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Abstract

This paper proposes a new estimator of the treatment e¤ect, called the partially polynomial estimator

(PPE), in the regression discontinuity framework by extending the partially linear estimator (PLE) in

Porter (2003). By treating regression discontinuity as threshold regression with a known threshold point,

we interpret the PPE as a reparametrization of the local polynomial estimator (LPE) in the neighborhood

of the discontinuity point. As a result, the PPE can achieve the optimal rate of convergence which the

PLE can not attain under the broader conditions speci�ed by Porter (2003). Furthermore, we show the

PLE is indeed special in the sense that the form of its bias can not be extended to the general PPE case.

A further advantage of the PPE is that the bandwidth can be easily selected by cross-validation since

the discontinuity point is treated as an interior point instead of the boundary in the LPE.
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1 Introduction

The regression discontinuity (RD) design has got much popularity in applied econometric practice for iden-

tifying the treatment e¤ects since Thistlewaite and Campbell (1960). An incomplete list of applications

includes Angrist and Lavy (1999), Battistin and Rettore (2002), Black (1999), Card et al. (2006), Chay

and Greenstone (2005), Chay et al. (2005), DesJardins and McCall (2008), DiNardo and Lee (2004), Jacob

and Lefgren (2004), Lee (2008), Ludwig and Miller (2007), Pence (2002), and Van der Klaauw (2002). See

Imbens and Lemieux (2008), Lee and Lemieux (2009), and Van der Klaauw (2008) for excellent surveys on

this topic.

In estimating the causal e¤ects of the treatment in the RD design, there are two key theoretical contribu-

tions among others in the literature. Hahn et al (2001) provide su¢ cient conditions for identi�cation and use

the local linear estimator (LLE) for estimating the treatment e¤ect to overcome the boundary bias. Porter

(2003) reveals that the optimal rate of convergence for estimation of the RD treatment e¤ect is the same as

that in the usual nonparametric conditional mean estimation problem by using a similar argument in Stone

(1980). Porter (2003) provides two estimators to attain the optimal rate. The �rst estimator is based on

Robinson�s (1988) partially linear estimator (PLE). This estimator can achieve the optimal rate only under

the more stringent assumption (Assumption 2(b) of Porter (2003)) on the data generating process (DGP).

The second estimator is based on the local polynomial estimator (LPE) at the boundary which generalizes

the LLE of Hahn et al (2001). This estimator can achieve the optimal rate under a broader assumption

(Assumption 2(a) of Porter (2003)) on the DGP. There is a gap in logic: what is the relationship between

the PLE and the LPE? Why the PLE can not achieve the optimal rate under the broader assumption? In

this paper, we propose a new estimator called the partially polynomial estimator (PPE) which generalizes

the PLE and builds a connection between the PLE and LPE. By including the di¤erences in the derivatives

(besides the size) of the conditional mean of the response on the two sides of the discontinuity point, the

PPE is shown to be able to obtain the optimal rate. Actually, the PPE can be treated as an alternative

estimator of the LPE, and is motivated by reparametrizing the threshold regression formulation of the RD

design. As a result, the rate of its bias is same as the interior point in the local polynomial estimation.

Before presenting the main results on the PPE, we �rst de�ne the basic structure of the RD design.

Human behavior always evolves smoothly unless an abrupt change happens exogenously. This observation

lies in the heart of RD design. Suppose a treatment T is given based on a forcing (selection or assignment)

variable x by

T =

(
T1;

T0;

if x � �;
if x < �;

where x is observed, the cut-o¤ point � is known, and both T0 and T1 follow the Bernoulli distribution

while have di¤erent conditional means. Trochim (1984) divides the RD design into the sharp design and

fuzzy design depending on T is a deterministic function of x or not. In the sharp design, the treatment

assignment T1 = 1 and T0 = 0 almost surely. Let Y1 and Y0 be the potential outcomes corresponding to the

two treatment assignments, then the observed outcome is y = TY1+(1�T )Y0. Hahn et al (2001) shows that
when E [Y0jx] and E [Y1jx] are continuous at �, the expected causal e¤ect of the treatment on the outcome
can be identi�ed as

� � E [Y1 � Y0j�] = E [yjx = �+]� E [yjx = ��] ;

where E [yjx = �+] = lim
x#�
E [yjx], and E [yjx = ��] = lim

x"�
E [yjx]. In the fuzzy design, T1 and T0 are random,

but the propensity scores E [T1jx = �+] 6= E [T0jx = ��]. In this case, Hahn et al (2001) shows that � can
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be identi�ed under the local unconfoundedness condition. Speci�cally,

� � E [Y1 � Y0j�] =
E [yjx = �+]� E [yjx = ��]
E [T jx = �+]� E [T jx = ��] :

In both cases, � only involves the di¤erence of two conditional means. We will concentrate on the sharp

design, since the estimation scheme has no essential change in the fuzzy design.

In section 2, we construct the PPE, derive its asymptotic distribution, and discuss the relationship

with the LPE. In section 3, we discuss some practical issues and extensions of the PPE, and Section 5

concludes. The proof of the main theorem of this paper and related lemmas are given in Appendices A and

B, respectively.

A word on notation: 
 is the Kronecker product. Any object with a subbar generally denotes its

"demeaned" counterpart as explained in the main text. 1(A) is the indicator function with value 1 when

the event A is true and 0 when it is false. � means the higher-order terms are omitted or a constant term

is omitted (depending on the context). Because the LPE at an interior point is used throughout this paper,

we de�ne some notations used in its construction before closing this section. Suppose we observed a dataset

ff!igni=1 ; fxig
n
i=1g � f!;xg, and we want to estimate the conditional mean m(x) � E [!ijxi = x]. From

Fan and Gijbels (1996), the pth order LPE is a linear functional of !:

bm(x) = Pnx (!) = e
0
1

�
X (x)

0
K (x)X (x)

��1
X (x)

0
K (x)!;

= e01
�
H�1X (x)

0
Kh (x)X (x)H

�1��1H�1X (x)
0
Kh (x)!;

� e01
�
Z (x)

0
Kh (x)Z(x)

��1
Z (x)

0
Kh (x)!;

= e01

0@ 1
n

nX
j=1

Zj (x)Z
0
j (x) kh (xj � x)

1A�1
1

n

nX
j=1

Zj (x) kh (xj � x)!j ;

� e01S
�1
n (x)er (!(x)) ;

where

X (x) =

0BB@
1 x1 � x � � � (x1 � x)p
...

...
...

...

1 xn � x � � � (xn � x)p

1CCA
n�(p+1)

�

0BB@
X1 (x)

0

...

Xn (x)
0

1CCA �
�
X0 (x) ; � � � ; Xp (x)

�
;

K (x) = diag

�
k

�
x1 � x
h

�
; � � � ; k

�
xn � x
h

��
n�n

;Kh (x) = diag fkh (x1 � x) ; � � � ; kh (xn � x)gn�n ;

e1 = (1; 0; � � � ; 0)0(p+1)�1 ; H = diag f1; h; � � � ; hpg(p+1)�(p+1) ; Z(x) = X (x)H
�1,

Zj (x) =

�
1;
xj � x
h

; � � � ;
�
xj � x
h

�p�0
(p+1)�1

�
�
1; Z1j (x) ; � � � ; Z

p
j (x)

�0
;

with k (�) being a kernel function with a compact support [�M;M ], kh (�) = 1
hk
� �
h

�
; and h being the

bandwidth. The dimensions of e1 and H are determined by the context without further explanations.

Denote e01
�
X (x)

0
K (x)X (x)

��1
X (x)

0
K (x) as Wn(x) = (Wn

1 (x); � � � ;Wn
n (x)), then

Pnx (!) =
nX
j=1

Wn
j (x)!j .
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As shown in Lemma 2.1 of Fan et al (1997), Pnx is equivalent to a linear functional Px on Rn asymptotically:

Px (!) =
1

nhf(x)

nX
j=1

K�
p

�
xj � x
h

�
!j ;

where f(x) is the density of xi,

K�
p (u) = e

0
1�

�1 (1; u; � � � ; up)0 k(u) � e01��1�(u);

is a kernel of order p+ 1 when p is odd and of order p+ 2 when p is even as de�ned by Gasser et al (1985),

�(u) = (k(u); uk(u); � � � ; upk(u))0 ;

and � =
�
i+j�2

�
1�i;j�p+1 is invertible with j =

R
ujk(u)du:1 When the arguments of Pnx (�) and Px (�) are

matrices, we treat them as operating on each column of the matrices to get a row vector.

2 Partially Polynomial Estimation

This section presents the main results of this paper. It begins with the construction of the PPE, followed by

the discussion of its connection with the LPE, and concludes with the asymptotic theory of the PPE.

2.1 Construction of the Estimator

Let us �rst review the motivation of the PLE in Porter (2003). Recall that the response is related to the

one-dimensional covariate by the following form:

y = m(x) + �d+ ", where E ["jx; d] = 0; d = 1 (x � �) ; (1)

where m(x) � E [yjx] � �d, so � can be treated as the parametric coe¢ cient in the partially linear model.
The PLE is de�ned as

argmin
�

nX
i=1

24yi � �di � nX
j=1

wij (yj � �dj)

352 ;
where wij =

kh(xi�xj)Xn

l=1
kh(xi�xl)

.
nX
j=1

wij (yj � �dj) can be treated as an estimator of m(x) at xi. Actually, the

PLE in Robinson (1988) can be equivalently rede�ned in the way above. � can be identi�ed as E [yjx = �+]�

E [yjx = ��] becausem(x) is assumed to be continuous in the neighborhood of �. Note that di�
nX
j=1

wijdj = 0

when xi is out of a O(h) neighborhood of �, so only the information in the neighborhood of � is used to

estimate �. As a result, the PLE only has a nonparametric convergence rate; see Section 3.3 of Porter (2003)

for more discussions on this nonparametric rate.

Because the PLE only explores the information that E [yjx] rather than its derivatives has a jump at
�, it can not achieve the e¢ cient rate when m(�) is known to be only continuous at �. In this paper, we
generalize the PLE to the PPE by explicitly considering the jumps of the derivatives of E [yjx = x] at �.

1Or equivalently, as shown in Ruppert and Wand (1994), K�
p (u) = j�(u)j = j�j k(u), where �(u) is the same as �, but with

the �rst column replaced by (1; u; � � � ; up).
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Figure 1: m(x) in Partially Polynomial Estimation with Di¤erent Orders

Speci�cally, let

y = m(x) +
�
�+ �1 (x� �) + � � �+ �q (x� �)

q�
d+ " (2)

� ey + ��+ �1 (x� �) + � � �+ �q (x� �)q� d,
where

m(x) � E [yjx]�
�
�+ �1 (x� �) + � � �+ �p (x� �)

q�
d

has continuous derivatives at � to qth order, and �� =
�
@�E[yjx]
@x�

���
x=�+

� @�E[yjx]
@x�

���
x=��

�
=�!, � = 1; � � � ; q,

is the scaled di¤erence of the �th derivative of E [yjx] in the left and right neighborhoods of �.2 m(x) with

E[yjx] =
(
1 + 0:16x� 0:29x2;
2 + 1:43x+ 0:19x2;

if x < 0;

if x � 0;
is shown in Figure 1. In this special case, � = 1, �1 = 1:27 and

�2 = 0:48. Note that q = 0 corresponds to the PLE. Obviously, its m(x) is not smooth at 0. As in the

partially linear estimation, � is estimated by

min
�;�1;��� ;�p

1

n

nX
i=1

��!y i � bm �xij�!y ��2 ; (3)

where
�!y i = yi �

�
�+ �1 (xi � �) + � � �+ �p (xi � �)

q�
di;

�!y = (�!y 1; � � � ;�!y n)0 ;

and bm �xij�!y � is a nonparametric estimator of m(xi). A popular choice of bm �xj�!y � is the LPE, where
2 (2) is a partially linear regression in Robinson (1988) because the parametric component of (2) is linear in the parameters.

The term PPE is to distinguish (2) from the partially linear regression in Porter (2003).
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bm �xj�!y � is determined by the minimizer ba in the following minimization problem:
min

a;b1;��� ;bp

1

n

nX
j=1

kh (xj � x) [�!y j � a� b1 (xj � x)� � � � � bp (xj � x)p]
2
: (4)

To explore the qth order smoothness of m(�), we assume p � q, but p and q are not necessarily the same.

Note that both �!y i and bm �xij�!y � depend on � � ��; �0�0. From Lemma 2.1 of Fan et al. (1997), bm �xj�!y �
is equivalent to the local constant estimator with a higher-order kernel. Because the kernel function in

Porter (2003) is allowed to be higher order, the PPE distinguishes from the PLE mainly by considering the

di¤erence of derivatives at � in (3) rather than using the LPE in estimating m(x).

Some calculus shows that b�b�
!
=
�
Xd0Xd

��1
Xd0y and b� = e01 �Xd0Xd

��1
Xd0y; (5)

where

Xd =

0BB@
Xd
1 (�)� Pnx1

�
Xd (�)

�
...

Xd
n (�)� Pnxn

�
Xd (�)

�
1CCA �

0BB@
Xd
1 (�)

0

...

Xd
n (�)

0

1CCA
n�(q+1)

�
�
X0d (�) ; � � � ; Xqd (�)

�
n�(q+1)

;

= Xd (�)� e01 (X 0KX)
�1
X 0KIXd (�) =

�
In � e01 (X 0KX)

�1
X 0KI

�
Xd (�) ;

with

X = diag fX (x1) ; � � � ; X (xn)gn2�n(p+1) ;

Xd (x) =

0BB@
1 (x1 � x) (x1 � x) 1 (x1 � x) � � � (x1 � x)q 1 (x1 � x)

...
...

...
...

1 (xn � x) (xn � x) 1 (xn � x) � � � (xn � x)q 1 (xn � x)

1CCA

�

0BB@
Xd
1 (x)

0

...

Xd
n (x)

0

1CCA
n�(q+1)

�
�
X0d (x) ; � � � ; Xqd (x)

�
n�(q+1) ;

In = diag f1; � � � ; 1gn�n ; e1 = diag fe1; � � � ; e1gn(p+1)�n = In 
 e1;
e = (1; 1; � � � ; 1)0n�1 ; I = (e
 In)n2�n ;

K = diag fKh (x1) ; � � � ;Kh (xn)gn2�n2 ;

and

y =

0BB@
y1 � Pnx1 (y)

...

yn � Pnxn (y)

1CCA =
�
In � e01 (X 0KX)

�1
X 0KI

�
y;
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with

y = m(x) +Xd (�) � + " �ey +Xd (�) �;

m(x) = (m(x1); � � � ;m(xn))0 ; " =("1; � � � ; "n)0 ;ey = m(x) + " =(ey1; � � � ; eyn) :
Some explanations on b� are in order. Xd and y are the demeaned Xd (�) and y by the "local polynomial

operator" Pnx . In� e01 (X 0KX)
�1
X 0KI �In�Pnx is like a demeaned operator on a vector in Rn at x. Note

that�
Xd0Xd

��1
Xd0y =

�
Xd0Xd

��1
Xd0

�
Xd� + ey � Pnx (ey)� (6)

= � +H�1
�
1

nh
H�1Xd0XdH�1

��1
1

nh
H�1Xd0ey

� � +H�1
�
1

nh
Zd0Zd

��1
1

nh
Zd0 (m(x)�m(x) + "�")

= � +H�1

 
1

nh

nX
l=1

Zdl (�)Z
d0

l (�)

!�1 
1

nh

nX
l=1

Zdl (�) ((m(xl)�m(xl) + "l � "l))
!
;

where Zd = XdH�1 is the normalized Xd like Z(x) in Pnx , Z
d
l (�) = H�1Xd

l (�), l = 1; � � � ; n, and ey =ey � em(x) with
em(x) = (em(x1); � � � ; em (xn))0 = Pnx (ey)

=
�
Pnx1 (m(x)) ; � � � ; P

n
xn (m(x))

�0
+
�
Pnx1 (") ; � � � ; P

n
xn (")

�0
� (m(x1); � � � ;m(xn))0 + ("1; � � � ; "n)
� m(x) + ".

From Lemma 1 in Appendix B, Xd
l (�) = 0 for jxl � �j > Mh, l = 1; � � � ; n, so only the xl�s in the Mh

neighborhood of � will contribute to b�. In consequence, the convergence rate of b� is pnh instead of pn.
In the proof of the appendices, we will see Zd0 (m(x)�m(x)) will contribute to the bias, and Zd0 ("�") will
contribute to the variance. Interestingly, m(x)� em(x) will also contribute to the variance since " comes fromem(x). This is di¤erent from the usual LPE at an interior point where only " contributes to the variance; see

Ruppert and Wand (1994) for the details.

2.2 Connection with the Local Polynomial Estimator

To further understand the PPE, let us compare it with the least squares estimator (LSE) in threshold

regression; see Chan (1993), Hansen (2000) and Yu (2007) for more discussions about threshold regression.

A typical setup of the PPE is p = q, and we only concentrate on this case. In threshold regression,

y =

(
x0�1 + "1;

x0�2 + "2;

z < �;

z � �;
(7)

where z is the threshold variable used to split the sample, x 2 Rp+1 with the �rst element a constant,
� � (�01; �

0
2)
0 2 R2(p+1) and � � (�1; �2)

0 are threshold parameters on mean and variance in the two

regimes of (7), the error terms "1 and "2 adopt conditional heteroskedasticity and are not necessarily the
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same, and all the other variables have the same de�nitions as in the linear regression framework. A useful

reparametrization of (7) is

y = x0�1 + x
0 (�2 � �1) 1 (z � �) + "; (8)

where " = "1 when z < � and " = "2 when z � �. Return to the regression discontinuity model, then (7) is
only satis�ed locally. (2) can be approximated in two equivalent ways:

y =

(
�10 + �11 (x� �) + � � �+ �1p (x� �)

p
+ "1;

�20 + �21 (x� �) + � � �+ �2p (x� �)
p
+ "2;

x < �;

x � �;
(9)

and

y = �10 + �11 (x� �) + � � �+ �1p (x� �)
p
+
�
�+ �1 (x� �) + � � �+ �p (x� �)

p�
1 (x � �) + "; (10)

where �10+�11 (x� �)+� � �+�1p (x� �)
p is the Taylor expansion ofm(x) to order p in the left neighborhood

of �, �10 = m(��), �
�20; �21; � � � ; �2p

�
=
�
�10; �11; � � � ; �1p

�
+
�
�; �1; � � � ; �p

�
;

and the threshold variable z in (7) is just x. Obviously,
�
�; �1; � � � ; �p

�
plays the role of �2 � �1 in (8).

The main concern in threshold regression is the threshold point �. In contrast, in regression discontinuity,

� is generally known from the design, and the main concern is the mean di¤erence � between the two regimes.

In threshold regression, we can set up the objective functions of the least squares estimation for the two

equivalent models (7) and (8) as follows:

Obj1 =

nX
i=1

(yi � x0i�11(zi < �)� x0i�21(zi � �))
2
;

Obj2 =

nX
i=1

(yi � x0i (�2 � �1) 1 (zi � �)� x0i�1)
2
:

Suppose � is known, then in Obj1, �2� �1 is estimated in two steps. First, estimate �2 using the data with
zi � �, and estimate �1 using the data with zi < �. Second, take di¤erence of the estimates of �2 and �1 in
step 1 as the estimator of �2� �1. In contrast, Obj2 uses a pro�led procedure. First �x �2� �1 and regress
yi � x0i (�2 � �1) 1 (zi > �) on xi to get an estimate of �1, then minimize Obj2 with respect to �2 � �1 to
estimate �2��1. The estimators based on these two objective functions correspond to the LPE and PPE in
regression discontinuity, respectively. The only di¤erence is that we run the regressions using the local data

around �. Suppose the uniform kernel is used and the bandwidth is h. In (9), we run the regression in the

right h neighborhood of � to estimate �2, and in the left neighborhood of � to estimate �1, and � is then

estimated by the di¤erence between these two estimators. This is just the LPE. In contrast, the pro�led

procedure is used in (10) to construct the PPE. Now, �10+�11 (xi � �)+ � � �+�1q (xi � �)
p plays the role of

x0i�1 which corresponds to m(xi) in (2). A better approximation of m(xi) is using the Taylor expansion at xi
instead of �. This is just what is done in the PPE. In threshold regression, because the conditional mean of

y in the regime z < � is linear in x, the Taylor expansion around any point in the support of xi is the same,

but in regression discontinuity, di¤erent expansions indeed introduce some di¤erences in their asymptotic

properties. This is understandable since the PPE is a nonparametric estimator which is designed to study

the local properties. The nonparametric nature of the PPE is evident by checking (10). The di¤erences in

size and derivatives of E[yjx] in the right regime from the left regime are not the same at any x � �. The
approximation in (10) is valid only if x is close to �. A key advantage of the PPE is that m(x), x < �, is
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estimated using the data in both neighborhoods of �, but in the LPE, m�(�) is estimated using only the

data in the left neighborhood of �.

2.3 Asymptotic Theory of b�
First, we give out some regularity conditions required in deriving the asymptotic distribution of b�. These
assumptions roughly corresponds to those in Section 3.1 of Porter (2003).

Assumption K: K(�) is a symmetric, bounded, Lipschitz function, zero outside a bounded set [�M;M ],
and

R
K(u)du = 1.

Assumption F: For some compact interval N of � with � 2 int(N), f is lf times continuously di¤erentiable
and bounded away from zero.

Assumption M:

(a) m(x) is lm times continuously di¤erentiable for x 2 Nn f�g, and m(x) is continuous at � with �nite
right and left-hand derivatives to order lm.

(b) Right and left-hand derivatives of m(x) to order lm are equal at �.

The typical case where Assumption M(b) holds is the common treatment e¤ects model. In such a model,

Y1i � Y0i = � is constant across individuals, and m(�) is smooth even in the PLE and we need not consider
the derivative di¤erences.

Assumption E:

(a) �2(x) = E
�
"2jx

�
is continuous for x 6= �, x 2 N , and the right and left-hand limits at � exist.

(b) For some � > 0, E
h
j"j2+� jx

i
is uniformly bounded on N .

Assumption B: n
�=(2+�)h
lnn !1;

p
nh
lnn !1,

(a)
p
nhhq+3 ! 0,

p
nhhq+1 ! Ca, where 0 � Ca <1.

(b1)
p
nhhp+3 ! 0,

p
nhhp+1 ! Cb1, where 0 � Cb1 <1.

(b2)
p
nhhp+3 ! 0,

p
nhhp+2 ! Cb2, where 0 � Cb2 <1.

The following theorem 1 provides the asymptotic results of the PPE under di¤erent set of regularity

conditions.

Theorem 1 Suppose p � q, q � 1, and Assumptions E and K hold,
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(a) If Assumption F holds with lf � 0, Assumption M(a) holds with lm � q+1, and Assumption B(a) holds,
then p

nh (b�� �) d�! N

�
�CaBa;

V

f(�)

�
;

Here,

Ba = e01N
�1
p

�
m(q+1)(�+)

(q + 1)!
Q+pq +

m(q+1)(��)
(q + 1)!

Q�pq

�
;

V = e01N
�1
p

�
�2(�+)
+p + �

2(��)
�p
�
N�1
p e1

with

Np (i; j) =

Z M

0

K�
p (�i�1(w+))K

�
p (�j�1(w+))dw +

Z 0

�M
K�
p (�i�1(w�))K�

p (�j�1(w�))dw;

Q+pq(i) =

Z M

0

K�
p (�i�1(w+))

 Z M

�w
K�
p (u) (w + u)

q+1
du� wq+1

!
dw

+

Z 0

�M
K�
p (�i�1(w�))

 Z M

�w
K�
p (u) (w + u)

q+1
du

!
dw;

Q�pq(i) =

Z M

0

K�
p (�i�1(w+))

�Z �w

�M
K�
p (u) (w + u)

q+1
du

�
dw

+

Z 0

�M
K�
p (�i�1(w�))

�Z �w

�M
K�
p (u) (w + u)

q+1
du� wq+1

�
dw;


+p (i; j) =

Z M

0

"
K�
p (�i�1(w+))�

 Z M

0

K�
p (�i�1(v+))K

�
p (w � v) dv +

Z 0

�M
K�
p (�i�1(v�))K�

p (w � v) dv
!#

"
K�
p (�j�1(w+))�

 Z M

0

K�
p (�j�1(v+))K

�
p (w � v) dv +

Z 0

�M
K�
p (�j�1(v�))K�

p (w � v) dv
!#

dw;


�p (i; j) =

Z 0

�M

"
K�
p (�i�1(w�))�

 Z M

0

K�
p (�i�1(v+))K

�
p (w � v) dv +

Z 0

�M
K�
p (�i�1(v�))K�

p (w � v) dv
!#

"
K�
p (�j�1(w�))�

 Z M

0

K�
p (�j�1(v+))K

�
p (w � v) dv +

Z 0

�M
K�
p (�j�1(v�))K�

p (w � v) dv
!#

dw;

and

K�
p (�i�1(w+)) = wi�1 �

Z M

�w
K�
p (u)(w + u)

i�1du;

K�
p (�i�1(w�)) = �

Z M

�w
K�
p (u)(w + u)

i�1du;

i; j = 1; � � � ; q + 1.

(b1) If Assumption F holds with lf � 0, Assumption M(b) holds lm � p+ 1, and Assumption B(b1) holds,
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when p is odd, then
p
nh (b�� �) d�! N

�
�Cb1Bb1;

V

f(�)

�
;

where

Bb1 =

 Z M

�M
K�
p (u)u

p+1du

!
m(p+1)(�)

(p+ 1)!
e01N

�1
p Qp

with

Qp(i) =

Z M

0

K�
p (�i�1(w+))dw +

Z 0

�M
K�
p (�i�1(w�))dw;

i = 1; � � � ; q + 1.

(b2) If Assumption F holds with lf � 1, Assumption M(b) holds with lm � p + 2, and Assumption B(b2)
holds, when p is even, then

p
nh (b�� �) d�! N

�
�Cb2Bb2;

V

f(�)

�
;

where

Bb2 =

 Z M

�M
K�
p (u)u

p+2du

!�
m(p+2)(�)f 0(�)

(p+ 1)!f(�)
+
m(p+2)(�)

(p+ 2)!

�
e01N

�1
p Qp:

Theorem 1 is surprising in two aspects. First, under Assumption M, the PPE can achieve the e¢ cient

rate by including the di¤erences between derivatives in the left and right neighborhoods of �. For example,

if m(x) is in Cr, r > 1, of Porter (2003), where Cr is the set of functions satisfying Assumption M(a) with

lm = r, then the PPE with p � q = r � 1 can achieve the optimal convergence rate. If m(x) is in Cr, r > 2,
of Porter (2003), where Cr is the set of functions satisfying Assumption M(b) with lm = r, then the PPE

with 0 < q � p = r � 1 (r � 2 when r is even) can achieve the optimal convergence rate.3 Second, the PLE
is indeed very special. In our notation, when q = 0, Q+pq = Q

�
pq = 0, so the bias in (a) is O

�p
nhh2

�
instead

of O
�p
nhh

�
as illustrated in Theorem 2(a) of Porter (2003). In (b1) and (b2), Qp = 0, so a higher-order

bias O
�p
nhhp+2+1(p is even)

�
appears as shown in Theorem 2(b) of Porter (2003). This is basically because

1 (xi � �) and 1 (xi < �) are symmetric, and the lower-order biases in the left and right neighborhoods of �
are canceled. In the PPE, (xi � �)k1 (xi � �), k � 1, and 1 (xi < �) are not symmetric, so the lower-order
bias remains. The order of the biases in the PLE, LPE and PPE is summarized in the following Table 1.

Note that when the kernel is symmetric, s in the partially linear estimation of Porter (2003) must be even.

Roughly speaking, s plays the similar role as p+ 1 when p is odd and p+ 2 when p is even in the partially

polynomial estimation. In the LPE, when p is odd and Assumption M(b) holds, the lower-order biases in

the two neighborhoods of � o¤set each other, and a higher-order bias appears.

Assumption M(a) Assumption M(b)

Partially Linear (q = 0; p � q) 2 p+ 2 + 1 (p is even)

Partially Polynomial (q > 0; p � q) q + 1 p+ 1 + 1 (p is even)

Local Polynomial (p � 0) p+ 1 p+ 1 + 1 (p is odd)

3 If q = 0, then it is hard to achieve the optimal rate exactly when r is even. If p = r � 2, then the bias order is r + 1; if
p = r � 3, then the bias order is r � 1. This phenomenon also appears in the LPE at the interior point and the PPE when r is
odd. This is why Stone (1980) uses the nearest neighborhood estimator instead of the LPE to achieve the optimal rate. This
is also why in the usual local polynomial literature, r is assumed to be even.
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Table 1: Biases in Three Estimation Methods (the b in
p
nhhb)

As discussed above, the PLE with a higher-order kernel is essentially equivalent to the PPE with q = 0

and some p > q. But there is indeed some subtle di¤erence between them. Namely, Theorem 1 needs less

stringent conditions on the smoothness of f(x) than those in Theorem 2 of Porter (2003). For example, in

(a), Porter (2003) requires lf � 2 while Theorem 1 only requires lf � 0; in (b1) and (b2), Porter (2003)

requires lf � s, while Theorem 1 only requires lf � 1. This is the role played by the PPE more than the

higher-order kernel estimator; that is, the PPE adapts automatically to the smoothness of the density of x.

Note that the �rst parts of Bb1 and Bb2 are the same as those appearing in Theorem 4.1 of Ruppert

and Wand (1994), which con�rms our intuition that � can be treated as an interior point in the partially

polynomial estimation. In case (a), the optimal bandwidth to minimize the MSE is O
�
n�

1
2q+3

�
; in case (b1),

the optimal bandwidth is O
�
n�

1
2p+3

�
; in case (b2), the optimal bandwidth is O

�
n�

1
2p+5

�
. When we have

more smoothness in m(x), the optimal bandwidth is larger. Note also that Np, 
+p , 

�
p , Q

+
pq, Q

+
pq and Qp

only depend on the kernel function. This fact convinces the conventional insight that the bandwidth a¤ects

the convergence rate while the kernel only a¤ects the e¢ ciency constant. Also, K�
p (�) instead of k(�) appears

in these notations. This convinces the observation in the introduction that the LPE at a interior point is

equivalent to the local constant estimator with a higher-order kernel. When q = p = 0, K�
p (u) = k(u), and

Np reduces to 2
RM
0
K2
0 (w)dw in Porter (2003), where K0(w) =

RM
w
k(u)du. Now, we check some special

cases in (a) to show the results above are right. Suppose m(q+1)(�+) = m(q+1)(��), then

Q+pq(i) +Q
�
pq(i)

=

Z M

0

K�
p (�i�1(w+))

 Z M

�M
K�
p (u) (w + u)

q+1
du� wq+1

!
dw

+

Z 0

�M
K�
p (�i�1(w�))

 Z M

�M
K�
p (u) (w + u)

q+1
du� wq+1

!
dw

=

8>><>>:
0;�RM

�M K
�
p (u)u

p+1du
�
Qp(i);

0;

if q < p;

if q = p and p odd;

if q = p and p even;

which matches the asymptotic biases in (b1) and (b2).

3 Discussions

3.1 Practical Issues

3.1.1 Bandwidth Selection

The bandwidth is a necessary input in any kernel estimators. Section 5 of Imbens and Lemieux (2008)

discusses this issue when the LLE is used to estimate the treatment e¤ect. The least squares cross-validation

(CV) approach is suggested, but as argued in Ludwig and Miller (2007), "there is currently no widely agreed-

upon method for selection of optimal bandwidths in the nonparametric RD context". Ludwig and Miller

(2005) analyze the causes for the bad performance of the bandwidth based on CV. First, the convergence

rate of the CV bandwidth to the optimal bandwidth is very slow. This can be seen from Hardle et al (1988)

who show that the convergence rate of the CV bandwidth is in the order of n�1=10 when the covariate is
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one-dimensional as in the RD design. Second, in the RD design, the conditional mean at a boundary point

is estimated, while the usual CV procedure is designed for the interior point. Third, the usual CV method

concentrates on the global feature of the data, while we are interested in the local nature of the data in the

RD design.

Only the optimal bandwidth at a single point � is of interest, so all suggested methods in the literature

utilize only the data in the neighborhood of �. Based on the criterion used, the methods can be roughly

divided into two classes. The �rst class targets to minimize an approximation to the MSE or MISE criterion

on bE [yj�+] and bE [yj��] separately. For example, DeJardins and McCall (2008) use the criterion
E

�� bE [yj�+]� E [yj�+]�2 + � bE [yj��]� E [yj��]�2� ;
where E [yjx�] = E [yijxi = x�] and bE [yjx�] is its estimator. Ludwig and Miller (2005) suggest the CV
criterion

BCV� (h) =
1

n

X
i:xi2[Q�

1�� ;Q
+
� ]

[yi � bm�i (xi)]
2
; (11)

where Q+� is the �th quantile of fxijxi � �g, and Q�1�� is the (1� �)th quantile of fxijxi < �g with �

converging to zero. bm�i (xi) =

( b�l (xi) ;b�r (xi) ; if xi < �;

if xi � �:
b�l (x) is determined by the minimizer ba in a similar

minimization problem as (4):

min
a;b1;��� ;bp

1

n

X
j:xj<x

kh (xj � x) [yj � a� b1 (xj � x)� � � � � bp (xj � x)p]
2
: (12)

and b�r (x) is determined similarly as in (12) but the index in the summation is replaced by fj : xj > xg.
Note that xi is not used in the estimation of bm�i (xi) to match the principle of cross validation. Such a

procedure essentially minimizes the criterion

E

"Z
��x�Q+

�

� bE [yjx+]� E [yjx+]�2 f(x)dx+ Z
Q
�
1���x<�

� bE [yjx�]� E [yjx�]�2 f(x)dx# ;
where Q

+

� is the �th quantile of the conditional random variable xjx � �, and Q�1�� is the (1� �)th quantile
of xjx < �. The second class targets the di¤erence between bE [yj�+] and bE [yj��]. For example, Imbens
and Kalyanaraman (2009) use the criterion

E

��� bE [yj�+]� bE [yj��]�� (E [yj�+]� E [yj��])�2� :
All the methods mentioned above seem to concern about the boundary problem in the RD design, while

this is not a problem in the partially polynomial estimation since bm(�+) and bm(��) do not appear explicitly.
Given that only the conditional mean at an interior point is estimated in the partially polynomial estimation,

the usual CV procedure can be applied here. Speci�cally, we minimize

CV� (h;�; �) =
1

n

X
i:xi2[Q�

1�� ;Q
+
� ]

��!y i � bm�i
�
xij�!y

��2
; (13)

where bm�i
�
xij�!y

�
is the same as bm �xij�!y � except that xi is not used in the estimation. As argued in Section
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2.3, the PPE is applicable because (�; �) can be treated as the same in the right h neighborhood of �. So

(13) balances the similarity of the data in the right neighborhood of � and the quality of the local polynomial

�tting, while (11) only consider the latter criterion. In consequence, (13) essentially minimizes the criterion

E

"Z
Q
�
1���x�Q

+
�

(bm (x)�m (x))2 f(x)dx#+ E �Z
��x��+Mh

(b�� �)2 f(x)dx� :
Usually, h can be estimated by a pro�led procedure. For each h, (�; �) is calculated under this �xed h, so

the intermediate estimate
�e�; e�� is a function of h, denoted as �e� (h) ; e� (h)�. Then search over h to �nd the

optimal bh, and the PPE �b�; b�� is calculated using bh and denoted as �b��bh� ; b� �bh��. We can select di¤erent
h�s for xi � � and xi < �, but as argued in Imbens and Lemieux (2008) and Imbens and Kalyanaraman

(2009), a single h is enough if f(x) and the smoothness of m(x) are similar on both sides of the cuto¤ point.4

In practice, we use the following Algorithm CV to select h based on the PPE. Suppose x is sorted

ascendingly, and y is arranged correspondingly. nlow =
P
1 (xi < �), and nup = n� nlow.

Algorithm CV

1. Specify a � 2 (0; 1); e.g., � = 0:5. The range of the bandwidth is set as Rh = [hlow; hup], where

hlow = max
�
x[nlow(1��)]+i � x[nlow(1��)]+i�1 : i = 1; � � � ; nlow � [nlow (1� �)] + [nup� ]

	
;

hup = xnlow+[nup� ] � x[nlow(1��)];

and [z] for z 2 R is the largest integer no greater than z.

2. Denote the pro�led objective function in (13) as CV (h), and minimize CV (h) with respect to h on Rh.

In practice, we need only minimize CV (h) on a discretized setDh of h; e.g.,Dh = fhlow + i � step : i = 1; � � � ; [n� ]g,
where step = hup�hlow

[n� ] .

In step 1, hlow guarantees that there is at lease on data point in the h neighborhood of any xi, i =

[nlow (1� �)]; � � � ; nlow + [nup� ]. hup makes sure that at most O (n�) data points are used in bm�i
�
xij�!y

�
.

In step 2, the speci�cation of Dh exhausts almost all possible estimates of bm�i
�
xij�!y

�
. This is because the

average distance between the contiguous xi�s is roughly step, and thus increasing h by one step is roughly

equivalent to adding one more data point in the kernel smoothing of bm�i
�
xij�!y

�
. Such a speci�cation of Rh

and Dh is not rigid. In practice, we must make sure the minimizer is not obtained at the boundary points,

hlow and hup, of Rh.

It is an interesting theoretical problem to derive the asymptotic distribution of bh as in Hardle et al (1988)
and of b��bh� as in Li and Racine (2004). Also, it is admirable to derive some optimality properties of bh as
in Hardle and Marron (1985).

3.1.2 Other Issues

We discuss three other issues related to the application of the PPE in practice. The �rst issue is about the

set estimation of the treatment e¤ect. The asymptotic biases in Theorem 1 involve complicated functionals

of the kernel and the derivatives of f(x) and m(x) at �, but their estimation is straightforward and is a

byproduct of the partially polynomial estimation.5 The estimation of the common variance can be obtained

4�2(�+) and �2(��) also a¤ect the bandwidth on each side of �.
5Another possibility is undersmoothing. As mentioned in Pagan and Ullah (1999), a tuning parameter that is good for

estimation purposes is not necessarily good for testing purposes.

13



by Theorem 4 of Porter (2003) since the estimation procedure there only requires that b� is consistent. Besides
the Wald-type CI, there are two other alternatives. The wild bootstrap can be used to construct the CI

for � to get a better �nite-sample approximation of the distribution of b�. Ludwig and Miller (2007) use
the paired-bootstrap to conduct inference of �, but we suspect the paired-bootstrap is not valid here since

the more stringent conditional moment restrictions instead of the orthogonal conditions are imposed in the

RD design. Another method for the CI construction of � is based on empirical likelihood which carries out

the studentizing internally and adopts Bartlett correction; see, e.g., Chen and Qin (2000). The second issue

is about the choice of the order of the PPE. This problem is considered for the LPE in Sun (2005). His

procedure is ready to be adapted to the PPE case since only an estimator of � is needed there. We can

combine the bandwidth selection and the order choice in one algorithm to robustify the bandwidth selection;

see also Fan and Gijbels (1995) for more discussions on this issue in standard cases with interior points.

The third issue is about the kernel selection. Since the Epanechnikov kernel is optimal in minimizing MSE

and MISE at interior points and is nearly optimal at the most boundary point, we recommended to use this

kernel function. Of course, the kernel that minimizes the MSE of the PPE is still unknown.

3.2 Extensions

We discuss four extensions in this subsection. The �rst extension is to adapt the procedure of the PPE in the

sharp design to the fuzzy design. A similar procedure can be used to estimate E [T jx = �+]�E [T jx = ��]
by changing fyigni=1 to fTig

n
i=1. The asymptotic distribution can be derived in a similar way as in Section

3.6 of Porter (2003). For example, the covariance there is

C�# =
e01N

�1
p

�
�"� (�+)


+
p + �"� (��) 
�p

�
N�1
p e1

f(�)
;

where � is the error term in the expression T = t(x) + #d + � with E [�jx; d] = 0, and �"� (x) = E ["�jx].
As to the bandwidth selection, it is appropriate to choose a di¤erent bandwidth for the treatment rule from

the conditional mean of the outcome, so (13) can be easily extended; see Section 5.2 of Imbens and Lemieux

(2008) for a discussion about this issue. The second extension is to consider the estimation of the treatment

e¤ect when there are additional covariates z. This problem is also discussed in Frölich (2007). Suppose

y = m(x; z) + �(z)d+ ", where E ["jx; z; d] = 0; d = 1 (x � �) ;

and we are interested in � =
R
�(z)dF (z). For each zi, estimate �(zi) using the procedure in Section 2

except that the kernel k(�) is put on the (x; z) space instead of the x space only and in the de�nition of �!y i,
the expansion at (�; zi) instead of � is included. Then b� = 1

n

Pn
i=1 �(zi). The third extension is to cover

the case where the cut-o¤ point is unknown. From Porter and Yu (2010), we expect the estimation of � will

not a¤ect the asymptotic distribution of b�. The fourth extension is related to the relative e¢ ciency between
the LPE and PPE. It is hard to compare the MSE of the PPE and the LPE, so a natural question is what

is the e¢ ciency constant for � as discussed in Donoho and Liu (1991).

4 Conclusion

In this paper, we propose a new estimator, the partially polynomial estimator, of the treatment e¤ect

in regression discontinuity design. Such an estimator can be treated as an extension of the partially linear

estimator in Porter (2003) by also incorporating the derivative di¤erences in the left and right neighborhoods
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of the cut-o¤ point. We show unlike the partially linear estimator, the partially polynomial estimator

can achieve the optimal rate of convergence even under broader conditions of the data generating process.

Moreover, we reveal the speciality of the partially linear estimator by noting that the form of its bias can

not be extended to the partially polynomial estimator.
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Appendix A: Proof of Theorem 1

From (5) and (6),

p
nh (b�� �) = e01

 
1

nh

nX
l=1

Zdl (�)Z
d0

l (�)

!�1 
1p
nh

nX
l=1

Zdl (�) (m(xl)�m(xl) + "l � "l)
!
:

We �rst analyze the numerator, then the denominator. For 1 � i � q + 1, the ith term of Zdl (�) is�
xl � �
h

�i�1
1 (xl � �)�

1

hi�1
Pnxl(X

i�1d (�))

= e01S
�1
n (xl)(S

+
n (xl) + S

�
n (xl))e1

�
xl � �
h

�i�1
dl � e01S�1n (xl)

1

n

nX
j=1

Zj (xl) kh (xj � xl)
�
xj � �
h

�i�1
dj

= e01S
�1
n (xl)

1

n

nX
j=1

Zj (xl) kh (xj � xl)
�
Zil (�)dl � Zij(�)

�
dj

+e01S
�1
n (xl)

1

n

nX
j=1

Zj (xl) kh (xj � xl)Zil (�)dldcj

� e01S
�1
n (xl)�

+
ni�1(xl) + e

0
1S

�1
n (xl)�

�
ni�1(xl) � e01S�1n (xl)�ni�1(xl):
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Here, �+ni�1(xl) plays the role of � bf+(xl)(1� dl), ��ni�1(xl) plays the role of bf�(xl)dl, and Sn(xl) plays the
role of bf(xl) in Porter (2003).
Numerator

Concentrate on the ith term and take an expansion to linearize. We need di¤erent linearizations under

Assumption 2(a) and 2(b). We �rst discuss the case under Assumption 2(a), then under Assumption 2(b).

Under Assumption 2(a)

The ith term of the numerator is

1p
nh

nX
l=1

e01S
�1
n (xl)�ni�1(xl) (m(xl)�m(xl) + "l � "l)

=
1p
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�
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� Term1+ Term2+ Term3+Rn;

where
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�1 (x) r(m(x))� e01S�1 (x) (Sn (x)� S (x))S�1 (x) r(m(x)) + e01S�1 (x) (er(m(x))� r(m(x))) ;

L(m(x)) = e01S
�1 (x) r(m(x))� e01S�1 (x)
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S (x)� S (x)

�
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�
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�
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�
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"
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 �
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h

�i�1!
dj

#

=

 Z M

�M
�(u)

 �
x� �
h

�i�1
1(x � �)�

�
x� �
h

+ u

�i�1!
f(x+ uh)1 (x+ uh � �) du

!
(p+1)�1

;

�
�
i�1(x) = E

"
Zj (x) kh (xj � x)

�
x� �
h

�i�1
1(x � �)dcj

#

=

 Z M

�M
�(u)

�
x� �
h

�i�1
1(x � �)f(x+ uh)1 (x+ uh < �) du

!
(p+1)�1

;

and Rn is the remainder term including the quadratic terms in the expansion:

Rn = � 1p
nh

nX
l=1

e01S
�1
(xl)�i�1(xl)R(ey(xl))

+
1p
nh

nX
l=1

Ri�1(xl) (m(xl)� em(xl) + "l)
+

1p
nh

nX
l=1

Li�1(xl) (m(xl)� em(xl)) ;
with

R(ey(x)) = e01S
�1 (x) (Sn (x)� S (x))S�1(x) (Sn (x)� S (x))S�1n (x)r(m(x))

�e01S�1 (x) (Sn (x)� S (x))S�1n (x) (er(ey(x))� r(m(x))) ;er(ey(x)) = er(m(x)) + er("(x));
Ri�1(x) = e01S

�1
(x)
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Sn (x)� S (x)

�
S
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(x)
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Sn (x)� S (x)
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�
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�
:

L(m(x)) is the linear expansion of Pnx (m(x))�m(x) as shown in Lemma 2, and L(m(x)) is its mean. Li�1(x)
is the linear expansion of e01S

�1
n (x)�ni�1(x) at e01S

�1
(x)�i�1(x). Note that e01S

�1
n (x)�ni�1(x) is linearized

at S
�1
(x) and �i�1(x) instead of their limits which are S�1(x) and 0 respectively.6 This is mainly because

�i�1(x) is not a smooth function of x when x is in a neighborhood of �. As a result, S�1n (x) can not be

linearized at S�1(x), or Ri�1(x) can not be a higher-order term.

Our analysis includes three steps. In step1, we show Rn = op(1). In step 2, we show Term3 = op(1) and

Term2 = op(1). In step 3, we show �L(m(xl)) in Term1 contributes to the bias, and "l � "l contributes to
the variance. Although there is randomness in Term 2, it does not contribute to the asymptotic distribu-

tion. With the three steps in hand, the Liapunov central limit theorem is applied to �nd the asymptotic

distribution.

Step 1 First, some basic results. sup
x2N0

S�1n (x) = sup
x2N0

S
�1
(x) + op(1) = Op(1) from Lemma B5 of Porter

(2003), Lemma 3 and 4, sup
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�i�1(x) = O(1), sup
x2N0

e01S
�1
(x)�i�1(x) = O(1), sup
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r(m(x)) = O(hq+1),

6 In Porter (2003), f+(xl)(1 � dl) and f�(xl)dl converges to 0 for a �xed xl when h converges to zero. This result can be
applied to �

�
i�1(xl) and �

+
0 (xl). For i > 1, it is still true for h

i�1�
+
i�1(xl).
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From Assumption B(a) and (i)-(iv) above, Rn = op(1).

Step 2 To prove Term3 = op(1), we will use the U and V-statistic projection. First, note that
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nh

nX
l=1

Li�1(xl)"l

=
1p
nh

nX
l=1

e01S
�1
(xl)

�
�+ni�1(xl)� �

+

i�1(xl)
�
"l +

1p
nh

nX
l=1

e01S
�1
(xl)

�
��ni�1(xl)� �

�
i�1(xl)

�
"l

� 1p
nh

nX
l=1

e01S
�1
(xl)

�
Sn (xl)� S (xl)

�
S
�1
(xl)�

+

i�1(xl)"l �
1p
nh

nX
l=1

e01S
�1
(xl)

�
Sn (xl)� S (xl)

�
S
�1
(xl)�

�
i�1(xl)"l

� T1 + T2 + T3 + T4:
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where
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Note that bn(zl; zl) = 0 so that this term is a U-statistic. Under the Assumptions in Section 2.3, it is easy,

although tedious in notations, to show that E
�
bn(zl; zj)

2
�
= O(1). Then by standard U-statistic projection

results,
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T2 follows similarly.

For T3, let
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0
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As above, E
�
bn(zl; zj)

2
�
= O(1). Also, it is easy to show that E [jbn(zl; zl)j] = O(1) for n large enough. By
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a V-statistic projection theorem; see, e.g., Lemma 8.4 of Newey and McFadden (1994),
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T4 follows similarly.

To prove Term2 = op(1), we will use the V-statistic projection again. First, note that
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A similar proof can be applied to T6 except now
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Step 3 First, analyze the bias term 1p
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where the third equality is from Taylor expanding both m(� + wh+ uh) and m(� + wh) at m(�).

In summary, under Assumption 2(a), the order of the bias is determined by q: the rate is
p
nhhq+1; and

the constant is

� 1

(q + 1)!

h
m(q+1)(�+) � e01N�1

p Q+pq +m
(q+1)(��) � e01N�1

p Q�pq

i
Note that Q+pq 6= Q�pq, so even when m

(q+1)(�+) = m(q+1)(��), the bias of order
p
nhhq+1 does not

disappear. This is because the form of er(m(x)) determines the bias, while er(m(x)) in the discussion above
critically depends on the smoothness of m(x).

Second, analyze the variance term 1p
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this term is statistically equivalent to
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�
xj�xl
h

�
hf(xl)

351A "j
359=;

= �2 (�+)

Z M

0

 
e01S(� + wh)

�1�i�1(� + wh)� Exl

"
e01S(xl)

�1�i�1(xl)
K�
p

�
�+wh�xl

h

�
hf(xl)

#!
 
e01S(� + wh)

�1�k�1(� + wh)� Exl

"
e01S(xl)

�1�k�1(xl)
K�
p

�
�+wh�xl

h

�
hf(xl)

#!
f(� + wh)dw

+�2 (��)
Z 0

�M

 
e01S(� + wh)

�1�i�1(� + wh)� Exl

"
e01S(xl)

�1�i�1(xl)
K�
p

�
�+wh�xl

h

�
hf(xl)

#!
 
e01S(� + wh)

�1�k�1(� + wh)� Exl

"
e01S(xl)

�1�k�1(xl)
K�
p

�
�+wh�xl

h

�
hf(xl)

#!
f(� + wh)dw

� f(�)
�
�2 (�+) � 
+p (i; k) + �2 (��) � 
�p (i; k)

�
:

To apply the Liapunov central limit theorem, it su¢ ces that for some � > 0,

nX
j=1

E

������ 1p
nh

24e01S(xj)�1�i�1(xj)� Exl
24e01S(xl)�1�i�1(xl)K�

p

�
xj�xl
h

�
hf(xl)

3535 "j
������
2+�

= o(h(i�1)(2+�));

which is bounded by C
nX
j=1

24E ��� 1p
nh
e01S(xj)

�1�i�1(xj)"j

���2+� + E ����� 1p
nh
Exl

"
e01S(xl)

�1�i�1(xl)
K�
p

�
xj�xl

h

�
hf(xl)

#
"j

�����
2+�
35

for some C > 0.

nX
j=1

E

���� 1p
nh
e01S(xj)

�1�i�1(xj)"j

����2+�
� 1

(nh)
�=2

sup
x2N0

E
h
j"j2+� jx

i
sup
x2N0

��e01S(x)�1�i�1(x)��2+� 1hE [1 (� �Mh � x � � +Mh)]
� O

 
1

(nh)
�=2

!
= o(1):

Another term can be bounded similarly, so the Liapunov condition is satis�ed.
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Under Assumption 2(b)

Under Assumption 2(b), rede�ne

er(m(x)) =
1

n

nX
j=1

Zj(x)kh (xj � x)
(
m(xj)�m(x)�

pX
k=1

m(k)(x)

k!
(xj � x)k

)
;

r(m(x)) =

Z
�(u)f(x+ uh)

(
m(x+ uh)�m(x)�

pX
k=1

m(k)(x)

k!
(uh)

k

)
du:

When p is odd, there is no essential change in the proof above except that q is replaced by p in a few places.

The asymptotic variance remains the same, but the form of the bias changes.

E

�
1p
nh

Xn

l=1
e01S

�1
(xl)�i�1(xl)L(m(xl))

�
�

r
n

h

Z "Z M

��x
h

K�
p (u)

 �
x� �
h

�i�1
1(x � �)� (x� �

h
+ u)i�1

!
f(x+ uh)du

+

Z ��x
h

�M
K�
p (u)

�
x� �
h

�i�1
1(x � �)f(x+ uh)du

#
�

e01�
�1

f(x)

 Z
�(u)f(x+ uh)

(
m(x+ uh)�m(x)�

pX
k=1

m(k)(x)

k!
(uh)

k

)
du

!
dx

=
p
nh

Z "Z M

�M
K�
p (u)w

i�11(w � 0)f(� + wh+ uh)
f(� + wh)

du�
Z M

�w
K�
p (u) (w + u)

i�1 f(� + wh+ uh)

f(� + wh)
du

#

e01�
�1

 Z
�(u)f(� + wh+ uh)

(
m(� + wh+ uh)�m(� + wh)�

pX
k=1

m(k)(� + wh)

k!
(uh)

k

)
du

!
dw

�
p
nhf(�)

Z M

0

"
wi�1 �

Z M

�w
K�
p (u) (w + u)

i�1du

# Z M

�M
K�
p (u)

m(p+1)(�)

(p+ 1)!
(uh)

p+1
du

!
dw

�
p
nhf(�)

Z 0

�M

 Z M

�w
K�
p (u) (w + u)

i�1du

! Z M

�M
K�
p (u)

m(p+1)(�)

(p+ 1)!
(uh)

p+1
du

!
dw

=
p
nhhp+1

f(�)m(p+1)(�)

(p+ 1)!

Z M

�M
K�
p (u)u

p+1du

"Z M

0

K�
p (�i�1(w+))dw +

Z 0

�M
K�
p (�i�1(w�))dw

#

=
p
nhhp+1

f(�)m(p+1)(�)

(p+ 1)!

Z M

�M
K�
p (u)u

p+1duQp(i):

When p is even, there are some changes in Steps 1 and 3. In Step 1,
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(i)

1p
nh

nX
l=1

e01S
�1
(xl)�i�1(xl) � e01S�1 (xl) (Sn (xl)� S (xl))S�1(xl) (Sn (xl)� S (xl))S�1n (xl)r(m(xl))

� 1p
nh

nX
l=1

e01�
�1 (Sn (xl)� S (xl)) ��1 (Sn (xl)� S (xl)) ��1r(m(xl))

� 1p
nh

nX
l=1

e01�
�1

 
Op

 r
lnn

nh

!
+O (h) �(+1) +O

�
h2
�
�(+2)

!
��1 

Op

 r
lnn

nh

!
+O (h) �(+1) +O

�
h2
�
�(+2)

!
��1

Z
�(u)up+1duO(hp+1)

= Op

��
lnnp
nh

+ h
p
lnn+ h2

p
nh

�
hp+1

�
;

where �(+k) =
�
i+j�2+k

�
1�i;j�p+1, k = 1; 2. Note that the dominating terms in the last equality are

h
p
lnn+h2

p
nh instead of h2

p
lnn+h3

p
nh. This is because although e01�

�1�(+1) = 0 by the arguments in

Ruppert and Wand (1994), ��1�(+1)��1
R
�(u)hp+1du 6= 0. All other terms are the same as in the case when

p is odd. (Note that we need only use sup
x2N0

(jem(x)�m(x)j = Op

�q
lnn
nh + h

p+1

�
instead of the stronger

result that sup
x2N0

(jem(x)�m(x)j = Op

�q
lnn
nh + h

p+2

�
. Such a stronger result seems not be proved in the

literature although Li and Racine (2007) conjecture it to be true.)

In Step 3, the bias changes.

E

�
1p
nh

Xn

l=1
e01S

�1
(xl)�i�1(xl)L(m(xl))

�
�

p
nh

Z "Z M

�M
K�
p (u)w

i�11(w � 0)du�
Z M

�w
K�
p (u) (w + u)

i�1du

#

e01�
�1
�Z

�(u) ff(�) + f 0(�) (w + u)hg
�
m(p+1)(�)

(p+ 1)!
(uh)

p+1
+
m(p+2)(�)

(p+ 2)!
(uh)

p+2

�
du

�
dw

=
p
nhhp+2

Z "Z M

�M
K�
p (u)w

i�11(w � 0)du�
Z M

�w
K�
p (u) (w + u)

i�1du

#
 Z M

�M
K�
p (u)

�
f(�)

m(p+2)(�)

(p+ 2)!
up+2 + f 0(�)

m(p+1)(�)

(p+ 1)!
(w + u)up+1

�
du

!
dw

=
p
nhhp+2

"Z M

0

K�
p (�i�1(w+))dw +

Z 0

�M
K�
p (�i�1(w�))dw

#
 Z M

�M
K�
p (u)u

p+2du

!�
f(�)

m(p+2)(�)

(p+ 2)!
+ f 0(�)

m(p+1)(�)

(p+ 1)!

�
:

Note that e01S
�1 (x)

�
S (x)� S (x)

�
S�1 (x) r(m(x)) in L(m(x)) does not contribute to the bias regardless of

whether p is odd or even since it only contributes a higher-order term in both cases.
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Denominator

We get the asymptotic limit of 1
nhZ

d0 (�)Zd (�) here. Note that the (i; j) term of 1
nhZ

d0 (�)Zd (�) is

1

nh

Xn

l=1
e01S

�1
n (xl)�ni�1(xl)e

0
1S

�1
n (xl)�nj�1(xl);

which, by a similar argument as in the numerator, is asymptotically equivalent to

1

nh

Xn

l=1
e01S

�1
(xl)�i�1(xl) � e01S

�1
�j�1(xl): (14)

It is easy, although tedious, to show that its variance converges to zero. By Markov�s inequality, (14)

converges in probability to

1

h
E
h
e01S

�1
(xl)�i�1(xl) � e01S

�1
(xl)�j�1(xl)

i
� f (�)

Z "
wi�11(w � 0)�

Z M

�w
K�
p (u) (w + u)

i�1du

#"Z M

�M
K�
p (u)w

j�11(w � 0)du�
Z M

�w
K�
p (u) (w + u)

j�1du

#
dw

= f (�)

"Z M

0

K�
p (�i�1(w+))K

�
p (�j�1(w+))dw +

Z 0

�M
K�
p (�i�1(w�))K�

p (�j�1(w�))dw
#

= f (�)Np(i; j):

By continuity of the matrix inversion,

e01

�
1

nh
Zd

0
(�)Zd (�)

��1
p�! f(�)�1e01N

�1
p :

Based on the analysis on the numerator and denominator, the results in Theorem 1 follow.

Appendix B: Lemmas

Lemma 1 Xd
l (�) = 0 for jxl � �j > Mh, l = 1; � � � ; n.

Proof. From (2.4) of Fan et al (1997),Xn

j=1
(xj � x)�Wn

j (x) = �0;� , 0 � � � p;

where �0;� is equal to 1 if � = 0, and equal to 0 otherwise. Based on this result, for any xl such that

jxl � �j > Mh,
(xl � x)i�1 1 (xl > �)� Pnxl

�
Xi�1d (�)

�
= 0, 1 � i � q + 1 � p+ 1:

For example, if x� � > Mh, for i = 1,

(x� �)i�1 1 (x > �)� Pnx
�
Xi�1d (�)

�
= 1�

Xn

j=1
Wn
j (x) = 0:
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Note that the indicator function 1 (xj > �) in Xi�1d (�) does not play any role here. For i = 2,

(x� �)�
Xn

j=1
Wn
j (x) (xj � �)

= (x� �)�
Xn

j=1
Wn
j (x) (xj � x+ x� �)

= (x� �)� (x� �)
Xn

j=1
Wn
j (x)

= 0:

By induction, we can show all other terms are zero as long as q � p.

Lemma 2 Suppose m(x) = E [!ijxi = x] is q times continuously di¤erentiable with q � p, then

Pnx (!)�m(x) = e01S�1 (x) r(x) + PLx (!) + PQx (!) ;

where S(x) = �f(x),

r(x) =

Z
�(u)f(x+ uh)

 
m(x+ uh)�m(x)�

qX
k=1

m(k)(x)

k!
(uh)

k

!
du;

and PLx (!) and P
Q
x (!) are de�ned in (15). If q > p, then the q in r(x) is changed to p, and PLx (!) and

PQx (!) are adjusted correspondingly.

Proof. De�ne !i = m(xi) + ei, then

Pnx (!)�m(x)
= e01

�
Z (x)

0
Kh (x)Z(x)

��1
Z (x)

0
Kh (x) (!�m(x)) ;

= e01

0@ 1
n

nX
j=1

Zj (x)Z
0
j (x) kh (xj � x)

1A�1
1

nh

nX
j=1

Zj (x) kh (xj � x) (E [!j jxj ]�m(x) + ej)

= e01

0@ 1
n

nX
j=1

Zj (x)Z
0
j (x) kh (xj � x)

1A�1
1

n

nX
j=1

Zj (x) kh (xj � x)
(
E [!j jxj ]�m(x)�

qX
k=1

m(k)(x)

k!
(xj � x)k + ej

)
� e01S

�1
n (x) er(x):

Linearize the denominator at its limit S (x) and the numerator at its mean r(x). Note that r(x) converges

to 0 when h goes to zero, so we can not linearize at the limit of the numerator.

e01S
�1
n (x) er(x)� e01S�1 (x) r(x) (15)

= �e01S�1 (x) (Sn (x)� S (x))S�1 (x) r(x) + e01S�1 (x) (er(x)� r(x)) (linear terms)
+e01S

�1 (x) (Sn (x)� S (x))S�1(x) (Sn (x)� S (x))S�1n (x)r(x)

�e01S�1 (x) (Sn (x)� S (x))S�1n (x) (er(x)� r(x)) (quadratic terms)
� PLx (!) + P

Q
x (!) :

Lemma 3 If sup
x2N

E
h
j"j2+� jx

i
<1 for some � > 0, n�=(2+�)h= lnn!1, and m(x) 2 C(q+1) (N), then for

N0 = [� �Mh; � +Mh],
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(i) sup
x2N0

��Sn (x)� S (x)�� = Op

�q
lnn
nh

�
, sup
x2N0

���S�1n (x)� S�1 (x)
��� = Op

�q
lnn
nh

�
; sup
x2N0

��S (x)� S (x)�� =
O(h):

(ii) sup
x2N0

jer(m(x))� r(m(x))j = Op�q lnn
nh

�
, sup
x2N0

jer("(x))j = Op�q lnn
nh

�
:

(iii) sup
x2N0

jem(x)�m(x)j = Op�q lnn
nh + h

q+1

�
;.

(iv) sup
x2N0

���ni�1(x)� �i�1(x)�� = Op�q lnn
nh

�
.

Here, the norm j�j for a vector or matrix is the maximum absolute value among all elements.

Proof. The proof follows from Lemma B.1 and B.2 of Newey (1994). The basic proof techniques are

truncation and Bernstein�s inequality. Since the proof is very standard, omitted here for simplicity. See also

Masry (1996) for more details. We only discuss a little about sup
x2N0

���S�1n (x)� S�1 (x)
���. Note that

sup
x2N0

���S�1n (x)� S�1 (x)
��� � sup

x2N0

���S�1(x)��� sup
x2N0

��Sn (x)� S (x)�� sup
x2N0

��S�1n (x)
��

= O(1)Op

 r
lnn

nh

!
Op(1) = Op

 r
lnn

nh

!
:

Lemma 4 1
nh

Xn

l=1
j"lj 1 (� �Mh � xl � � +Mh) = Op(1); 1

nh

Xn

l=1
1 (� �Mh � xl � � +Mh) = Op(1).

Proof. These are intermediate results in Porter (2003), and can be proved by Markov�s inequality.
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