwan. 

In accordance with the no-parameter estimation error assumption, we will attempt 

the h-horizon forecast of the change in nominal NTD/USD spot rates by directly 

calculating the difference between the h-month forward rate and the spot rate, 

6,4,3,2,1=h . This is implemented based on the theory that the forward exchange 

rate would be an unbiased predictor of the corresponding future spot rate, provided 

the forward market efficiency hypothesis holds. We have also chosen a random walk 

model as a benchmark comparison, the forecast of which is constant at 0. The results 

are presented in Table 5. 

The evidence in the second column of Table 5 reveals that as regards predictive 

accuracy, there is a substantial difference between the asymptotic test and the 

bootstrap test. The bootstrap p-values of ctAR −  universally reject the null 

hypothesis at the 5% level of significance, which indicates that the forward market 

forecast is more accurate than the random walk one. The rejection of the null 

hypothesis, however, is only found in two out of five cases for the asymptotic ctAR −  

test. Similar but weak results are obtained from DM test, wherein the superiority of 

the forward market occurs for almost all the cases of the bootstrap DM test, but rarely 

for the DM test. In addition, the results in the third column of Table 5 show that no 

matter which test is conducted, both the encompassing tests fail to reject the null 
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hypothesis, indicating that the forward rate model contains more useful information 

than the base model. This finding reinforces the conclusion that the forward market 

model outperforms the random walk in predicting the change in the NTD/USD spot 

rate.  

 

7. Conclusions 

In this paper, we have developed a simple and computationally feasible method for 

discriminating between two competing forecasting models, using the assumption that 

the forecast errors may be serially correlated and heteroskedastic. The proposed 

method relies on an autoregressive model that deals with the serial correlation by 

adding extra lags, which enables us to overcome the difficulty in choosing an 

appropriate kernel function for the estimation of long-run variance. In addition, it can 

be used to formulate both DM and ENC tests. Our Theorem 1 shows that the ctAR −  

test has an asymptotic standard normal distribution. Not surprisingly, the test is 

over-sized for small sample sizes or long forecast horizons. In order to overcome the 

problem regarding small samples, we proposed a hybrid bootstrap procedure 

consisting of an autoregressive sieve and WB. We also provided the proof of 

consistency for our hybrid procedure. A simulation study was performed to identify 

the finite sample properties of our method, and the results were compared with those 

of two other tests adopting MBB. We found that our bootstrap method performs well 

in controlling the size distortions, as compared to the other two tests. In conclusion, 

we demonstrated the empirical relevance of our proposed test by applying it to 

forecasting the exchange rate.  
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Appendix: Mathematical Proofs 

In what follows, we use the notation ⋅  to signify the usual Euclidean norm. We 

define 22
1 nxxx ++=  for a p-vector x , and let xAxA xmax=  for a 

pp×  matrix A. Plus, any positive number is denoted by K  without ambiguity. 

 

Lemma 1: Under Assumption 1 and 2 along with the null hypothesis of (5), we have 

for large n  
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Proof of Lemma 1 For part (a) and (b) respectively, see Chang and Park (2002) p.434 

and Lemma 3.1.(c). 

 From Chang and Park (2002) p.441, we have 
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1, pk ktkttp dαεε . Therefore part (c) is done. Under Assumption 1 by 

CLT for martingale difference sequence (see, e.g., White (1984), Corollary 5.25), we 

have ),0(1 2
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σε N
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. Along with (c), we have (d). 

 

Lemma 2: Let ],,,[ 21, ′= −−− pttttp dddx . Under the same conditions of Lemma 1, we 

have for large n  

 )1()1()( 1

1
,, p

n

t
tptp Oxx

n
a =′ −

=
∑  



 24

 )(1)( 2/12/1

1
,,

−

=

=∑ pnox
n

b p

n

t
tptp ε  

 )(1)( 2/12/1

1
, pnOx

n
c p

n

t
tp

−

=

=∑  

Proof of Lemma 2 For (a) and (b), refer to (a) and (c) of Lemma 3.2 respectively in 
Chang and Park (2002). To show the result of part (c), first note that we have 
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uniformly in i  and j . See Change and Park (2002) p.443. This implies 
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Lemma 3: Let ĉ  and ]ˆ,,ˆ,ˆ[ˆ
,2,1, ′= ppppp αααβ  denote the LS estimators of c  and 

],,,[ 21 ′= pp αααβ  respectively in (6). Also, let tp,ε̂  be LS residuals. Define 

],,,[ 21, ′= −−− pttttp dddx  and ∑=
−=

n

t tpn n
1

2
,

12 ˆˆ εσ . Under the same conditions of 

Lemma 1, we have 
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Proof of Lemma 3 We first prove (d). Lemma 3(d) holds by Lemma 3(a) and Lemma 
1(d). 

Let ),( 2/12/1
pInndiagF −−= . Since ĉ  and pβ̂  respectively in (6), we have 
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Define nA , nB  and nC  as follows. 
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From (E1), the following equations hold. 
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With Lemma 1(d) and Lemma 2, we have the following results. 
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Therefore, we have part (a) and (b). To show the result of part (c), plug 
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Clearly, with (23) and Lemma 1(b), we have 
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Hence the proof of Lemma 3(c) is complete by (E2) and Assumption 1(b). 
 
Proof of Theorem 1 First note that, by its definition, ctAR −  can be written as 

 
)ˆ(

ˆ
cSE
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Then all together with Lemma 3(c), Lemma 3(d) and (21), the proof of Theorem 1 is 
complete. 
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Lemma 4: Let *ĉ  and ]ˆ,,ˆ,ˆ[ˆ *
,

*
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*
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* ′= ppppp αααβ  denote the LS bootstrap estimators 
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Proof of Lemma 4 To show part (a), first note that 
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Note that )( 2
1 pOB p= , because r

tdE  is bounded uniformly in t . Now show that 
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 To show the results in part (b) and (c), we define 
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With (20), Lemma 4(b), 4(d) and 4(e) all together, Theorem 2 is trivial. 
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Table 1-1: Small sample performance of DM and ctAR − -- MA( )1−h  error 

   16=n  32=n  64=n  128=n  256=n  
   ctAR −  DM ctAR − DM ctAR − DM ctAR −  DM ctAR − DM

size 0.349 0.067 0.135 0.059 0.083 0.05 0.068 0.053 0.059 0.048asymptotic 
power 0.076 0.226 0.122 0.178 0.185 0.248 0.209 0.239 0.249 0.277
size 0.060  0.064  0.055  0.055  0.054  

1=h  
bootstrap 

power 0.076  0.129  0.175  0.227  0.277  
size 0.337 0.123 0.129 0.086 0.083 0.07 0.069 0.059 0.058 0.056

asymptotic 
power 0.072 0.161 0.117 0.158 0.194 0.229 0.209 0.231 0.247 0.253
size 0.053  0.061  0.066  0.054  0.056  

2=h  
bootstrap 

power 0.070  0.122  0.179  0.226  0.274  
size 0.351 0.177 0.138 0.125 0.083 0.083 0.065 0.063 0.059 0.056

asymptotic 
power 0.073 0.133 0.107 0.131 0.189 0.21 0.208 0.217 0.252 0.259
size 0.058  0.059  0.051  0.046  0.048  

3=h  
bootstrap 

power 0.073  0.120  0.172  0.205  0.259  
size 0.36 0.21 0.14 0.148 0.088 0.099 0.069 0.074 0.064 0.06

asymptotic 
power 0.071 0.128 0.122 0.118 0.17 0.168 0.196 0.206 0.227 0.236
size 0.058  0.052  0.061  0.052  0.044  

4=h  
bootstrap 

power 0.069  0.110  0.159  0.187  0.241  
size 0.357 0.245 0.139 0.167 0.093 0.113 0.075 0.079 0.065 0.064

asymptotic 
power 0.071 0.115 0.12 0.115 0.176 0.152 0.175 0.176 0.216 0.215
size 0.064  0.072  0.056  0.046  0.059  

5=h  
bootstrap 

power 0.076  0.123  0.168  0.195  0.243  
size 0.367 0.27 0.145 0.181 0.1 0.12 0.086 0.089 0.072 0.065

asymptotic 
power 0.072 0.101 0.107 0.103 0.167 0.146 0.148 0.156 0.198 0.199
size 0.052  0.058  0.062  0.057  0.060  

6=h  
bootstrap 

power 0.079  0.115  0.155  0.189  0.214  
size 0.393 0.321 0.172 0.206 0.112 0.134 0.09 0.09 0.079 0.065

asymptotic 
power 0.065 0.089 0.097 0.093 0.141 0.13 0.149 0.148 0.174 0.178
size 0.072  0.073  0.072  0.063  0.067  

7=h  
bootstrap 

power 0.065  0.113  0.169  0.173  0.205  
size 0.398 0.363 0.177 0.221 0.12 0.143 0.103 0.091 0.089 0.07

asymptotic 
power 0.065 0.094 0.09 0.084 0.123 0.113 0.128 0.139 0.148 0.17
size 0.072  0.082  0.082  0.067  0.075  

8=h  
bootstrap 

power 0.076  0.135  0.165  0.174  0.217  
Note: 

1. The data generation process (DGP) is 
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with 0.4) 0.3,- 0.3, 0.2,- 0.2, 0.1,- 0.1, (1,),...,,( 710 =πππ , and ).1,0(~, N
iid

tiε  Also, we set 1=k  for 

size, and k = 2, 1.5, 1.375, 1.25, 1.1875 for power, respectively.  
2. For other information, please refer to section 5.1. 
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Table 1-2: Small sample performance of DM and ctAR − -- MA( )1−h +GARCH(1,1) error 
 

   16=n  32=n  64=n  128=n  256=n  
   ctAR −  DM ctAR − DM ctAR − DM ctAR −  DM ctAR − DM

size 0.368 0.134 0.147 0.139 0.092 0.141 0.073 0.146 0.062 0.146asymptotic 
power 0.072 0.15 0.093 0.126 0.132 0.156 0.136 0.139 0.151 0.157

size 0.067  0.068  0.066  0.069  0.066  
1=h  

bootstrap 
power 0.074  0.100  0.134  0.169  0.187  

size 0.361 0.148 0.143 0.109 0.089 0.097 0.071 0.089 0.06 0.083
asymptotic 

power 0.069 0.118 0.089 0.118 0.134 0.156 0.127 0.145 0.148 0.149

size 0.053  0.075  0.076  0.071  0.075  
2=h  

bootstrap 
power 0.070  0.106  0.153  0.163  0.186  

size 0.374 0.184 0.149 0.127 0.094 0.087 0.071 0.075 0.062 0.068
asymptotic 

power 0.061 0.111 0.095 0.11 0.131 0.148 0.13 0.138 0.145 0.159

size 0.054  0.062  0.058  0.062  0.067  
3=h  

bootstrap 
power 0.074  0.105  0.139  0.154  0.178  

size 0.379 0.219 0.154 0.148 0.094 0.096 0.072 0.074 0.061 0.065
asymptotic 

power 0.062 0.097 0.094 0.102 0.108 0.127 0.131 0.146 0.14 0.144

size 0.061  0.056  0.066  0.064  0.050  
4=h  

bootstrap 
power 0.067  0.094  0.122  0.156  0.166  

size 0.382 0.257 0.152 0.166 0.101 0.111 0.074 0.077 0.064 0.067
asymptotic 

power 0.065 0.096 0.1 0.1 0.112 0.108 0.121 0.122 0.136 0.133

size 0.062  0.087  0.065  0.061  0.070  
5=h  

bootstrap 
power 0.075  0.108  0.136  0.159  0.165  

size 0.389 0.293 0.16 0.188 0.105 0.122 0.083 0.084 0.066 0.067
asymptotic 

power 0.067 0.088 0.087 0.083 0.119 0.116 0.107 0.112 0.13 0.139

size 0.057  0.071  0.080  0.068  0.067  
6=h  

bootstrap 
power 0.070  0.108  0.126  0.149  0.157  

size 0.409 0.347 0.179 0.21 0.116 0.131 0.087 0.088 0.07 0.069
asymptotic 

power 0.063 0.076 0.084 0.079 0.103 0.109 0.104 0.114 0.12 0.123

size 0.073  0.076  0.084  0.070  0.070  
7=h  

bootstrap 
power 0.071  0.101  0.150  0.143  0.154  

size 0.415 0.394 0.188 0.232 0.129 0.142 0.099 0.092 0.082 0.073
asymptotic 

power 0.057 0.082 0.079 0.075 0.096 0.095 0.101 0.11 0.118 0.123

size 0.061  0.088  0.086  0.074  0.069  
8=h  

bootstrap 
power 0.083  0.128  0.156  0.152  0.169  

Note:  

1. The DGP is similar to Note 1 in Table 1-1, except the innovations are generated by 

tititi hu ,,, =ε , 2
1,1,, −− ++= tititi bahwh ε , where tiu ,  is standard normal, and 

0.2) 0.13, (0.15,),,( =baw . 

2. For other information, please refer to section 5.1. 
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Table 1-3: Small sample performance of DM and ctAR − - MA( )1−h +SV error 
 

   16=n  32=n  64=n  128=n  256=n  
   ctAR −  DM ctAR − DM ctAR − DM ctAR −  DM ctAR − DM

size 0.317 0.094 0.104 0.091 0.076 0.092 0.057 0.087 0.058 0.089asymptotic 
power 0.052 0.088 0.071 0.078 0.079 0.092 0.087 0.086 0.086 0.092

size 0.043  0.056  0.056  0.057  0.062  
1=h  

bootstrap 
power 0.051  0.069  0.096  0.094  0.114  

size 0.314 0.125 0.103 0.084 0.072 0.075 0.058 0.061 0.056 0.064
asymptotic 

power 0.054 0.083 0.067 0.084 0.081 0.091 0.091 0.094 0.094 0.096

size 0.047  0.045  0.053  0.071  0.073  
2=h  

bootstrap 
power 0.057  0.067  0.086  0.102  0.108  

size 0.316 0.158 0.103 0.1 0.073 0.074 0.07 0.067 0.06 0.061
asymptotic 

power 0.054 0.077 0.068 0.076 0.08 0.082 0.08 0.08 0.082 0.087

size 0.055  0.054  0.059  0.062  0.067  
3=h  

bootstrap 
power 0.059  0.071  0.096  0.088  0.102  

size 0.317 0.214 0.113 0.126 0.082 0.084 0.065 0.062 0.063 0.059
asymptotic 

power 0.057 0.07 0.068 0.068 0.08 0.081 0.087 0.086 0.087 0.088

size 0.045  0.051  0.066  0.061  0.076  
4=h  

bootstrap 
power 0.046  0.068  0.100  0.100  0.114  

size 0.327 0.249 0.117 0.144 0.086 0.096 0.07 0.062 0.065 0.058
asymptotic 

power 0.059 0.07 0.066 0.07 0.083 0.083 0.078 0.08 0.089 0.088

size 0.048  0.060  0.054  0.057  0.084  
5=h  

bootstrap 
power 0.049  0.078  0.084  0.103  0.125  

size 0.352 0.3 0.139 0.178 0.097 0.103 0.079 0.072 0.07 0.062
asymptotic 

power 0.057 0.064 0.067 0.064 0.082 0.079 0.077 0.082 0.083 0.081

size 0.054  0.059  0.073  0.087  0.070  
6=h  

bootstrap 
power 0.051  0.083  0.100  0.118  0.097  

size 0.376 0.36 0.157 0.199 0.118 0.121 0.096 0.077 0.076 0.055
asymptotic 

power 0.055 0.068 0.064 0.067 0.077 0.077 0.077 0.081 0.082 0.094

size 0.054  0.075  0.067  0.083  0.089  
7=h  

bootstrap 
power 0.062  0.086  0.104  0.125  0.132  

size 0.392 0.409 0.191 0.225 0.132 0.131 0.116 0.081 0.099 0.065
asymptotic 

power 0.055 0.063 0.063 0.062 0.074 0.073 0.077 0.076 0.075 0.081

size 0.073  0.092  0.112  0.100  0.119  
8=h  

bootstrap 
power 0.081  0.108  0.141  0.140  0.158  

Note:  

1. The DGP is similar to Note 1 in Table 1-1, except the innovations are generated by 

ti
titi u ,5.0
,, exp αε = , 1,1,, −− += tititi ξφαα , where tiu ,  and 1, −tiξ  are )1,0(N , and φ  is set to be 0.5. 

2.  For other information, please refer to section 5.1. 



 33

Table 2-1: Small sample performance of ENC and ctAR − -- MA( )1−h  error 

   16=n  32=n  64=n  128=n  256=n  
   ctAR −  DM ctAR − DM ctAR − DM ctAR −  DM ctAR − DM

size 0.217 0.068 0.109 0.061 0.073 0.054 0.061 0.052 0.054 0.051asymptotic 
power 0.136 0.301 0.232 0.331 0.28 0.346 0.324 0.345 0.337 0.345

size 0.045  0.067  0.057  0.041  0.050  
1=h  

bootstrap 
power 0.117  0.244  0.290  0.310  0.349  

size 0.221 0.095 0.105 0.078 0.072 0.064 0.061 0.057 0.057 0.054
asymptotic 

power 0.122 0.254 0.224 0.304 0.281 0.328 0.315 0.332 0.323 0.331

size 0.063  0.068  0.054  0.054  0.065  
2=h  

bootstrap 
power 0.106  0.233  0.286  0.314  0.347  

size 0.219 0.117 0.109 0.093 0.073 0.072 0.061 0.061 0.058 0.057
asymptotic 

power 0.125 0.221 0.229 0.27 0.283 0.304 0.309 0.32 0.317 0.321

size 0.065  0.053  0.067  0.054  0.069  
3=h  

bootstrap 
power 0.104  0.228  0.287  0.318  0.348  

size 0.221 0.139 0.11 0.106 0.076 0.08 0.063 0.063 0.056 0.053
asymptotic 

power 0.12 0.207 0.224 0.25 0.281 0.282 0.297 0.308 0.312 0.326

size 0.059  0.059  0.056  0.061  0.065  
4=h  

bootstrap 
power 0.108  0.206  0.271  0.292  0.312  

size 0.23 0.155 0.111 0.121 0.078 0.09 0.067 0.07 0.062 0.059
asymptotic 

power 0.115 0.195 0.218 0.235 0.258 0.271 0.28 0.286 0.289 0.293

size 0.053  0.067  0.057  0.049  0.047  
5=h  

bootstrap 
power 0.095  0.219  0.248  0.283  0.282  

size 0.231 0.177 0.118 0.125 0.082 0.091 0.068 0.068 0.067 0.065
asymptotic 

power 0.108 0.184 0.21 0.219 0.24 0.244 0.258 0.269 0.251 0.257

size 0.043  0.067  0.060  0.049  0.061  
6=h  

bootstrap 
power 0.104  0.227  0.250  0.292  0.270  

size 0.238 0.2 0.126 0.141 0.09 0.097 0.074 0.074 0.068 0.062
asymptotic 

power 0.116 0.173 0.197 0.192 0.218 0.221 0.243 0.236 0.245 0.244

size 0.058  0.065  0.055  0.058  0.058  
7=h  

bootstrap 
power 0.090  0.197  0.247  0.262  0.247  

size 0.246 0.219 0.138 0.145 0.095 0.101 0.082 0.076 0.079 0.067
asymptotic 

power 0.117 0.163 0.182 0.198 0.21 0.21 0.212 0.208 0.215 0.222

size 0.052  0.081  0.078  0.060  0.075  
8=h  

bootstrap 
power 0.104  0.227  0.212  0.260  0.277  

Note: 

1. The data generation process (DGP) is 
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tiε Also, 5=ω  and 

5.0,1=δ  for size and power.  

2.  For other information, please refer to section 5.1. 
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Table 2-2: Small sample performance of ENC and ctAR − -- MA( )1−h +GARCH(1,1) error 

   16=n  32=n  64=n  128=n  256=n  
   ctAR −  DM ctAR − DM ctAR − DM ctAR −  DM ctAR − DM

size 0.216 0.069 0.106 0.064 0.071 0.055 0.061 0.052 0.053 0.051asymptotic 
power 0.129 0.311 0.233 0.336 0.289 0.346 0.319 0.347 0.332 0.342

size 0.040  0.065  0.054  0.044  0.044  
1=h  

bootstrap 
power 0.111  0.237  0.285  0.318  0.356  

size 0.218 0.091 0.105 0.08 0.071 0.063 0.062 0.057 0.059 0.057
asymptotic 

power 0.125 0.267 0.229 0.312 0.29 0.336 0.312 0.338 0.321 0.335

size 0.049  0.066  0.062  0.047  0.064  
2=h  

bootstrap 
power 0.125  0.234  0.292  0.320  0.341  

size 0.22 0.115 0.109 0.093 0.076 0.072 0.06 0.06 0.058 0.058
asymptotic 

power 0.123 0.222 0.228 0.274 0.285 0.313 0.315 0.325 0.315 0.323

size 0.056  0.056  0.059  0.050  0.063  
3=h  

bootstrap 
power 0.106  0.225  0.293  0.322  0.344  

size 0.22 0.136 0.11 0.106 0.076 0.081 0.062 0.064 0.057 0.054
asymptotic 

power 0.127 0.214 0.216 0.267 0.282 0.288 0.296 0.311 0.311 0.323

size 0.056  0.065  0.060  0.059  0.063  
4=h  

bootstrap 
power 0.116  0.197  0.264  0.287  0.311  

size 0.227 0.155 0.11 0.118 0.078 0.089 0.068 0.07 0.061 0.06
asymptotic 

power 0.119 0.203 0.213 0.242 0.268 0.265 0.286 0.287 0.289 0.294

size 0.051  0.073  0.056  0.049  0.046  
5=h  

bootstrap 
power 0.102  0.233  0.251  0.281  0.279  

size 0.228 0.175 0.115 0.127 0.08 0.089 0.068 0.067 0.065 0.066
asymptotic 

power 0.119 0.186 0.212 0.218 0.241 0.253 0.263 0.273 0.26 0.258

size 0.034  0.067  0.064  0.058  0.052  
6=h  

bootstrap 
power 0.096  0.230  0.245  0.284  0.281  

size 0.238 0.198 0.122 0.137 0.089 0.096 0.072 0.072 0.067 0.063
asymptotic 

power 0.115 0.177 0.202 0.195 0.224 0.227 0.242 0.245 0.243 0.246

size 0.058  0.062  0.056  0.060  0.060  
7=h  

bootstrap 
power 0.095  0.189  0.248  0.262  0.257  

size 0.248 0.216 0.134 0.144 0.094 0.1 0.083 0.077 0.078 0.066
asymptotic 

power 0.114 0.158 0.189 0.196 0.212 0.218 0.211 0.211 0.211 0.219

size 0.055  0.079  0.069  0.062  0.074  
8=h  

bootstrap 
power 0.110  0.243  0.211  0.257  0.279  

Note:  

1. The DGP is similar to Note 1 in Table 2-1, except the innovations are generated by 

tititi hu ,,, =ε , 2
1,1,, −− ++= tititi bahwh ε , where tiu ,  is standard normal, and 

0.2) 0.13, (0.15,),,( =baw . 

2.  For other information, please refer to section 5.1. 
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Table 2-3: Small sample performance of ENC and ctAR − -- MA( )1−h +SV error 

   16=n  32=n  64=n  128=n  256=n  
   ctAR −  DM ctAR − DM ctAR − DM ctAR −  DM ctAR − DM

size 0.205 0.061 0.082 0.054 0.061 0.05 0.054 0.05 0.053 0.052asymptotic 
power 0.117 0.309 0.259 0.351 0.325 0.371 0.339 0.36 0.367 0.37

size 0.043  0.052  0.048  0.049  0.045  
1=h  

bootstrap 
power 0.106  0.219  0.338  0.316  0.348  

size 0.194 0.088 0.088 0.069 0.063 0.06 0.056 0.054 0.055 0.055
asymptotic 

power 0.129 0.272 0.253 0.332 0.32 0.356 0.343 0.357 0.341 0.35

size 0.061  0.062  0.055  0.048  0.059  
2=h  

bootstrap 
power 0.094  0.226  0.309  0.360  0.393  

size 0.198 0.115 0.089 0.086 0.066 0.071 0.054 0.059 0.055 0.055
asymptotic 

power 0.124 0.214 0.24 0.283 0.301 0.323 0.339 0.343 0.351 0.355

size 0.051  0.054  0.037  0.056  0.049  
3=h  

bootstrap 
power 0.106  0.221  0.278  0.345  0.344  

size 0.21 0.143 0.087 0.094 0.071 0.079 0.062 0.066 0.058 0.056
asymptotic 

power 0.123 0.206 0.257 0.265 0.293 0.295 0.302 0.309 0.323 0.327

size 0.043  0.064  0.059  0.060  0.053  
4=h  

bootstrap 
power 0.114  0.240  0.296  0.349  0.324  

size 0.212 0.159 0.096 0.109 0.07 0.079 0.06 0.061 0.055 0.056
asymptotic 

power 0.124 0.198 0.238 0.243 0.278 0.286 0.308 0.316 0.325 0.315

size 0.069  0.049  0.058  0.055  0.065  
5=h  

bootstrap 
power 0.101  0.200  0.279  0.321  0.325  

size 0.223 0.177 0.105 0.123 0.079 0.092 0.062 0.064 0.063 0.062
asymptotic 

power 0.118 0.188 0.213 0.228 0.258 0.256 0.28 0.288 0.265 0.276

size 0.061  0.065  0.058  0.053  0.046  
6=h  

bootstrap 
power 0.098  0.234  0.266  0.302  0.286  

size 0.227 0.205 0.117 0.135 0.087 0.094 0.07 0.067 0.07 0.062
asymptotic 

power 0.107 0.175 0.204 0.207 0.245 0.243 0.255 0.256 0.252 0.259

size 0.055  0.064  0.052  0.064  0.058  
7=h  

bootstrap 
power 0.105  0.210  0.250  0.286  0.271  

size 0.237 0.232 0.124 0.141 0.093 0.102 0.083 0.075 0.078 0.066
asymptotic 

power 0.1 0.163 0.186 0.192 0.212 0.207 0.219 0.229 0.216 0.225

size 0.064  0.067  0.084  0.068  0.068  
8=h  

bootstrap 
power 0.106  0.238  0.240  0.275  0.287  

Note:  

1. The DGP is similar to Note 1 in Table 2-1, except the innovations are generated by 

ti
titi u ,5.0
,, exp αε = , 1,1,, −− += tititi ξφαα , where tiu ,  and 1, −tiξ  are )1,0(N , and φ  is set to be 0.5. 

2.  For other information, please refer to section 5.1. 
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Table 3-1: Comparisons of different block lengths ( 5/1
1ncb = ) for DM*—MA( 1−h ) error 

 
  16=n  32=n  64=n  128=n  256=n  

  11 =c  31 =c  11 =c 31 =c 11 =c 31 =c 11 =c 31 =c  11 =c  31 =c

1=h  size 0.071 0.167 0.076 0.121 0.068 0.098 0.059 0.080 0.054 0.061
 power 0.266 0.353 0.234 0.254 0.259 0.280 0.248 0.273 0.267 0.298

2=h  size 0.070 0.162 0.085 0.122 0.067 0.084 0.066 0.075 0.060 0.058

 power 0.236 0.336 0.211 0.262 0.255 0.263 0.256 0.241 0.263 0.268

3=h  size 0.060 0.171 0.084 0.122 0.067 0.074 0.060 0.065 0.056 0.053

 power 0.233 0.346 0.215 0.239 0.240 0.264 0.243 0.267 0.274 0.264

4=h  size 0.083 0.160 0.083 0.125 0.075 0.086 0.072 0.073 0.057 0.067

 power 0.238 0.328 0.215 0.251 0.248 0.247 0.232 0.230 0.261 0.243

5=h  size 0.091 0.192 0.084 0.118 0.079 0.078 0.074 0.072 0.066 0.068

 power 0.261 0.340 0.228 0.230 0.236 0.241 0.242 0.236 0.274 0.259

6=h  size 0.096 0.173 0.091 0.132 0.083 0.088 0.082 0.079 0.065 0.074

 power 0.264 0.329 0.214 0.250 0.243 0.239 0.241 0.229 0.243 0.260

7=h  size 0.094 0.191 0.108 0.136 0.093 0.108 0.083 0.091 0.075 0.075

 power 0.244 0.347 0.216 0.243 0.237 0.253 0.228 0.228 0.234 0.235

8=h  size 0.106 0.192 0.110 0.156 0.105 0.109 0.090 0.111 0.084 0.085

 power 0.243 0.347 0.227 0.243 0.226 0.234 0.220 0.214 0.226 0.233
Note: see Table 1-1. 

 
Table 3-2: Comparisons of different block lengths ( 5/1

1ncb = ) for DM*—MA( 1−h )+GARCH(1,1) error 
 

  16=n  32=n  64=n  128=n  256=n  

  11 =c  31 =c  11 =c 31 =c 11 =c 31 =c 11 =c 31 =c  11 =c  31 =c

1=h  size 0.092 0.166 0.090 0.124 0.101 0.110 0.076 0.095 0.073 0.075
 power 0.223 0.297 0.196 0.216 0.223 0.226 0.200 0.206 0.205 0.209

2=h  size 0.080 0.168 0.101 0.129 0.090 0.108 0.088 0.086 0.081 0.070

 power 0.204 0.278 0.180 0.234 0.213 0.210 0.209 0.177 0.186 0.180

3=h  size 0.077 0.175 0.102 0.130 0.081 0.089 0.086 0.081 0.072 0.072

 power 0.195 0.289 0.189 0.205 0.199 0.207 0.197 0.205 0.203 0.199

4=h  size 0.103 0.172 0.100 0.127 0.089 0.105 0.084 0.091 0.070 0.082

 power 0.208 0.277 0.182 0.205 0.208 0.206 0.191 0.186 0.190 0.192

5=h  size 0.110 0.201 0.094 0.132 0.095 0.089 0.086 0.085 0.072 0.079

 power 0.230 0.285 0.201 0.203 0.195 0.189 0.195 0.191 0.211 0.194

6=h  size 0.106 0.179 0.101 0.146 0.111 0.107 0.098 0.090 0.085 0.084

 power 0.241 0.299 0.203 0.212 0.216 0.210 0.214 0.189 0.200 0.204

7=h  size 0.109 0.192 0.124 0.145 0.115 0.129 0.111 0.108 0.094 0.081

 power 0.230 0.312 0.205 0.215 0.210 0.227 0.216 0.201 0.199 0.198

8=h  size 0.126 0.206 0.129 0.167 0.126 0.125 0.120 0.132 0.094 0.100

 power 0.237 0.326 0.225 0.230 0.221 0.217 0.203 0.200 0.210 0.203
Note: see Table 1-2. 
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Table 3-3: Comparisons of different block lengths ( 5/1
1ncb = ) for DM*—MA( 1−h )+SV error 

 
  16=n  32=n  64=n  128=n  256=n  

  11 =c  31 =c  11 =c 31 =c 11 =c 31 =c 11 =c 31 =c  11 =c  31 =c

1=h  size 0.129 0.216 0.191 0.232 0.300 0.281 0.413 0.418 0.618 0.599
 power 0.262 0.350 0.349 0.365 0.500 0.473 0.613 0.599 0.796 0.775

2=h  size 0.132 0.221 0.198 0.234 0.286 0.295 0.444 0.434 0.609 0.612

 power 0.256 0.326 0.347 0.368 0.502 0.490 0.628 0.622 0.783 0.789

3=h  size 0.144 0.225 0.198 0.236 0.287 0.297 0.419 0.414 0.621 0.604

 power 0.272 0.331 0.342 0.349 0.497 0.488 0.624 0.617 0.794 0.774

4=h  size 0.142 0.225 0.216 0.232 0.295 0.301 0.428 0.438 0.616 0.585

 power 0.270 0.343 0.359 0.364 0.504 0.473 0.622 0.635 0.785 0.764

5=h  size 0.163 0.235 0.222 0.228 0.318 0.295 0.444 0.400 0.606 0.616

 power 0.289 0.358 0.375 0.349 0.497 0.475 0.642 0.607 0.768 0.790

6=h  size 0.180 0.256 0.213 0.247 0.315 0.298 0.466 0.431 0.605 0.608

 power 0.318 0.387 0.369 0.381 0.495 0.472 0.667 0.627 0.772 0.765

7=h  size 0.196 0.280 0.257 0.258 0.352 0.314 0.469 0.432 0.614 0.586

 power 0.345 0.411 0.415 0.385 0.529 0.502 0.655 0.615 0.782 0.773

8=h  size 0.208 0.297 0.276 0.278 0.343 0.330 0.460 0.429 0.624 0.588

 power 0.357 0.424 0.427 0.421 0.523 0.527 0.637 0.620 0.799 0.757
Note: see Table 1-3. 
 

Table 4-1: Comparisons of different block lengths ( 4/1
1ncb = ) for ENC*—MA( 1−h ) error 

 
  16=n  32=n  64=n  128=n  256=n  

  11 =c  31 =c  11 =c 31 =c 11 =c 31 =c 11 =c 31 =c  11 =c  31 =c

1=h  size 0.079 0.124 0.069 0.092 0.062 0.082 0.060 0.061 0.056 0.059
 power 0.374 0.434 0.372 0.396 0.370 0.366 0.341 0.372 0.348 0.355

2=h  size 0.076 0.138 0.059 0.097 0.061 0.086 0.064 0.079 0.050 0.059

 power 0.352 0.451 0.372 0.402 0.362 0.385 0.358 0.380 0.343 0.368

3=h  size 0.076 0.134 0.076 0.097 0.066 0.075 0.061 0.069 0.053 0.056

 power 0.347 0.433 0.380 0.404 0.378 0.385 0.337 0.355 0.363 0.351

4=h  size 0.077 0.141 0.069 0.110 0.065 0.087 0.066 0.060 0.060 0.054

 power 0.358 0.424 0.381 0.390 0.355 0.370 0.347 0.347 0.332 0.340

5=h  size 0.082 0.135 0.077 0.106 0.060 0.081 0.062 0.069 0.066 0.070

 power 0.345 0.438 0.370 0.390 0.335 0.369 0.344 0.336 0.321 0.348

6=h  size 0.087 0.124 0.085 0.103 0.077 0.091 0.068 0.073 0.069 0.065

 power 0.377 0.404 0.361 0.392 0.339 0.359 0.324 0.308 0.319 0.290

7=h  size 0.098 0.132 0.090 0.105 0.080 0.096 0.078 0.076 0.072 0.063

 power 0.362 0.420 0.370 0.367 0.335 0.351 0.328 0.316 0.318 0.293

8=h  size 0.105 0.148 0.095 0.123 0.084 0.092 0.087 0.075 0.087 0.075

 power 0.367 0.426 0.362 0.375 0.334 0.335 0.314 0.298 0.293 0.269
Note: see Table 2-1. 
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Table 4-2: Comparisons of different block lengths ( 4/1
1ncb = ) for ENC*—MA( 1−h )+GARCH(1,1) error 

 
  16=n  32=n  64=n  128=n  256=n  

  11 =c  31 =c  11 =c 31 =c 11 =c 31 =c 11 =c 31 =c  11 =c  31 =c

1=h  size 0.078 0.131 0.070 0.100 0.065 0.079 0.065 0.063 0.054 0.059
 power 0.367 0.443 0.391 0.414 0.378 0.386 0.363 0.376 0.360 0.357

2=h  size 0.074 0.141 0.058 0.099 0.061 0.086 0.070 0.083 0.058 0.063

 power 0.355 0.444 0.390 0.409 0.375 0.393 0.366 0.393 0.349 0.372

3=h  size 0.079 0.138 0.078 0.100 0.065 0.083 0.065 0.069 0.057 0.057

 power 0.352 0.427 0.385 0.411 0.398 0.407 0.348 0.373 0.370 0.368

4=h  size 0.076 0.143 0.066 0.111 0.071 0.088 0.067 0.068 0.064 0.060

 power 0.355 0.426 0.397 0.397 0.366 0.391 0.357 0.357 0.341 0.353

5=h  size 0.080 0.140 0.073 0.109 0.064 0.086 0.068 0.072 0.068 0.072

 power 0.350 0.436 0.373 0.400 0.349 0.382 0.354 0.351 0.337 0.360

6=h  size 0.085 0.116 0.089 0.108 0.071 0.095 0.074 0.076 0.072 0.060

 power 0.375 0.395 0.368 0.395 0.343 0.367 0.333 0.326 0.328 0.298

7=h  size 0.099 0.138 0.086 0.102 0.074 0.101 0.077 0.084 0.081 0.068

 power 0.357 0.421 0.375 0.373 0.339 0.363 0.342 0.332 0.331 0.299

8=h  size 0.106 0.159 0.100 0.122 0.086 0.098 0.092 0.075 0.086 0.079

 power 0.377 0.433 0.361 0.387 0.342 0.343 0.326 0.301 0.294 0.278
Note : see Table 2-2. 

 
Table 4-3: Comparisons of different block lengths ( 4/1

1ncb = ) for ENC*—MA( 1−h )+SV error 
 

  16=n  32=n  64=n  128=n  256=n  

  11 =c  31 =c  11 =c 31 =c 11 =c 31 =c 11 =c 31 =c  11 =c  31 =c

1=h  size 0.079 0.143 0.067 0.120 0.082 0.081 0.081 0.096 0.065 0.067
 power 0.294 0.374 0.317 0.365 0.327 0.334 0.316 0.314 0.289 0.291

2=h  size 0.081 0.144 0.086 0.103 0.082 0.103 0.080 0.079 0.064 0.072

 power 0.300 0.379 0.318 0.347 0.339 0.330 0.310 0.315 0.308 0.299

3=h  size 0.085 0.145 0.080 0.117 0.082 0.094 0.083 0.090 0.073 0.088

 power 0.279 0.367 0.337 0.359 0.306 0.320 0.308 0.323 0.283 0.294

4=h  size 0.085 0.147 0.090 0.114 0.076 0.089 0.069 0.076 0.067 0.070

 power 0.304 0.377 0.322 0.343 0.325 0.328 0.283 0.297 0.284 0.276

5=h  size 0.091 0.145 0.101 0.100 0.085 0.097 0.077 0.086 0.084 0.066

 power 0.300 0.366 0.320 0.330 0.309 0.323 0.298 0.314 0.291 0.266

6=h  size 0.103 0.142 0.103 0.112 0.088 0.090 0.086 0.086 0.079 0.067

 power 0.296 0.363 0.332 0.344 0.315 0.294 0.274 0.278 0.281 0.257

7=h  size 0.105 0.147 0.087 0.114 0.101 0.096 0.081 0.092 0.081 0.077

 power 0.317 0.362 0.296 0.324 0.300 0.285 0.269 0.281 0.246 0.240

8=h  size 0.105 0.156 0.105 0.111 0.092 0.109 0.090 0.087 0.090 0.072

 power 0.309 0.369 0.317 0.311 0.289 0.280 0.261 0.262 0.233 0.229
Note: see Table 2-3. 
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Table 5: Out-of-sample predictive performance for NTD/USD spot rate 
 

 ctAR −  DM ctAR −  ENC 

1=h  
-2.009(4)1 

[0.022, 0.021]2 
-2.487 

[0.006, 0.001] 
0.914(4) 

[0.180, 0.198] 
0.496 

[0.310, 0.227] 

2=h  
-1.867(3) 

[0.031, 0.014] 
-1.546 

[0.061, 0.041] 
0.327(4) 

[0.372, 0.357] 
0.145 

[0.442, 0.486] 

3=h  
-1.535(3) 

[0.062, 0.031] 
-1.596 

[0.055, 0.028] 
-0.589(3) 

[0.278, 0.279] 
-0.471 

[0.319, 0.294] 

4=h  
-1.328(1) 

[0.092, 0.043] 
-1.259 

[0.104, 0.076] 
-0.357(3) 

[0.361, 0.374] 
-0.220 

[0.413, 0.373] 

6=h  
-1.430(2) 

[0.076, 0.034] 
-1.687 

[0.046, 0.018] 
-0.934(4) 

[0.175, 0.115] 
-0.975 

[0.165, 0.151] 
Notes:  

1. The numbers in parentheses are the optimal lag for ctAR −  test.  
2. The left numbers in square brackets are asymptotic p-values, and the right ones in square 

brackets are bootstrap p-values. The bootstrap replications are 1000. 
3. The forward market forecast error is denoted by te1 , and the random walk forecast error 

is denoted by te2 . The long-run variances in DM and ENC tests are estimated using the 
Bartlett kernel with a bandwidth set to be 1−h , and the maximum lag for ctAR −  is 5. 
Also, the block length in MBB is determined by 5/1n  for DM and 4/1n  for ENC 
individually, where 114=n . 
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