
Two Geometric Representations of Confidence Intervals for Ratios of 

Linear Combinations of Regression Parameters:  An Application to the 

NAIRU. 

 

J. G. Hirschberg∗ and J. N. Lye 

Department of Economics, University of Melbourne, Parkville, Vic 3010, Australia 

 

Although the Fieller Method for the construction of confidence intervals for ratios of 

normally distributed random variables has been shown to be a superior method to the 

delta method it is infrequently used.  We feel that researchers do not have an intuition 

as to how the Fieller Method operates and how to interpret the non-finite intervals that 

it may produce.  In this note we present two simple geometric representations of the 

Fieller interval and demonstrate how they can be used to interpret the estimation of 

the NAIRU. 
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I. Introduction 

 Drawing inferences from the ratio of regression coefficients is elemental to a 

number of econometric applications.  Generally, the results of Monte Carlo 

simulations to compare the Fieller Method (Fieller 1932, 1954) with other procedures 

for the construction of confidence intervals indicates that the Fieller Method 

consistently out-performs the widely used Delta method and is comparable and in 

some cases, superior to the more complex Bayesian and bootstrap techniques. (See 

Hirschberg and Lye 2004).  

 Dufour (1997) proposed that ratios of regression parameter problems be subject 

to confidence intervals based on the Fieller type methods.  Its application can be 

found for: long-run elasticities in dynamic energy demand models (Bernard et al. 

2005); mean elasticities obtained from linear regression models (Valentine 1979); 

non-accelerating inflation rate of unemployment, the NAIRU (Staiger et al. 1997); 

steady state coefficients in models with lagged dependent variables (Blomqvist  1973) 

and the extremum of a quadratic model (Hirschberg and Lye 2004). 

 We propose that the non-intuitive way in which the Fieller Method is 

traditionally presented as the solution to a quadratic equation is partly to blame for its 

infrequent use.  In this note we present two geometric representations of the Fieller 

Method which may lead to an enhanced intuition for these confidence intervals.  Both 

of these approaches can be implemented using existing econometric software (see 

Hirschberg and Lye 2007).  

II. The Fieller Method 

The Fieller Method (Fieller 1932, 1954) provides a general procedure for constructing 

confidence limits for statistics defined as ratios.  Zerbe (1978) defines a version of 

Fieller’s Method in the regression context, consider the ratio ρ
ψ =

φ
 where 
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′ρ = βK and ′φ = βL  are linear combinations of the parameters from the 

regression, 1 1 1T T k k T× × × ×= β + εY X , 1~ ( , )T T T× ×ε σ20 I .  The OLS estimators are defined 

as 1Ⱡ ( )−′ ′β = X X X Y , Ⱡ Ⱡ Ⱡ ( ) ,㭐 㭐 T k2 ′σ = −  and the vectors 1 1 and k k× ×K L are known 

constants.  Under the usual assumptions, the parameter estimates are asymptotically 

normally distributed according to ( )( )12Ⱡ ~ ,N X X −′β β σ .  The ratio ψ  is estimated as 

ⱠⱠ Ⱡ
ρ

ψ =
φ

 where ⱠⱠ ′ρ = βK  and Ⱡ Ⱡ′φ = βL . 

 The Fieller 100(1 − α )% confidence interval for ψ  is determined by solving the 

quadratic equation 2 0a b cψ + ψ + = , where 
2

2 -1 2Ⱡ Ⱡ( ) ( )a tα′ ′ ′= β − σ2L L X X L , 

2

2 -1 2 Ⱡ ⱠⱠ2 ( ) ( )( )b tα
 ′ ′ ′ ′= σ − β β K X X L K L  and 

2

2 2 -1 2Ⱡ Ⱡ( ) ( )c tα′ ′ ′= β − σK K X X K .   

 When 0,a > the two roots of the quadratic equation, ( ) 2

1 2
4

2, b b ac
a

− ± −ψ ψ = , 

define finite confidence bounds.  The condition 0,a >  is true when the hypothesis test 

0 : 0H ′β =L  is rejected at the α level of significance (Buonaccorsi 1979).  

Alternatively, if 0 : 0H ′β =L  cannot be rejected the resulting confidence interval may 

be the complement of a finite interval (when b2 – 4ac > 0, a < 0) or of the whole real 

line (when b2 – 4ac < 0, a < 0).  These conditions are discussed in Scheffé (1970) and 

Zerbe (1982).   

 

III. Confidence Bounds of the Linear Combination (CBLC) 

The ( )100 1 %α−  confidence interval for ( ) ( ){ }Ⱡ Ⱡg ′ ′= β − β ψK L  given by: 

( ) ( ){ } ( ) ( ){ }2 -1 2 -1 2 -1 2

2

Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ( ) 2 ( ) ( )tα′ ′ ′ ′ ′ ′ ′ ′β − β ψ ± σ − σ ψ + σ ψK L K X X K K X X L L X X L  (1) 
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where 
2

tα  is the value from the t distribution with an ( )2 %α  level of significance and 

T − k degrees of freedom.  

 The ratio ( )Ⱡ㲀  should satisfy ( ) ( )Ⱡ Ⱡ Ⱡ  = 0′ ′β − β ψK L  and the ( )100 1 %α−  bounds 

for Ⱡ㲀  are found by solving: 

( ) ( ){ }
( ) ( ){ }

2

2

2 2 -1 2 -1 2 -1 2

Ⱡ Ⱡ

Ⱡ Ⱡ Ⱡ           - ( ) 2 ( ) ( ) 0

K L

K X X K K X X L L X X Ltα

′ ′β − β ψ

′ ′ ′ ′ ′ ′σ − σ ψ + σ ψ =
  (2) 

This expression (2) can be written as 2 0a b cψ + ψ + = , where a, b and c are defined 

as in the Fieller Method described in Section II.  

 This result implies a geometric representation of the Fieller-type confidence 

interval can be implemented using any statistics software that can predict a linear 

function of the estimated coefficients of a regression and with a confidence interval 

(see Hirschberg and Lye 2007). 

 

IV. Confidence Ellipse (CE) Geometric Representation  

We can define the confidence ellipse for two regression parameters or two linear 

combinations of regression parameters such as  and ρ φ .  A regression of the form 

1 1 1T T k k T× × × ×= β + εY X  can always be transformed to another regression of the form: 

( ) ( )1 2 1 ( 2) 1 12 ( 2)T k TT T k× × − × ×× × −
= γ + θ + ε1 2Y Z Z  where [ ]′γ = ρ φ , θ  a k -2 vector of 

parameters, [ ]2R = K Lk×
′′ ′ , +=1Z XR , R+ is the generalized inverse of R , 

=2Z XA , and A  is the matrix of k – 2 eigenvectors corresponding to the zero valued 

eigenvalues of R R′ (see Hirschberg, Lye and Slottje (2005)).  The marginal 

( )100 1 %− α  ellipse for a combination of the parameters in γ is: 
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  ( ) ( )( ) ( )2
1 2 1 ⱠⱠ 1,F T k−

α
′ ′γ − γ σ γ − γ ≤ −Z M Z       (3) 

where ( ) 1
2 2 2 2 2

−′ ′=M I - Z Z Z Z .  

 The solution to the constrained optimization problem defined as:  

 ( ) ( )
( )
( ) ( )11 12

12 22

Ⱡ
ⱠⱠ 1,Ⱡ F T k

            α        

ρ − ψφω ω = ψ − λ ρ − ψφ φ − φ − −  ω ω φ − φ
L   (4) 

where ijω are elements of ( )2Ⱡ −= σ 1 2 1㪐 Z M Z  and λ  is the Lagrange multiplier, has 

two roots that are equivalent to the Fieller interval. (Hirschberg and Lye 2007). 

(Figure1) 

 The solution to this constrained optimization problem can be found using a 

diagram of the ellipse defined by (3).  Following von Luxburg and Franz (2004), the 

ratio 
ⱠⱠ Ⱡ
ρ

ψ =
φ

 is the slope of a ray from the origin (0,0) through the point ( ⱠⱠ ,ρ φ ).  If (0,0) 

is not within the ellipse, two more rays from the origin can be constructed that are 

tangent to the ellipse.  If 0 : 0H φ =  is rejected at the %α  level of significance (see 

Figure 1) the ellipse does not cut the y-axis and a finite confidence bound can be 

defined where the tangent rays intersect the line defined by 1φ = .  In Figure 2 we 

show the case when 0 : 0H φ =  cannot be rejected and the ellipse cuts the y-axis there 

is one finite bound, here the ratio has a lower bound but no upper bound.  When (0,0) 

is within the ellipse the interval is then the whole real line.   

(Figure2) 

 The confidence ellipse produced in Eviews 6.0 is specified as the joint ellipse 

( ) ( )( ) ( )2
1 2 1 ⱠⱠ 2 2,F T k−

α
′ ′γ − γ σ γ − γ = −Z M Z .  To obtain the marginal confidence 

ellipse (3) we define α% such that ( ) ( )1, 2 2, .F T k F T kα α− = −%   In Stata 8 as T k−  is 
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large, the 95% confidence ellipse can be obtained using the program ellip 

(Alexandersson 2004) by specifying the boundary constant using chi2 with 1 degree 

of freedom, (see Hirschberg and Lye 2007). 

V. An application to the Non-Accelerating Inflation Rate of 

Unemployment (NAIRU) 

Following the estimation proposed by Gruen et al. (1999) we estimate: 

( )
( ) ( )

*
4 4 1 1 4 4 1 2 3 1

4 4 1 4 2 5 4 1 4 4 6

ln ln ln ln

       + ln ln ln ln

t t t t t t

t t t t

ULC P P P U U

ULC P ULC ULC

− − −

− − − −

∆ − ∆ = ∆ − ∆ + + ∆

∆ − ∆ + ∆ − ∆ + +

α α α

α α α ε
(5) 

Where ULC = unit labour costs per person, and is equal to wages per person divided 

by non-farm productivity per person; P = CPI, P* = expected price level; U = rate of 

unemployment; ∆ = 1 period change; and 4∆ = 4 period change. An estimate of the 

NAIRU is defined as *
6 2

Ⱡ Ⱡ ⱠU a a= − , where 6 2Ⱡ Ⱡ,  a a  are the OLS estimates from (5). 

(Table1) 

 Table 1 presents the estimates of (5) using quarterly Australian data from Lye 

and McDonald (2006) for the period 1985:1 – 2003:4.  Based on these estimates 

* 1.328
0.246

Ⱡ 5.40%U = =  and the estimated 95% confidence interval for *ⱠU based on the 

Delta method is given by as [3.120%, 7.682%]. 

(Figure3) 

 To obtain the 95% Fieller confidence bounds using the CBLE approach, in 

Figure 3, we plot *
6 2Ⱡ Ⱡg a a U= + with the 95% confidence bounds of LY given by, 

                     ( ) ( )6 2 6 22

2* 2 * 2 *
Ⱡ Ⱡ Ⱡ Ⱡ6 2Ⱡ Ⱡ Ⱡ Ⱡ  2a a a aa a U t U U+ ± + +α σ σ σ  (6) 

The Fieller confidence bounds are defined as the points where y = 0.  From Figure 3, 

the 95% Fieller Interval is [-10.11%, 6.91%].  

(Figure4) 
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 In Figure 4 we provide the Fieller interval using the CE by extending two rays 

from the origin that are tangent to the ellipse.  The values of the upper and lower 

limits of the Fieller interval in this case are finite and are defined at the points where 

the rays from the origin cut the line defined by x = 1. 

 VI. Conclusions 

 In this note we demonstrate two geometric representations of the Fieller 

confidence interval.  From these geometric representations one can see how the 

distribution of the estimates of the two variables influences the nature of the 

confidence interval.  Specifically, these methods demonstrate how the Fieller Method 

may not result in two finite bounds.   
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Figure 1: An Example of Finite Confidence Bounds 
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Figure 2: An Example of a Complement of a Finite Interval 
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Table 1: Phillips Curve Estimates for Australia 1985:1 – 2003:4 

Parameter Estimate Standard Error p-value 

1Ⱡa  0.16716 0.07790 0.0354 

2Ⱡa  -0.24589 0.11118 0.0303 

3Ⱡa  -0.28008 0.47844 0.5602 

4Ⱡa  0.58431 0.07351 0.0000 

5Ⱡa  0.55623 0.10064 0.0000 

6Ⱡa  1.32780 0.83375 0.1157 

2 6Ⱡ ⱠⱠ a aσ = -0.090 R2=0.693 Number of observations = 76 
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Figure 3: The Fieller Confidence bounds for the NAIRU using Confidence Bounds 

Approach 
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Figure 4: The Fieller Confidence bounds for the NAIRU using Confidence 

Ellipse Approach 
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