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Abstract

This paper considers testing a long run stable relationship among variables in the

presence of a near unit root. Since each variable may have a unit root or near unit root,

the the conventional asymptotic theory such as Andrews (1993, Econometrica) is not

applicable. As an alternative, we propose modi�ed �xed regressor bootstrap. Fixed

regressor bootstrap is originally proposed by Hansen (2000, Journal of Econometrics),

and it assumes strict exogeneity. We modify the test so that it is applicable in the

presence of endogeneity and serrial correlation in the cointegration equation error. In

empirical study, we test the present value model and the expectations hypothesis. For

the present value model, we detect change in the relationship in the early 1970�s. For

the expectations hypothesis, we fail to detect a change in the late 1970�s when the Fed

changed the operating procedure for the relatively short yields.
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1 Introduction

Engle and Granger (1987) de�ned cointegration as a long run equilibrium relationship

among unit root variables. The cointegrating vector that captures the long run relationship

should be constant over time.

Some authors have relaxed this strict de�nition of cointegration and investigate the

long run relationship among variables, allowing a structural change in the model. For

example, Hansen (1992) proposed a procedure for testing the null hypothesis of a constant

cointegration coe¢ cient (cointegration) against the alternative hypothesis of a random walk

coe¢ cient (that is, no cointegration) by extending supF test, mean F test, and LM test

to an I(1) regressor. Gregory and Hansen (1996) proposed the residual based tests such

as the modi�ed augmenting Dickey Fuller (ADF) and Ztests that allow the possibility of

a regime shift (change in a cointegrating vector) under the alternative hypothesis. They

found the supporting evidence for money demand equation when they allow a regime shift.

Inoue (1999) designed a test so that it has power against cointegration with a broken

trend. He tested money demand equation and found a supporting result for the �nding in

Campbell and Perron (1991). He found money, output and interest rate are cointegrated

with a broken deterministic trend. Seo (1998) applied LM test and found the supporting

result for money demand equation. Hansen (2003) generalized Johansen�s (1989) VAR test

allowing structural changes in various parameters in the model. He tested the expectations

hypothesis and found the cointegrating vector and common factors are constant in the long

run while there are structural changes in covariance and term premium. Their �ndings

are quite interesting. If they allow structural change in the model, they �nd a long run

stable economic relationship. Kejriwal and Perron (2008 a and b) extend Bai and Perron�s

(1998) work to test multiple structural breaks when I(1) regressors are included in the

model. They propose tests for the number of structural changes and o¤er the construction
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of joint con�dence intervals for break dates.

This paper also relaxes the strict concept of cointegration by Engle and Granger�s

(1987). Our aim is to test the long-run stable relationship among variables, allowing the

presence of a near unit root in data or allowing data to switch between I(1) and near

I(1): It is important to consider the possibility that the largest root is close to but not

exactly unity especially for empirical application. Because we have the limited number

of observations in practice, it is di¢ cult to tell from the sample if the data diverge away

in the long run. The behavior of data may be di¤erent from an exact unit root process.

When testing the cointegrating vector, the limit distribution of the test statistics will be

nonstandard if the variable is not exactly integrated (Elliott (1998)). It is shown that size

distortion is quite large even if the e¢ cient class estimator is employed. If the largest root

experiences a structural change or deviates away from unity, constancy of a cointegrating

vector might be rejected even if there actually exists a stable long-run relationship among

variables. The presence of a near unit root is a plausible concern in empirical application.

Furthermore, because we examine a long span of data for testing cointegration, there may

be the possibility that the marginal distribution of data experiences structural change,

switching between I(1) (or near I(1)) and I(0): Consider the expectations hypothesis of

the term structure. It is theoretically hard to believe that interest rates have a unit root;

it is di¢ cult to expect they diverge away in the long run. Nevertheless, the hypothesis is

often tested in a cointegration framework, since a unit root test tends to fail to reject the

presence of a unit root. And the hypothesis is often rejected in empirical study. If we

construct con�dence intervals for the largest autoregressive root in data, there seems to be

a structural change in the interest rate around the end of 1979 when the Federal Reserve

ceased targeting. We can observe that, while the interval tends to be narrow around unity

during the targeting period, it becomes wider, that is, the largest root is smaller than
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unity after the targeting period ends. Hansen (2003) indeed found a structural change

in term premium and variance around the end of 1979. In order to take into account

the presence of a near unit root, we utilize the local-to-unity asymptotic theory (Bobkoski

(1983), Cavanagh (1985), and Phillips (1987)).

One of major contributions in this paper is that we propose a test for a structural change

in the long-run relationship among variables when the largest root is close to, but may not

be exact unity. We show the asymptotic distribution of supF statistic depends on two

nuisance parameters and break date in a complicated manner, and the asymptotic theory

in Andrews (1993) is not applicable. As an alternative testing procedure, we propose

modi�ed �xed regressor bootstrap. Fixed regressor bootstrap is originally proposed by

Hansen (2000), assuming strict exogeneity. We extend the procedure so that it is robust

to endogeneity and serial correlation in a cointegration error and consider application of

Bonferroni test to allow the presence of a near unit root. We investigate �nite sample

performance. We show that there is a large power gain by adding quasi-di¤erence term

to a cointegration equation especially when endogeneity is large. Size distortion problem

is also reduced by our modi�cation. When a serial correlation is allowed, there is a power

loss especially when endogeneity is small. We �nd size of test stays around the nominal

size even if there is a serial correlation.

Another contribution is empirical application. We test the present value model in the

stock market and the expectations hypothesis. For the present value model, we detect a

structural change in the relationship in the early 1970�s. For the expectations hypothesis,

we fail to detect a change in the late 1970�s when the Fed changed the operating procedure

but a structural change in the late 1980�s.

The rest of this paper is organized as follows; section 2 presents the model we consider,

section 3 presents the asymptotic distribution of supF , section 4 considers application of
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�xed regressor bootstrap proposed by Hansen (2000), section 5 small sample performance,

section 6 applies the �xed regressor bootstrap empirically, and section 7 concludes.

2 The Model

We consider a simple triangular model;

xt = �1 + �xt�1 + u1t (1)

yt = �2 + �xt + u2t (2)

for t = 1; ::; T: It is a simple bivariate model. The �rst equation is an innovation of

the regressor, xt. The largest autoregressive root in xt is �. The second equation is a

cointegration equation. The deterministic terms are constants �1and �: The error terms

ut = [u1t; u2t]
0 are stationary, and �(L)ut = "t. where "t = ["01t; "

0
2t]
0 and �(L) is a lag

polynomial in the lag operator L. We have the following assumptions throughout the

paper

A1: j�(L)j = 0 has roots outside the unit circle.

A2: Et�1 ("t) = 0; E ("t"0t) = �, and supt jj"tjj4+ <1 (a.s.) for some  > 0, where � is

positive de�nite and Et�1 (:) denotes conditional expectation with respect to f"t�1; "t�2; :::g

A3: max�k�t�0 jj [u1t; u2t]0 jj = Op(1), where jj:jj is the Euclidean norm.

The assumptions are fairly standard. A1 is stationarity condition. A2 implies that

f"tg follows the martingale di¤erence sequence. A3 ensures that the initial values are

asymptotically negligible.

De�ne 2� times spectral density of ut at frequency zero as 
 = �(1)�1��(1)�10,

where �(1) =
P
i�i. The scaled long run variance-covariance matrix can be denoted
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as 
 =

264 
11 
12


21 
22

375 =
264 �211 ��11�22

��11�22 �222

375, where 
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1=2
11 


1=2
22

= � is the zero frequency

correlation.

If we allow the regressor to have a near unit root, two nuisance parameters will have a

crucial role for the distribution of test for parameter constancy as we see in the following

section. First one is a local to unity parameter under the local to unity approximation.

Since it is possible in our setting that the largest autoregressive root is equal to or less

than unity, we employ the local-to-unity asymptotic theory (Bobkoski (1983), Cavanagh

(1985), Phillips (1987)), with which we reparameterize � as � = 1 + c
T , where c is a local

to unity parameter, which can be zero or negative. The local-to-unity approximation is

useful because we can avoid discontinuity between a unit root and stationarity. We may

regard this reparameterization as local alternative to a unit root hypothesis. A problem

is that c is not consistently estimable. If c is estimated as bc = T (b�� 1), where b� is OLS
estimate, then, it tends to be underestimated, which may lead us to an incorrect inference.

Another nuisance parameter is the long-run correlation �. The long run variance co-

variance matrix 
 is consistently estimable by using methods such as the sum of autoco-

variances such as Newey and West (1987), the inversion of vector autoregressive coe¢ cients

by Berk (1974), and pre-whitening methods by Andrews and Monahan (1991). Because �

tends to be high in a cointegration mode, the regressor xt may not be orthogonal to u2t.

We are interested in constancy of the cointegrating coe¢ cient, �, over the entire sample.

We would like to test;

H0 : � = �o for all t vs: H1 : f
� = �o for t < � o

� = �o + �T for t > � o
(3)

where � o is the unknown true timing of a structural change and � is the magnitude of the

6



change. Thus we test constancy of �, and are interested in testing H0 : � = 0 for all t

against H1 : �T 6= 0 for t > � o. H1 is local alternative and we assume �T = ��2=T ,

where constant � indicates magnitude of a structural change. Speci�cation of �T = ��2=T

is necessary to derive asymptotic distribution of the test statistic under the alternative

hypothesis.

Testing constancy of a parameter has been extensively studied. Among the contribu-

tions, for testing a structural change with unknown timing, Quandt (1960) proposed taking

the supremum of F � statistc over all the possible break dates, and the asymptotic theory

for this Quandt (1960) test is provided by Andrews (1993). The exponentially weighted

tests are considered by Andrews and Ploberger (1994).

This paper considers supF tests. However, the asymptotic theory given by Andrews

(1993) is not applicable here. Andrews (1993) assumes stationarity of the regressor. To

apply Andrews�(1993) asymptotic theory, the second moments of xt have to grow linearly,

that is, if we denote M = limT!1
1
T

PT
t=1E(x

2
t ), then,

1
T

PTr
t=1 x

2
t should weakly converge

to rM for 0 < r < 1. In this paper, we assume the regressor has a unit root or a near

unit root. Thus, 1
T 2
PTr
t=1 x

2
t weakly converges to

R r
0 J

�(a)2da, where J�(:) is a demeaned

di¤usion process that satis�es dJ(a) = cJ(a)da+ dW (a) and W1(:) is a Brownian motion

associated with u1t, and J� = J(�)�
R r
0 J(a)da. The second moments of the regressor do

not grow linearly.

3 Asymptotic Distribution When the Regressor is I(1) or

near I(1)

As mentioned in the previous section, when xt is integrated or nearly integrated, the

asymptotic (unconditional) distribution of supF will be di¤erent from one derived by
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Andrews (1993). This section derives the asymptotic distribution of supF test when the

regressor has a near unit root. It depends on two nuisance parameters c and � in a

complicated manner.

When the true timing of a structural change is unknown, a typical test for a parameter

constancy is to take the Wald statistic,

Ft =
(T �m)b�22 � (T � 2m)b�22tb�22t (4)

for all the possible break dates, t, and take the supremum of the statistics, supF; as

suggested by Quandt (1960). b�22 is estimated variance of u2t under the null hypothesis,
while b�22t is estimated variance of u2t under the local alternative H1 : �T 6= 0.
Lemma 1 We have the following convergence results.1 As T !1;

i) 1
T 1=2

xt ) �11Jc(r)

ii) 1
T 2
P[Tr]
t=1 x

2
t )M(r) = �211

R r
0 Jc(s)

2ds

iii) 1
�22T

P[Tr]
t=1 xtu2t ) N(r) = �11

R r
0 Jc(�)dW2:1 +

��2:1p
(1��2)

�R r
0 Jc(�)dW1 + r

S211
�211

�
(5)

where) indicates weak convergence, for 0 < r < 1, t = 1; :::; T . S211 = limT!1
1
[Tr]

P[Tr]
1 u21t.

�2:1 is the long run variance of u2:1t that is orthogonal to u1t�j for all j = 0;�1;�2; ::. We

haveW2(:) =W2:1(:)+�
�22
�11
W1(:)W2:1(:) is independent ofW1(:). S211 = limT!1

1
[Tr]

P[Tr]
1 u21t:

Proof is given in appendix.

Lemma 1 shows that, if c 6= 0, the second moment of xt does not converge to a

Brownian motion. And unless xt is strictly exogenous, N(r) depends on �, and c: Note

that if � = 0, the second term in N(r) disappears.

1The results are derived ignoring the deterministic term. We can get the same results for x�t = xt ��1
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Theorem 2 F�statistic will be;

F[Tr] ) (N�(r)�Q(r)�)0M�(r)�1(N�(r)�Q(r)�) (6)

� F (rj�) (7)

where N�(r) = N(r)�M(r)M(1)�1N(1), Q(r) = (M(r)�M(r)M(1)�1M(�0))� (M(r)�

M(�0))I(r � �0), and M�(r) = M(r) �M(r)M(1)�1M(r), where �0 = t0
T :Then, supF

will converge to supF (rj�) in distribution.

Theorem above tells us that the asymptotic distribution supF (rj�) has a complicated

form that depends on two nuisance parameters and timing of a structural change. Under

the null hypothesis F[Tr] weakly converges to N�(r)0M�(r)�1N�(r). Under the alternative,

�0, true timing of a structural change also appears as a parameter.

Because the asymptotic distribution under the null hypothesis is now known, it is

possible to generate the distribution by simulation and tabulate critical values for any

plausible combination of � and c. However, it might be di¢ cult to use them in practice.

The reason is that a local to unity parameter is not consistently estimable. Thus, we need

an alternative testing method which is robust to c:

We would like to test a structural change in the relationship among variables with

unknown timing. Thus the test we are interested in is similar to the one in Hansen (1992)

but more generalized one in the sense that we allow the presence of a near unit root.

4 Fixed Regressor Bootstrap

We have learned that if the regressor does not have an exact unit root and there is endo-

geneity in the cointegration equation, the asymptotic null distribution depends on nuisance

parameters in a complicated manner. It might not be very useful to generate the (un-
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conditional) null distribution by simulation and tabulate critical values. Alternatively, we

consider Hansen�s (2000) �xed regressor bootstrap.

4.1 Fixed Regressor Bootstrap

Because the asymptotic distribution depends on parameters in a complicated manner, the

bootstrap will be a useful method (see Hall (1994)). Although the bootstrap method is

often found invalid when the data is I(1) (see Basawa et al. (1991)), Hansen�s (2000) �xed

regressor bootstrap is applicable to nonstationary data.

This bootstrap treats the regressor as �xed (exogenous). Thus, this method assumes

a strict exogeneity. We replicate the bootstrap distribution of supF denoted as supF (b)

conditional on data. Then,we count how many percent of the replicated distribution ex-

ceeds the sample test statistic supFT , that is, p�value is computed (or we have critical

values from the replicated bootstrap distribution). I brie�y describe the how to com-

pute homoskedastic �xed regressor bootstrap statistic. First, a random sample fyt (b) :

t = 1; :::; Tg is generated from the N(0; 1) distribution. By regressing yt (b) on xt to get

residual variance b�2(b), and regress yt (b) on xt and xtI(t = �) to get the residual varianceb�2� (b) and the sequence of Wald statistics;
Ft (b) =

(T �m)b�2(b)� (T � 2m)b�2� (b)b�2� (b) (8)

The bootstrap test statistic is supFT (b) = sup�1����2 F� (b). While the true distrib-

ution of supFT (b) is unknown, we may obtain the distribution by simulation. Theorem

5 in Hansen (2000) ensures the replicated bootstrap distribution supFT (b) converges to

the null distribution in probability. Because yt (b) is generated independently from data,

xt is treated as exogenous. Since the �xed regressor bootstrap method conditions on xt,

it generates a conditional distribution, while the sample statistic supFT (b) is a draw from
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unconditional distribution.

We would like to apply the �xed regressor bootstrap to testing parameter constancy

in the cointegration relationship. Since this method treats xt as �xed, the magnitude of

c will not a¤ect the inference. Furthermore, it should be robust to a structural change in

the marginal distribution of xt. A problem is strict exogeneity assumption. Suppose we

de�ne the regression error et(b) = yt (b)��xt, then, et(b) is orthogonal to xt because yt (b)

is generated independently. Hence, 1T
P[Tr]
1 xtet(b) will converge to

R r
0 J(a)dWe, whereWe

is the standard Brownian motion associated with et(b) and it can be di¤erent from N(r)

for the unconditional distribution of supF derived in the previous section. Because we test

parameter constancy in a cointegration framework, the long run correlation � is likely to

be nonzero, which implies endogeneity in the cointegration equation. Thus, �xed regressor

bootstrap is not directly applicable to our model.

4.2 Application of Fixed Regressor Bootstrap

The distribution of supF depends on two nuisance parameters c and � under the null

hypothesis. Local to unity parameter c is not consistently estimable. Nonzero long run

correlation � implies endogeneity in the cointegration equation. We apply �xed regressor

bootstrap, hoping to make a correct inference. The method would automatically resolve

the �rst issue. Since �xed regressor bootstrap treats as if xt were �xed, it will correctly

replicate the null distribution of supFT (b) even though the regressor is nonstationary or

near nonstationary. However, the method assumes strict exogeneity that requires that

the cointegration equation error be orthogonal to regressors. Hence, if we stick with

the original cointegration equation (2), where usually � 6= 0 and E(u2tjxt) 6= 0, the �xed

regressor bootstrap will not correctly yield the null distribution.

First we assume no serial correlation in ut, for a simple illustration purpose. We
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modify the cointegration equation (2) to make the �xed regressor bootstrap applicable.

For simplicity we ignore deterministic terms and assume that ut is white noise and there is

only contemporaneous correlation between u1t and u2t.In order to orthogonalize the error

term to the regressor, we add a quasi-di¤ernce term (1� �L)xt to the equation (2)2. Now

the equation is;

yt = �xt + �
�22
�11

(1� �L)xt + u2:1t (9)

To see why u2:1t is orthogonal to xt, consider rotating error terms ut = [u1t; u2t]
0 so that

Rut =

0B@ u1t

u2:1t

1CA, where R =
0B@ 1 0

�� �22�11
1

1CA. Then E[Rutu0tR0] =
0B@ �211 0

0 �22:1

1CA, where
�22:1 is a long-run variance of u2:1t. Thus, u2:1t = u2t � � �22�11

u1t, and E(u1tu2:1t) = 0;where

u1t = (1 � �L)xt. And xt will be orthogonal to u2:1t. This method is similar to that of

Saikkonen (1991) and Stock and Watson (1993), which adds �rst di¤erence of xt to the

cointegration equation. We cannot add leads and/or lags of the �rst �st di¤erence here

because � is allowed to deviate from exact unity.

Now we allow serial correlation in ut: Denoting E(utu0t+k) = �(k), we add another

assumption (See Saikkonen (1991)).

A4:
P1
j=�1 jj�(k)jj <1

Then, in general, we have u2t =
P1
j=�1 �ju1t�j + u2:1t, where

P1
j=�1 jj�j jj < 1,

u1t�j = (1 � �L)xt�j and u2:1t is a stationary process such that E(u1t+ku2:1t) = 0; k =

0;�1;�2; ::: The spectral density of u2:1t is f2:1(�) = fu2u2(�)� fu2u1(�)f�1u1u1(�)fu1u2(�)

and 2�f2:1(0) = 
2:1 = 
22 � 
21
�111 
12.

Now we have

yt = �xt +
1X

j=�1
�ju1t�j + u2:1t (10)

2Because we assume no serial correlation in error terms, we add one quasi-di¤erence term. If we allow
serial correlation, we need to add more lags and leads of the quasi-di¤erence term.
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Because f�jg is absolute summable, �j � 0 for jjj > K and K su¢ ciently large. Thus,

we can truncate the sum at jjj = K in practice. Now

yt = �xt +
KX

j=�K
�ju1t�j + evt (11)

We also need to assume;

A5: T�1=3K ! 0 and K !1 as T !1.

Thus, we need knowledge of � to apply �xed regressor bootstrap. In practice, however,

we do not know the true value of �. � is estimable by the usual OLS, and the estimate b�
converges at a faster rate if true value is unity. But in �nite sample, b� tends to be biased.
Furthermore, there is discontinuity between � = 1 and� < 1 under the usual asymptotic

theory. Thus, we propose constructing a con�dence interval for � with the local-to-unity

asymptotic theory instead of using b� . A valid con�dence interval for c can be constructed
by inverting the ADF t-statistic on � and by collecting the set of values for c that cannot

be rejected in a hypothesis test that c = co. In the next section, we explain how an equally

tailed con�dence interval for � (and c) is constructed by inverting the augmented Dickey-

Fuller (ADF) test or DF-GLS test (Stock (1991), Elliott, Rothenberg, and Stock (1996)).

We should keep in mind that because true value of � is unknown, accuracy of test might

be lost as the number of leads and lags increases.

5 Finite Sample Performance

We evaluate both size and power to investigate �nite sample performance. We study

di¤erent combinations of nuisance parameters c and �. c = 0;�1;�5;or �10: � = 0:3; or

0:7. We replicate the simulated (unconditional) distribution of supF statistics. For each

experiment, simulation replication is 1000. Under the null hypotheses, �o = 1. Equations
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(1) and (2) include constant terms. We set �1 = �2 = 0:2. For no serial correlation case,

the sample size is T = 100: For serial correlation case, we have T = 100 and T = 300.

We generate homoskedastic �xed regressor bootstrap distribution supF (b) conditional

on xt, and each bootstrap replication is 1000. For each bootstrap distribution, we obtain

the critical value and compute how many percent of the Monte Carlo replication exceeds

it. For testing a structural change, we truncate �rst and last 15% of data.

We have the following cases;

i) the original cointegration equation yt = �2 + �xt + u2t:

ii) yt = �2 + �xt + (1 � �L)xt + u2t, assuming that true value of � in (1 � �L)xt is

known.

iii) yt = �2 + �xt + (1� b�L)xt + u2t, where b� is the OLS estimate.
iv) yt = �2 + �xt + (1 � �L)xt + u2t, where � can be any value within a con�dence

interval constructed by inversion of ADF t�statistics.

v) yt = �2 + �xt + (1 � �L)xt + u2t, where � can be any value within a con�dence

interval constructed by inversion of DF_GLS t�statistics.

Cases iii) and iv) are application of Bonferroni�s inequality. We will discuss the pro-

cedure when we report size assuming no serial correlation. We evaluate all the cases for

no serial correlation. When serial correlation is taken into account, we consider only cases

iv) and v), which are empirically desirable.

5.1 No Serial Correlation in ut

First we assume no serial correlation in ut. Then, E (utu0t) = E ("t"
0
t) = � =

0B@ 1 �

� 1

1CA.
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5.1.1 Size

We compute the actual size against the nominal size 10% in cases i) ii) iv) and v). In all

experiments, we maintain the null hypothesis of �o = 1 for the entire sample. Thus, if the

performance is good, the actual size should be 10%. In each experiment, the sample size

T is 100.

Results are shown in Table 1. First of all, the size does not seem to depend on the

magnitude of local-to-unity parameter, while it does depend on �: This is because the

procedure conditions on xt.

In case i), we simply apply the �xed regressor bootstrap to the original cointegration

equation yt = �2 + �xt + u2t. If � = 0:7, which is likely to be observed in a cointegration

relationship, the actual size exceeds 20%. This is because the �xed regressor bootstrap

generates the distribution of supF (b) assuming exogeneity of the regressor, while the re-

gressor is actually highly correlated with the regression error. As we have higher value

of �, the size distortion will be larger. The results tell us that the regressor needs to be

orthogonalized to the error term to reduce the size distortion.

Case ii): we add an extra term (1 � �L)xt to the cointegration equation, where � is

the true value. Now the cointegration equation is yt = �2 + �xt + �(1 � �L)xt + u2:1t,

and the error u2:1t is orthogonal to the regressor. This procedure is empirically infeasible

since true value of � is unknown in practice. Nevertheless we present the results to show

the size distortion is eliminated by orthogonalization. If true value of � is taken into the

equation, the actual size stays around 10%.

Cases iv) and v) (Bonferroni�s test): A feasible procedure when true value of � is

unknown and true distribution of supF is also unknown will be application of Bonferroni�s

inequality. Let Cc (�1) denote a 100 (1� �1)% con�dence region for c, and CsupF jc (�2)

denote 100 (1� �2)% con�dence region for supF that depends on c. Then, if we obtain a
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con�dence region for any possible c, a 100 (1� �)% valid con�dence region for � which is

independent of c can be constructed as;

CBsupF (�) = [c2Cc(�1)CsupF jc (�2)

By Bonferroni�s inequality, the con�dence region CBsupF (�) has con�dence level of at least

100(1� �)%, where � = �1 + �2. Thus, by applying Bonferroni�s inequality we can obtain

a valid con�dence region for supF and can e¤ectively control the size.

We construct a con�dence interval for c (or � equivalently) in two di¤erent methods;

inverting the usual augmenting Dickey-Fuller (ADF) t-statistic and the DF-GLS t-statistic.

We construct a con�dence interval for � in either way. Then, we generate the �xed regressor

bootstrap distribution supF (b) for any value of � within
�
�; �
�
, where � and � are lower and

upper bounds of a con�dence interval respectively. We consider the following equation;

yt = �2 + �xt + (1� �L)xt + eu2t (12)

where � will be replaced with � or any value of � within the con�dence interval.

For each generated distribution, the 90th percentile of supF (b) is collected. The

maximum one will be the valid critical value that control the size equal to or below 10%.

The sample test statistic of supF is a draw from unconditional distribution that also

depends on �. The distributions of supF are generated by Monte Carlo for � and � ,

which we denote as supF (�) and supF (�) respectively and percentage that exceeds above

10% level of critical value.

Case iv): we �rst construct a con�dence interval for � by inverting the usual ADF

t-statistic as suggested by Stock (1991), using a monotonic relationship between c and the

distribution of ADF t-statistics. We construct an equally tailed con�dence interval of c
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for a given value of ADF t�statistic. Then, by local-to-unity asymptotic theory, we can

obtain a con�dence interval for �.

Overall the size is e¤ectively controlled. The actually size stays around 10% though it

exceeds 12% when c = �10 and � = 0:7.

Case v): a more accurate con�dence interval for � (and more accurate Bonferroni test)

can be constructed by inverting the DF-GLS t-statistic proposed by Elliott, Rothenberg,

and Stock (1996). While there is no uniformly most powerful (UMP) test for testing a unit

root, it is possible to construct a power envelope by obtaining the upper bound of power

against any �xed alternative � = e�. Each unit root test testing the null of � = 1 against a
given �xed alternative e� yields the power curve which is tangent to the envelope at � = e�
(equivalently c = ec in �nite sample). Although the power of the usual ADF t�statistic is
substantially below the power envelope when a deterministic term is included, it is possible

to improve the test so that its power is very close to the bound by e¢ ciently estimating the

deterministic term. Elliott and Stock (2001) showed it is possible to construct a con�dence

interval for � by DF-GLS test since there is a one-to-one relationship between c and the

distribution of DF-GLS statistics. By inverting this e¢ cient test (DF-GLS test), we should

be able to have a more accurate con�dence interval for �. In practice we pick up a �xed

alternative c = ec where power is one-half since such a value of c = ec yields the power
curve that stays close to the power envelope over a long range of c (King, 1987). ERS

recommend ec = �7 when the deterministic term is constant.

The size is around 10%. In terms of size, there is no large di¤erence between ADF

t-test and DF-GLS test except for c = �10 and � = 0:7. It is because our deterministic

term is only constant, and �1 is relatively small. If we include both constant and trend

terms, DF-GLS test will outperform the ADF t-test.
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Local Alternative Power We compare the local alternative power for the cases i)

iii),iv), and v). The local alternative hypothesis is;

� =
�o if t < T

2

�o +
g
T if t � T

2

(13)

where g = 0; 1; 2; :::20 and T = 100: True timing of a structural change is at T2 :

We replicate the distribution of supFn under the local alternative hypothesis. We also

replicate the null distribution supF (b) by �xed regressor bootstrap to obtain the critical

value, and compute how many percent of supFn exceeds the critical value. The nominal

size is set as 10%. For case i), we adjust critical values so that the size becomes 10%,

because the size distortion is large.

Figures 1a and 1b present the results. First of all, in contrast to size, power tends to

be lost as the local-to-unity parameter c goes further away from 0. As a result, test loses

power for testing the local alternative � = �o +
g
T , where g > 0. However, by taking into

account information about �, power is improved.

For any combination of c and �, there is power gain from including the quasi-di¤erence

term. There is a large power gain by using a con�dence interval for � rather than using

the point estimate b�. By taking into account any plausible value of � within a con�dence
interval, accuracy of test largely improves. There is not much power gain by using the

point estimate of � if � = 0:3 and c = �5 and �10.

If we use con�dence interval of �, power gain is large. Power gain is especially large

when endogeneity is large (� = 0:7). For any value of c, power is substantially improved

when � = 0:7. Even though c = �10; power achieves around 90% at g = 20 for � = 0:7.

18



By adding the quasi-di¤erence term, the cointegration equation is

yt = �2 + �xt + �(1� �L)xt + u2:1t (14)

The coe¢ cient on the quasi-di¤erence term is �. If � is large, weight on the quasi-

di¤erence term is large. Thus including the quasi-di¤erence term substantially improves

power. There is some power gain by including point estate b� when � = 0:7. But it is not
as big as using a con�dence interval for � . Test becomes more accurate by taking into

account a certain range of feasible � rather than including a point estimate.

There is no large di¤erence between using ADF t�statistics and DF_GLS t-statistics

because the deterministic term is negligibly small. Since they produce similar con�dence

intervals, power is also similar.

From the experiments without serial correlation, we conclude that cases iv) and v) are

empirically desirable.

5.2 Serial Correlation in ut

Now we allow a serial correlation in ut and investigate �nite sample performance for the

empirically feasible cases iv) and v). As in no serial correlation case, we evaluate size and

local alternative power with the nominal size 10% for T = 100 and T = 300.

ut is modeled as VAR (1) process �(L)ut = "t, and the scaled long run variance-

covariance matrix of ut is 
 = �(1)�1��(1)�10 =

264 
11 
12


21 
22

375, where �(1) =Pi�i and

� = E ["t"
0
t] =

264 1 �

� 1

375 :We impose a mild serial correlation �(L) =
264 1� a11L 0

0 1� a22L

375 =
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264 1� 0:2L 0

0 1� 0:4L

375. We do not assume a highly persistent u2t because if a22 is near
one, then variables may not be cointegrated

In order to replicate the null distribution supF (b) by the �xed regressor bootstrap, we

modify the cointegration equation as follows;

yt = �2 + �xt +

KX
j=�K

�j(1� �L)xt�j + vt (15)

for t = 1; ::; T . vt is �approximately�orthogonal to (1� �L)xt�j for j = �K; :::;K.

In order to generate the �xed regressor bootstrap supF (b), we set K;and regress

yt(b)~i:i:d:N(0; 1) on the right hand variables. We also replicate the actual (uncondi-

tional) distribution of supF . To compute supF , we estimate �1:2 = 
22 � 
21
�111 
12

and use the equation (4), because vt is an approximation of u2:1t. We estimate 
 as VAR

(1) representation following Berk (1974).

5.2.1 Size

Size is reported in table 1d for T = 100 and 1e for T = 300. We set K = 3. With K = 3,

actual sizes are around the nominal size 10% for any combination of c and �. To control

the size, the choice of K is important. When we set K = 1, actual sizes go up to about

20%. There is no big di¤erence in size whether using con�dence intervals by ADF or

DF � GLS t-statistics in our simulation. Size is not a¤ected by nonzero c even in the

presence of serial correlation.

5.2.2 Local Alternative Power

The local alternative power is reported in �gures 2a and 2b for T = 100 and 3a and 3b for

T = 300. By allowing serial correlation, power is lost. Loss of power is especially large
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for � = 0:3. Why power is lost? There is a trade-o¤ between power and size. It is large

when cointegration error is serially correlated. We do not have true value of �, but use

a con�dence interval from the sample. As the number leads and lags increases, vt goes

close to the orthogonal part of error u2:1t. As a result, the size distortion is e¤ectively

eliminated. At the same time, however, accuracy of test decreases because � is unknown.

If we reduce leads and lags, power will improve while size distortion is large. Thus, we

have to be cautious when cointegration error is serially correlated especially for small �.

6 Empirical Study

In the previous section, we have proposed modi�cation of �xed regressor bootstrap taking

into account the sample information about the regressor in the cointegration equation. We

have found that adding the quasi-di¤erence term substantially improves power of the test.

In this section, we apply our proposed test to empirical data. The present value model

in the stock market and the expectations hypothesis are our empirical examples. Both

hypothesis are often tested in a cointegration framework, and they are usually found to

be rejected in empirical study. Under our procedure, we should be able to investigate

whether there is the long run stable relationship among data even though data may or

may not have an exact unit root. Rejection of test will correctly indicate the relationship

is unstable, that is, the hypothesis is rejected. We truncate �rst and last 15% of data.

We examined the test with di¤erent lead- and lag-lengths of a quasi-di¤erence term

and with di¤erent truncations. As we have learned in simulation, the �xed regressor null

distribution changes and thus critical value changes as lag- and lead- length changes. But

a timing of a structural change is not a¤ected.
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6.1 The Present Value Model in the Stock Market

First we study the present value model.

6.1.1 Theoretical Framework

The present value model in the stock market says that a stock price today is the expectation

of the present values of all future dividends. Following Campbell and Shiller (1988) and

Bansal and Lundblad (2002), the log stock price - dividend ratio can be expressed as a

function of the expected dividend growth rate and the ex-ante stock return.

pt � dt =
�0

1� �1
+ E

" 1X
i=0

�j1 (gt+1+j � rt+1+j)
#

where pt and dt are the logs of stock price and dividends respectively, gt is the continuous

dividend growth rate, and rt is the log of total return.3 The stock price and the dividend

are often assumed to be I(1) (for example, Mankiw, Romer, and Shapiro (1985, 1991) or

Cochrane (1992, 1994), and unit root tests fail to reject the null hypothesis of unit root

in empirical studies (Campbell and Shiller (1988), Timmermann (1995)). Thus, the logs

of stock price and dividend are also assumed to have a unit root. Then, the continuous

growth rate of dividend and stock return, i.e. the �rst di¤erence of the log dividend and

stock price should be stationary. Consequently, if the present value model holds, the logs of

stock price and dividend are cointegrated with the cointegrating vector, (1;��o) = (1;�1),

and the cointegration equation is

pt � �odt = u2t
3�1 =

1

1+exp(di�pi)
, �0 = � log (�1) � (1� �1)

�
di � pi

�
, where di � pi is the mean of logs of dividend

yield.
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or

pt = �odt + u2t

where �o = 1 under the null hypothesis.4 Let us denote the estimated � as b�. If b�
is signi�cantly larger than one, that is, the log of stock price is far more volatile than

dividend.

6.1.2 Previous empirical �ndings

Testing the present value model with logs of stock price and dividend was �rst proposed

by Campbell and Shiller (1988). A typical empirical �nding is against the present value

model. The (log of) stock price is far too volatile relative to dividend for the present

value model to hold, which is the so called "excess volatility puzzle". Barsky and Delong

(1993) estimated �, b� = 1:61, and the associated t�statistic was positive and signi�cant.
Gonzalo, Lee, and Yang (2007) found that, by the Johansen test, the estimated reciprocal

of � is around 0.6, and the estimated cointegrating vector is signi�cantly di¤erent from

(1;�1). Barksy and Delong (1993) and Bansal and Lundblad (2002) attributed this high

volatility of stock prices to nonstationarity or near nonstationarity of dividend growth rate,

g. On the other hand, Timmermann (1995) showed by Monte Carlo experiment that the

logs of stock price and dividend fail to be cointegrated because the rate of return, r, is

highly persistent and not because r is highly volatile.

4Levels of stock price and dividend are also tested in a cointegration framework (Campbell and Shiller
(1987), for example). In this case, the cointegrating vector is a function of discount factor, the value of
which is not speci�ed by the model. Since our concern is the hypothesis testing on the cointegrating vector,
cointegration between stock price and dividend in levels is beyond scope of this paper.
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6.1.3 Our empirical analysis

For our empirical analysis we use annual data. The original data are annual stock returns

with and without dividends from CRSP. From the original data set, I constructed the log

real stock price and the log real dividends. A detailed description about data is found in

appendix. The entire sample is from 1926 to 2007. Figure 4 plots log real stock price

and log real dividend. Over all they are moving in a similar manner. If we take a closer

look, however, we �nd some di¤erence. For example, in earlier 1970�s, there is a sharp

drop in stock price, while dividend also drops but not as sharply as stock price does. The

di¤erence is more obvious during 1990�s. While there is a sharp increase in stock price,

dividend increases only slightly. There is a relatively sharp drop in stock price around

year 2001 recession.

Table 2 presents our empirical results. The �rst column presents 95% con�dence

intervals for the largest root in stock price and dividend. Both are tight around unity,

which implies that the largest root is near unity. The long run correlation � is estimated

from the parametric estimation of the long run variance covariance proposed by Berk

(1974). Because � exceeds 0.9 and the con�dence interval for � is relatively tight, we

expect a large power gain from adding quasi-di¤erence terms.

Last two columns present supF statistic and critical values obtained from the �xed

regressor bootstrap. The supF statistic is computed as we have discussed in the previous

section. The �xed regressor bootstrap critical value is computed with 3 leads and 3 lags.

The stable relationship between stock price and dividend is rejected. The test indicates

structural change in the relationship in 1972 around the �rst oil crisis.

6.2 Expectations Hypothesis

Now we turn to the expectations hypothesis of term structure.
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6.2.1 Theoretical Framework

We denote pnt as log price of n-period zero-coupon bond and r
n
t as yield to maturity of

n-period of zero-coupon bonds. Then, rnt = � 1
np
n
t . We denote fnt as the return from

contract at time t to buy one-period zero-coupon bond that matures at time t+n. Then,

fnt = p
n�1
t � pnt , and f1t = r1t . A version of the expectations hypothesis says that forward

rate is expected future spot rate plus risk premium;

f jt = Et
�
r1t+j�1

�
+ �(j; t) (16)

where �(j; t) is risk premia which depends on risk considerations or preferences about

liquidity.

Then, we have the following relationship;

rnt =
1

n

nX
j=1

Et
�
r1t+j�1

�
+ L(n; t) (17)

where L(n; t) = 1
n

Pn
j=1 �(j; t).

Under the pure version of the expectations hypothesis, risk premia are zero, while under

the other versions of the hypothesis, the risk premia are constant over time.

By rearranging the equation above, we have;

rnt � r1t =
1

n

nX
j=1

(n� j)Et
�
�r1t+j�1

�
+ L(n; t) (18)

Assuming yields to maturities are unit root processes, the �rst di¤erence of the one-

period yields�r1t+j�1 is stationary, which implies that r
n
t �r1t is stationary. If rnt and r1t are

cointegrated with the cointegrating vector (1;��o) = (1;�1), the expectations hypothesis

holds. The hypothesis was �rst examined in a cointegration framework by Campbell and
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Shiller (1987).

6.2.2 Previous Empirical Findings

The expectations hypothesis is rejected in most empirical study (see Engle and Granger

1987 and Hall, Anderson, and Granger, 1992 for cointegration test). And the rejection is

often attributed to the period between 1979:9 and 1982:9 when the Fed ceased targeting.

Hall et al.(1992) and Shea (1992) concluded that test is rejected because risk premia were

highly volatile during this period.

A structural change in the term structure has been studied as well. For example,

Hamliton (1988) detected the period 1979:9 to 1982:9 as a separate regime by a Markov

switching model.

6.2.3 Our Empirical Analysis

We use U.S. zero-coupon bond yield provided by McCulloch and Kwon (1993) for empirical

study (see appendix). The entire sample is 1970:1 - 1991:2, which includes change in the

Federal Reserve�s operating procedure at the end of 1970�s. The Federal Reserve ceased

targeting a short-term interest rates in the fall of 1979 and resumed targeting in the fall of

1982. We test the relationship between yield to maturity of one-month r1t and relatively

short-period yield rnt , where n is 2 months, 3 months, 4 months and 6 months.

Figure 5 plots yields. They seem to be moving in a similar manner. They are all

highly volatile while the Fed ceased targeting. Another thing to note is that r1t especially

experienced a sharp drop around October 1987.

Table 3 presents results. 95% con�dence intervals are relatively wide compared to

those for the present value model. Long-run correlations � are relatively small. Thus, we

should keep in mind that power of the test might be low. We added to the cointegration
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equation 3 leads and 3 lags of a quasi-di¤erence term. For relatively short yields, we fail to

identify a structural change around the late 1970�s or early 1981.s when the Federal Reserve

changed the operating procedure. For the relationship between 1-month and 2-, 3-, or 4-

month yields, we found a structural change in 1986:11, which is close to so called �Black

Monday�when r1t experienced a sharp drop. For the one-month yield and six-month yield,

we found a structural change in 1981:1, which we might be able to relate to the change in

the operating procedure by the Fed.

7 Conclusion

We have proposed a modi�ed �xed regressor bootstrap so that test is applicable to a

cointegration framework. The test is robust to the presence of a near unit root. We have

found that by modi�cation, size distortion is corrected and power gain is large especially

when an endogeneity problem is large. But trade-o¤ between size and power is large when

there is a serial correlation in the cointegration equation error. As the number of leads and

lags increases, power is lost especially when the magnitude of endogeneity is small. Power

possibly improves if we use more powerful unit root test to construct con�dence intervals

for �. The possible test would be the test that includes stationary covariates proposed by

Hansen (1995) and extended by Elliott and Jansson (2003).

We examined the present value model and the expectations hypothesis in empirical

study. Our test is designed for a single structural break. We detected a structural change

in the early 1970s for the present value model and the late 1980�s for the expectations

hypothesis. We have found that a stable relationship is not maintained for both examples.

However, in the long run, it is possible that the relationship among economic variables

experience multiple structural changes in the long run. For further research, we might

need to consider testing multiple breaks.
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A Proof

Proof. Proof for Lemma 1.

i) and ii) follow from Lemma 1 in Phillips (1987).

Proof for iii) is the following. Let W1(r) =
1

�11
p
T

PTr
1 u1t, W2:1(r) =

1
�2:1

p
T

PTr
1 u2:1t

and W2(r) =
1

�22
p
T

PTr
1 u2t.

We haveW2 =W2:1+�
�22
�11
W1 and �22:1 = (1��2)�222, where �22:1 is the long-run variance

of u2:1t.

u2:1t is orthogonal to u1t�j for all j.

Then, we have

1

�22T

[Tr]X
t=1

xtu2t =
1

�22T

[Tr]X
t=1

h
xt�1u2t + u1tu2t +

c

T
xt�1u2t

i
(19)

1
�22T

P[Tr]
t=1 xt�1u2t ) �11

R r
0 Jc(�)dW2:1 +

��2:1p
(1��2)

R r
0 Jc(�)dW1

1
�22T

P[Tr]
t=1 u1tu2t +

c
T

1
�22T

P[Tr]
t=1 xt�1u2t ! r� �2:1p

(1��2)
S211
�211

+ Op(T
�1) almost surely by

law of large number,

where S211 = limT!1
1
[Tr]

P[Tr]
1 u21t.

1
�22T

P[Tr]
t=1 u1tu2t =

[Tr]
�22T

1
[Tr]

P[Tr]
t=1

h
�22
p
T 1
�2:1

p
T
u2:1tu1t + �22

p
T� �22�11

1
�11

p
T
u21t

i
Proof. Proof for Thorem 2 follows Theorem 2 in Hansen (2000).

B The Data Set

B.1 The Present Value Model

The original data is from the CRSP value-weighted NYSE portfolio from 1926 to 2007, in

which annual total stock return, rtotalt , and return without dividend, rot , are provided . We

construct the series of real stock price and real dividend as follows. The nominal stock
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price is computed as investing 1 in this portfolio at the end of 1925 and multiplying by

(1 + rot ) stock price at t � 1 to have a stock price at the end year t. Annual dividend at

t is
�
rtotalt + rot

�
Pt�1. We divide them by the Consumer Price Index with 1982-1984 base

year to obtain real stock price, Pt and real dividend Dt. We take the natural logs of Pt

and real Dt.

B.2 The Expectations Hypothesis

The data for this study is the zero-coupon yield curve. The data is from McCullock and

Kwon (1993).
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T = 100 �
i)no quasi di¤erence term ii)� is known iv)ADF v)DF_GLS

c 0:3 0:7 0:3 0:7 0:3 0:7 0:3 0:7
0 0:135 0:224 0:099 0:081 0:108 0:091 0:089 0:104

�1 0:132 0:227 0:114 0:115 0:095 0:075 0:089 0:067
�5 0:132 0:227 0:125 0:091 0:160 0:090 0:106 0:090
�10 0:115 0:200 0:096 0:092 0:099 0:124 0:103 0:101

Table 1: Size. No serial correlation Nominal size is 10 percent..

�
T = 100 T = 300

c iv)ADF v)DF_GLS iv)ADF v)DF_GLS
0:3 0:7 0:3 0:7 0:3 0:7 0:3 0:7

0 0:125 0:099 0:129 0:094 0:096 0:094 0:125 0:099
�1 0:094 0:097 0:125 0:114 0:107 0:098 0:107 0:104
�5 0:101 0:098 0:106 0:105 0:107 0:100 0:119 0:108
�10 0:107 0:092 0:085 0:091 0:111 0:120 0:104 0:106

Table 2: Size. Errors are represented as VAR(1). Nominal size is 10 percent. 3
leads and 3 lags

T
1926-1927
82 95% CI for � � supF Upper 5% c.v. Date

Price 0:995 234 31:25 1972
(0:982 1:059)
Dividend
(0:973 1:059)

Table 3: Empirical Study: the Present Value Model. 3 leads and 3 lags

1



T
1970:1-1991:2
254 95% CI for � � supF Upper 5% c.v. Date
1-2 month 1 month

(0:920 1:009) 0:174 54:703 28:473 1986 : 11
2 months
(0:931 1:011)

1-3 month 3 months
(0:934 1:012) 0:164 49:402 28:735 1986 : 11

1-4 month 4 months
(0:937 1:012) 0:151 38:078 28:545 1986 : 11

1-6 month 6 months
(0:936 1:012) 0:096 42:641 28:033 1981 : 3

Table 4: Empirical Study: the Expectations Hypothesis. 3 leads and 3 lags
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Figure 1a: δ=0.3 (no serial correlation in errors) Local alternative power βo+ 
𝑔

𝑇
, where T=100.  (“DF_GLS” is confidence interval for ρ with 

DF_GLS , “ADF” is confidence interval for ρ with ADF,  “ignored” is the one that ignores endogeneity, and “estimated” is ρ estimated.) 
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Figure 1b:δ=0.7 (no serial correlation in residuals) 

Local alternative power βo+ 
𝑔

𝑇
, where T=100.  (“DF_GLS” is confidence interval for ρ with DF_GLS , “ADF” is confidence interval for ρ with ADF,  

“ignored” is the one that ignores endogeneity, and “estimated” is ρ estimated.) 
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Figure 2a: δ=0.3 (serial correlation in errors) Local alternative power βo+ 
𝑔

𝑇
, where T=100.  (“DF_GLS” is confidence interval for ρ with DF_GLS , 

“ADF” is confidence interval for ρ with ADF.) 
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Figure 2b: δ=0.7 (serial correlation in errors) Local alternative power βo+ 
𝑔

𝑇
, where T=100.  (“DF_GLS” is confidence interval for ρ with DF_GLS , 

“ADF” is confidence interval for ρ with ADF.) 
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Figure 3a: δ=0.3 (serial correlation in errors) Local alternative power βo+ 

𝑔

𝑇
, where T=300.  (“DF_GLS” is confidence interval for ρ with DF_GLS , 

“ADF” is confidence interval for ρ with ADF.) 
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Figure 3b: δ=0.7 (serial correlation in errors) Local alternative power βo+ 

𝑔

𝑇
, where T=300.  (“DF_GLS” is confidence interval for ρ with DF_GLS , 

“ADF” is confidence interval for ρ with ADF.) 
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Figure 4: Annual data of log real stock price and log real dividend.  1926-2007. 
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Figure 5: U.S. zero-coupon yields with maturities 1, 2, and 3 months. 
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