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Abstract 
 

This paper investigates the properties of the PCSE estimator.  The PCSE estimator is 
commonly used when working with time-series, cross-sectional (TSCS) data.  In an 
influential paper, Beck and Katz (1995) (henceforth BK) demonstrated that FGLS produces 
coefficient standard errors that are severely underestimated.  They report Monte Carlo 
experiments in which the PCSE estimator produces accurate standard error estimates at no, or 
little, loss in efficiency compared to FGLS.  Our study further investigates the properties of 
the PCSE estimator.  We first reproduce the main experimental results of BK using their 
Monte Carlo framework.  We then show that the PCSE estimator does not perform as well 
when tested in data environments that better resemble “practical research situations.”  When 
(i) the explanatory variable(s) are characterized by substantial persistence, (ii) there is serial 
correlation in the errors, and (iii) the time span of the data series is relatively short, coverage 
rates for the PCSE estimator frequently fall between 80 and 90 percent.  Further, we find 
many “practical research situations” where the PCSE estimator compares poorly with FGLS 
on efficiency grounds.   
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I.   Introduction 
 
Empirical studies frequently employ data consisting of repeated time-series observations on 

fixed, cross-sectional units.  While providing a rich amount of information, time-series cross-

sectional (TSCS) data are likely to be characterized by complex error structures.  The 

application of OLS to data with nonspherical errors produces inefficient coefficient estimates, 

and the corresponding standard error estimates are biased.  In contrast, GLS produces 

coefficient and standard error estimates that are efficient and unbiased, respectively, given 

certain assumptions.  Two such assumptions are (i) the error covariance structure is correctly 

specified, and (ii) the elements of the error covariance matrix are known.  Feasible GLS 

(FGLS) is used when the structure of the error covariance matrix is known, but its elements 

are not.  The finite sample properties of FGLS are analytically indeterminate. 

 Beck and Katz (1995) (henceforth, BK) use Monte Carlo methods to study the 

performance of FGLS in a statistical environment characterized by (i) groupwise 

heteroscedasticity, (ii) first-order serial correlation, and (iii) contemporaneous cross-sectional 

correlation.  They dub the corresponding FGLS estimator “Parks” (after Parks [1967]).  BK 

report three major findings:   

1. FGLS(Parks) produces dramatically inaccurate coefficient standard errors.  
 
2. An alternative estimator, based on OLS but using “panel-corrected standard errors,” 

(henceforth, PCSE) produces accurate coefficient standard errors. 
 
3. The efficiency advantage of FGLS(Parks) over PCSE is at best slight, except in 

extreme cases of cross-sectional correlation, and then only when the number of time 
periods (T) is at least twice the number of cross-section units (N). 

 
BK conclude that the PCSE estimator provides accurate standard error estimation with little 

loss in efficiency relative to FGLS(Parks), except in extreme cases of heteroscedasticity or 

cross-sectional correlation that are unlikely to be encountered in practice (Beck and Katz, 

1995, page 645).  BK has been very influential.  A recent count identified over 900 Web of 
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Science citations.1  The PCSE estimator is now included as a standard procedure in many 

statistical software packages, including STATA, GAUSS, RATS, and Shazam.  

 This paper provides Monte Carlo evidence refuting the claim that the PCSE estimator 

always provides accurate standard error estimation, and does so at little cost to efficiency in 

“practical research situations.”  The paper proceeds as follows.  Section II describes the 

experimental data generating process and main performance measures employed by BK.  

Section III reports our successful attempts to replicate BK’s main findings.  Section IV 

discusses how we generalize BK’s Monte Carlo methodology to better represent “practical 

research situations.”  Sections V and VI report the results of our attempts to replicate BK’s 

TABLEs 4 and 5 using this more realistic testing environment.  Section VII concludes. 

 
II.   Description of BK’s Methodology 
 
The experimental framework.  BK build their Monte Carlo analysis around the following 

TSCS model:   
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where  yi  and Zi  are 1T ×  vectors of observations on the dependent and independent 

variables for the ith group, N21i ,...,,= ; β is a 2 1×  vector of coefficients; iε  is a 1T ×  

vector of error terms; and ε  ~ N(0, NTΩ ).   

 Following Parks (1967), they allow NTΩ  to consist of (i) groupwise 

heteroscedasticity; (ii) common, first-order serial correlation;2 and (iii) cross-sectional 

(spatial) correlation.  Specifically,  

                                                 
1 Cf. Web of Science, www.isinet.com/products/citation/wos, accessed May 2010. 
2 BK also allow study cases where the AR(1) parameters differ across groups.  However, they assume a 
common AR(1) parameter in the work that we analyze here. 
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 They proceed by selecting various combinations of N and T (the TSCS data are 

always assumed to be balanced); and specifying the values of ρ  and ,ijσε , N1,2,...,ji, = , in 

NTΩ .  BK set 0 1β =β =10  in all experiments, and simulate the values of the independent 

variable Zit (more on this below), which is fixed in all experiments.  Given NTΩ , 

experimental observations are created in the usual manner.  The simulated errors are added to 

a deterministic component, 0 1 itβ +β  Z , i 1,2,...,N= , t 1,2,...,T= , to generate stochastic 

observations of ity , where it 0 1 it ity =β +β  Z +ε .  They perform 1000 replications for each 

experiment. 

Given observations on ity  and Zit, and for a given replication r, BK calculate the 

FGLS(Parks) and PCSE estimators for β̂  and ( )β̂arV  using the following formulae:  

(3) ˆ
PARKSβ = ( )′ ′

-1-1 -1XΩ X XΩ y , ( )ˆ
PARKSVar β = ( )′

-1-1XΩ X , 

(4)  ˆ
PCSEβ = ( ) yXXX

1 ~~~~ ′′
−

, ( )ˆ
PCSEVar β = ( ) ( ) ( )′ ′ ′% % % % % %-1 -1

X X X ΣX X X , 

where X~  and y~  are the Prais-transformed observations of the explanatory and dependent 

variables, and Ω  and Σ  are defined in Equation (2). 

BK compare the (i) Parks and (ii) PCSE estimates of 1β  using two performance 

measures.  The first performance measure quantifies the accuracy of the analytic formulae 
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used to estimate coefficient standard errors.  For each estimator (Parks and PCSE), BK 

calculate the following the “Overconfidence” measure:  

(5) 
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where β̂  is the mean of the 1000 estimates of β̂ .  A value of 100 indicates that actual 

dispersion in the coefficient estimate equals the dispersion predicted by the estimate of the 

coefficient’s standard error.  Values greater than 100 indicate that the analytic formula 

underestimates the actual dispersion in coefficient estimates; hence, the standard error 

estimate is “overconfident.” 

 The second performance measure, “Efficiency,” measures the efficiency of PCSE 

relative to Parks and is defined by 
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An “Efficiency” value less than 100 indicates that PCSE is less efficient than Parks. 

 
III.   Replication of BK’s Results 
 
Replication of BK’s TABLE 4.  TABLE 4 in BK (Beck and Katz, 1995, page 642) reports the 

results of Monte Carlo experiments that demonstrate the accuracy of the PCSE estimator in 

estimating coefficient standard errors.  They conduct experiments where (i) N=15, (ii) 

T=10,20,30,40; (iii) there is no serial correlation, (iv) “Heteroscedasticity” takes values 0 and 

0.3; and (v) “Contemporaneous Correlation” takes values 0, 0.25, and 0.50.  In turn, the 

“Heteroscedasticity” and “Contemporaneous Correlation” values imply specific values for 
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the cross-sectional covariances, ,ijσε , i=1,2,…,N,  j=1,2,…,N, i j≠ .3  Observations of the 

independent variable, Zit, are generated using the same distribution as the error terms.4   

 Column 4 of TABLE 1 reproduces BK’s findings from their paper.  Note that the 

PCSE estimator achieves “Overconfidence” values very close to 100.  Column 5 reports the 

results of our efforts to replicate BK’s findings.  We obtain virtually identical results.  

Column 6 reports “Coverage Rates.”  These are the percent of replications (out of 1000) 

where the respective 95% confidence intervals include the population value of 1β .  All of the 

coverage rates are close to 95.  These findings provide support for BK’s conclusion about the 

performance of their PCSE estimator:   

“Panel-corrected standard errors performed excellently in these 
experiments.  They were always within 10% of the true variability, 
even under conditions of extremely high heteroscedasticity and 
contemporaneous correlation of the errors.  In a typical research 
situation, we would expect PCSEs to be off by only a few percentage 
points” (page 641). 
 

 Replication of BK’s TABLE 5.  TABLE 5 in BK (Beck and Katz, 1995, page 642) 

reports the results of Monte Carlo experiments that demonstrate that the PCSE estimator 

generally performs as well as the Parks estimator on the grounds of efficiency, except when 

there is severe cross-sectional correlation.  In these experiments, (i) N=10,15,20, (ii) 

T=10,20,30,40; (iii) there is no serial correlation, and (iv) “Contemporaneous Correlation” 

takes values 0, 0.25, 0.50, and 0.75.5  Observations of the independent variable, Zit, are 

                                                 
3 Footnote 21 in BK discuss how they calculate “Heteroscedasticity.”  Our replication follows a very similar 
procedure and uses the same measure of “Heteroscedasticity.”  Once the groupwise variances are determined, 
the cross-sectional covariances are easily calculated from the given cross-sectional correlation value by 

( ),ij ,ii ,jjσ Cross-sectional correlation σ σε ε ε= × . 
4 BK state that the “errors were then generated so that the variances and covariances of the errors were 
proportional to the variances and covariances of the independent variables” (page 641).  We replicated their 
results using various proportionality factors and found that the results were invariant to the proportionality 
factor. 
5 BK do not explicitly state how they calculate the groupwise variances for their TABLE 5.  We used a group-
specific variance structure based on an actual TSCS dataset.  Further details are given below. 
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simulated from a standard normal distribution, assuming the individual Zit observations are 

independent of each other and the error terms. 

 The top panel of TABLE 2 reproduces BK’s findings from their paper.  Note that the 

PCSE estimator achieves “Efficiency” values greater than or equal to 100 when 

“Contemporaneous Correlation” is either 0 or 0.25.  When Contemporaneous Correlation 

equals 0.50, the PCSE estimator is slightly less efficient than the Parks estimator.  Only when 

Contemporaneous Correlation equals 0.75, a value unlikely to be encountered in actual 

practice according to BK (cf. page 642), is the PCSE estimator substantially less efficient 

than the Parks estimator, and then only when T is twice N.   

 The bottom panel of TABLE 2 reports the results of our efforts to replicate BK.  Once 

again, we are able to replicate their results very closely.  On the basis of findings such as 

these, BK conclude:  

“[PCSE] is, as expected, more efficient than Parks when the errors are 
uncorrelated (spherical).  But even when the average correlation of 
the errors rises to .25, [PCSE] remains slightly more efficient than 
Parks.  Parks becomes more efficient than [PCSE] when average 
contemporaneous correlations rise to .50, but this advantage is 
noticeable only when the number of time points is at least double the 
number of units.  Even here, the efficiency advantage of Parks is 
under 20%.  Only when the average contemporaneous correlation of 
the errors rises to .75 is the advantage of Parks marked, and then only 
when T is twice N” (page 642).6 
 

 
IV.   Generalizing the Methodology to “Practical Research Situations” 

BK emphasize repeatedly that their Monte Carlo experiments attempt to replicate “practical 

research situations.”  While they do not define exactly what they mean by this, it no doubt 

includes setting values for the elements of NTΩ  that are judged to be representative of values 

researchers are likely to encounter using real TSCS data sets.   

  

                                                 
6 The original quote refers to OLS rather than PCSE.  This is because PCSE can be thought of as applying OLS 
to the Prais-transformed variables (cf. Equation 4). 
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 Rather than guessing at the values of ρ  and ,ijσε , N1,2,...,ji, =  that researchers are 

likely to encounter in “practical research situations,” our study uses values estimated from 

real TSCS data sets.  TABLE 3 identifies the twelve TSCS data sets used for our analyses.  

These represent a diverse number of empirical applications, from the relationship between 

taxes and the size of the government sector in studies of economic growth of both states and 

countries, to the relationship between the size of the trading partners and the amount of 

bilateral trade they undertake, to the effect of disasters on the economic growth of countries, 

to the determinants of revenues and number of patients for Taiwanese dentists.   

 To obtain representative values for NTΩ , we regress the respective dependent variable 

on the corresponding independent variables listed in the table.  In all cases, we include group 

fixed effects in the estimation of the residuals.  In some cases we also include time fixed 

effects, which should diminish the size of the cross-sectional covariances (Roodman, 2006).  

The associated residuals are used to estimate the elements of NTΩ , as would be done in 

conventional FGLS(Parks) estimation.  These estimates are then used as the population 

values for the subsequent Monte Carlo analyses.  Further details are given in the Appendix. 

 Using realistic values for the elements of NTΩ  is important if one is serious about 

conducting experiments that are designed to represent “practical research situations.”  With 

respect to the elements of NTΩ , the challenge in setting realistic values lies in the fact that 

there are ( )
⎥⎦
⎤

⎢⎣
⎡ +

+ 1
2

1NN  unique parameters in NTΩ .   For example, when 20N = , there are 

211 elements in NTΩ .  Each must be given a population value for the Monte Carlo 

experiments.  Unfortunately, theory offers little guidance as to which of these elements, or 

which relationships between elements, are most significant for the performance of the 

estimators in finite samples.   
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V.   Further Replication of BK’s TABLE 4 

BK’s TABLE 4 results demonstrated the accuracy of the PCSE estimator in estimating 

coefficient standard errors using a simulated explanatory variable and an error variance-

covariance structure with no serial correlation.  We continue to use the set of values for the 

elements of NTΩ  that they used, but we now use an explanatory variable that is characterized 

by a high degree of persistence (i.e., the correlation between Zt and Zt-1 is greater than 0.90).  

We then show the consequences of increasing serial correlation in the errors. 

 TABLE 4 reports the results of these additional experiments, where we focus on 

coverage rates for expository convenience.  The numbers in the table represent averages 

across the experiments using the twelve data sets.  Column 4 maintains the assumption of no 

serial correlation in the errors.  A comparison with Column 6 of TABLE 1 shows that there is 

only a small effect of using an explanatory variable with a large degree of persistence when 

there is no serial correlation in the errors.  However, as serial correlation in the errors 

increases (Columns 5 through 7), coverage rates decrease.  The effect is exacerbated by T.  

When T is small (T=10) and serial correlation in the errors is severe (ρ=0.9), coverage rates 

fall to approximately 70 percent.   

 The preceding analysis employs the greatly simplified error structure used by BK.  

The next set of experiments investigates the effects of using error structures that are 

representative of actual TSCS data sets.  For example, rather than imposing a constant cross-

sectional correlation value for all pairs of groups, we allow the data to suggest plausible 

ranges of values.  Following BK, we continue to focus on the N=15 case. 

 For each value of T, we have twelve data sets (except when T=40, because one of our 

data sets is less than 40 years long).  Each of these data sets has its own unique error 

structure.  We take representative values for these and use them as population values in the 

corresponding Monte Carlo experiments.   
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 TABLE 5 summarizes the results of these experiments by T and ρ.  The numbers in 

the table represent the average coverage rate for the experiments for a given T/ ρ cell.  For 

example, there were seven experiments where T=10 and the original TSCS data set was 

characterized by a ρ value less than 0.2.  The average coverage rate for these experiments was 

91.6 percent.  Not all cells had entries.  For example, none of the T=10 experiments had a 

value for ρ greater than 0.6.  We see the same patterns here that we observed in TABLE 4 

above.  Coverage rates are generally decreasing in serial correlation, and inversely related to 

T.  Results for individual TSCS data sets are reported in Appendix A. 

 We conclude from these experiments that the PCSE estimator has difficulty 

estimating coefficient standard errors when there is substantial persistence in the explanatory 

variable(s) and the errors are serially correlated.  Using parameters drawn from real TSCS 

data sets, we find coverage rates close to 85 percent for moderate values of serial correlation 

in the errors (0.2 < ρ < 0.6) when T=10, and for more severe serial correlation (ρ > 0.6) 

when T=20.  While these coverage rates are considerably better than those produced by 

FGLS(Parks), they fall short of the performance suggested by the experiments reported in 

BK. 

 
VI.   Further Replication of BK’s TABLE 5 

The next set of experiments investigate the efficiency of the PCSE estimator relative to 

FGLS(Parks).  As in the immediately preceding set of experiments, we again use error 

structures derived from “real” TSCS data sets.  The results of these experiments are reported 

in TABLE 6. 

 As in TABLE 5, the numbers in the table represent averages over the respective 

experiments.  For example, for N=10, T=10, there are a total of 10 experiments where the 

absolute value of the average cross-sectional correlation, ρij,  is between 0 and 0.25.  For 

these experiments, the average efficiency of PCSE relative to FGLS(Parks) is 0.97.  In other 
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words, there is little efficiency loss to using PCSE versus FGLS(Parks).  Note that some of 

the cells are empty, as no experiments fit the respective cell characteristics. 

 The major difference between these replications and those from TABLE 2 is that 

there are now substantial efficiency losses even when the cross-sectional correlations are 

substantially less than 0.75.  For example, when N=10, T=20, and the average of the absolute 

value of the cross-sectional correlations lies between 0.25 and 0.50, the PCSE estimator is 

approximately 40 percent less efficient than FGLS(Parks).  As T increases, the relative 

efficiency of the PCSE estimator diminishes further.  Results for individual TSCS data sets 

are reported in Appendix B. 

 As indicated by the number of experiments represented in each cell, there are many 

“practical research situations” where the PCSE estimator performs substantially worse than 

the Parks estimator on the dimension of efficiency.  While there are situations where the 

PCSE estimator can buy better estimation of coefficient standard errors at virtually no cost to 

efficiency – namely, when T is the same or very close to N – this result should not be 

generally expected.  More generally, the researcher should expect a tradeoff between reliable 

coverage rates and efficiency.     

 
VII.  Conclusion 
 
In their well-cited paper, Beck and Katz (1995) (henceforth BK) demonstrate that 

FGLS(Parks) greatly underestimates coefficient standard errors when applied to TSCS data in 

finite samples with complex error structures.  They develop an alternative estimator, the 

PCSE estimator, that they claim provides accurate standard error estimation with no loss in 

efficiency relative to FGLS(Parks), except in extreme cases that are unlikely to be 

encountered in practice.  In their words,  

“Monte Carlo evidence shows that panel-corrected standard errors 
perform extremely well, even in the presence of complicated panel 
error structures.  The Monte Carlo evidence also shows that [PCSE] 



11 
 

parameter estimates are themselves, at worst, not much inferior to the 
Parks parameter estimates.  Thus the costs of the inaccurate Parks 
standard errors are in no sense paid for by the superiority of the Parks 
estimator of the model parameters” (page 635). 
 

This study investigates these claims using a Monte Carlo framework identical to the one 

employed by BK. 

 We are able to reproduce BK’s results when we use the same experimental parameters 

that they employ.  However, when we use parameters that more closely resemble “practical 

research situations,” we find that the PCSE estimator falls short of the claims made by BK.  

Specifically, when the explanatory variable(s) is characterized by substantial persistence, our 

experiments produce coverage rates of 85 percent (for 95 percent confidence intervals) in the 

presence of moderate serial correlation in the errors (0.2 < ρ < 0.6) when T=10; and for more 

severe serial correlation (ρ > 0.6) when T=20.  While these coverage rates are substantially 

better than those produced by FGLS(Parks), researchers should be aware that the PCSE 

estimator will tend to underestimate standard errors, and over-reject hypotheses, when used in 

these situations. 

 In addition, we find many “practical research situations” where the PCSE estimator is 

substantially less efficient than FGLS(Parks).  For example, when N=10, T=20, and the 

average of the absolute value of the cross-sectional correlations lies between 0.25 and 0.50, 

the PCSE estimator is approximately 40 percent less efficient than FGLS(Parks).  As T 

increases, the relative efficiency of the PCSE estimator diminishes even further.  As our 

analysis of individual data sets show, cross-sectional correlations in this range are quite 

common. 

 In conclusion, we emphasize that our analysis should in no way be taken as an 

endorsement of FGLS(Parks) for estimating coefficient standard errors.  BK correctly 

demonstrate that FGLS(Parks) performs abysmally in many, if not most, “practical research 

situations.”  PCSE almost always provides improvement, often dramatic improvement, over 
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FGLS(Parks) when it comes to estimating standard errors.  It’s just that the PCSE estimator is 

not as accurate as claimed by BK.   

 Furthermore, the claim that PCSE provides a way of obtaining better performance on 

standard error estimation at no cost to efficiency is only generally true when the number of 

time periods is close to the number of groups (T is close to N).  When T > N, it is quite 

common to find “practical research situations” where the PCSE estimator entails a substantial 

loss in efficiency. 
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APPENDIX 
Description of Procedure For Simulating TSCS Data Resembling  

Those Encountered In “Practical Research Situations” 
 
Suppose we want to generate an artificial panel data set with N cross-sectional units and T 

time periods.  We want this data to “look like” the kind of data likely to be encountered in 

actual research.  We assume a DGP that consists of a linear model with a Parks-style (Parks, 

1967) error structure:  

(A1) 
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where  yi  and Zi  are 1T ×  vectors of observations on the dependent and independent 

variables for the ith group, N21i ,...,,= ;  β is a 2 1×  vector of coefficients; iε  is a 1T ×  

vector of error terms; and ε  ~ N(0, NTΩ ).   

 Let 
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it1tiit u+= −,ρεε .  We want to set values for the elements of NTΩ , ρ  and ,ijσε , 

N1,2,...,ji, = ,  that are representative of “real” TSCS data sets. 

The starting point is an actual TSCS data set consisting of a large number of 

individual units and a long time series.  For expositional purposes, let us assume that the data 

are balanced and that we have 40 years of observations stretching from 1960-1999.  We 
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select N units from this TSCS data set.  Next, we choose the T-year period, 1960 to (1960+T-

1).   

We then estimate a regression model that includes one or more independent 

variable(s) plus fixed effects.  A typical regression specification would look like the 

following: 

(A3) itit1N
j

it

N

1j
jit termerror  XDY ++= +

=
∑ αα , 

where i=1,2, … ,N; t=1960,1961,…,1960+T-1; and jD is a group dummy variable that takes 

the value 1 for group j.   The residuals from this estimated equation are used to estimate ρ  

and the ,ijσε s in the usual manner, as if one were computing a conventional FGLS estimator.  

Denote the associated estimates from this sample as ρ̂  and 

,11 ,12 ,

,21 ,22

, ,

ˆ ˆ ˆ
ˆ ˆ ˆˆ

ˆ ˆ ˆ

1N

,2N

ε,N1 N2 NN

ε ε ε

ε ε ε

ε ε

σ σ σ
σ σ σ

σ σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Σ

L

L

M M O M

L

.   

 We repeat this process for every possible, T-contiguous year sample contained within 

the 40 years of data from 1960-1999 [i.e., 1960-(1960+T-1), 1961-(1961+T-1), 1962-

(1962+T-1), …, (1999-T+1)-1999].  This produces a total of 40–T+1 estimates of ρ  and Σ , 

one for each T-contiguous year sample.  We then average these to obtain “grand means” ρ  

and Σ .  Our “representative” NTNT × error structure, NTΩ , is then constructed as follows: 

(A4) ΠΣΩ ⊗=NT ,  

where 

,11 ,12 ,

,21 ,22

, ,

1N

,2N

ε,N1 N2 NN

ε ε ε

ε ε ε

ε ε

σ σ σ
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σ σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
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L
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L

, and 

2 T 1

T 2

2 T 3

T 1 T 2 T 3

1 ρ ρ ρ
ρ 1 ρ ρ
ρ ρ 1 ρ

ρ ρ ρ 1

−

−

−

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Π

L

L

L

M M M O M

L

. 

This becomes the population error covariance matrix used for the associated Monte Carlo 

experiment.   
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 Note that every element of NTΩ  is based on error covariance matrices estimated from 

actual panel data.  In this sense, NTΩ  can be said to be “representative” of the kinds of error 

structures one might encounter in “practical research situations.”  

This same procedure can be modified in a straightforward manner to conduct Monte 

Carlo experiments for alternative N and T values from the same TSCS data set.  In turn, the 

same general procedure can be following using other TSCS data sets.  Further, alternative 

error structures can be constructed by including two-way fixed effects.  This has the twin 

advantages of reducing cross-sectional dependence and increasing R2.   
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TABLE 1 
Replication of TABLE 4 in Beck and Katz (1995) 

 
PARAMETER SETTINGS BK REPLICATION 

 
T 

 
Heteroscedasticity 

Contemporaneous 
Correlation 

 
Overconfidence 

 
Overconfidence 

 
Coverage Rate 

(1) (2) (3) (4) (5) (6) 
10 0 0 102 103 93.5 
10 0 0.25 105 106 91.1 
10 0.3 0 102 103 93 
10 0.3 0.25 105 105 91.3 
20 0 0 96 101 94.7 
20 0.3 0 96 99 94.2 
20 0.3 0.5 103 98 94.2 
30 0 0 101 100 94.7 
30 0 0.5 107 98 94.4 
30 0.3 0.5 106 99 94.2 
40 0 0 104 104 94.2 
40 0 0.5 105 102 94 
40 0.3 0 102 102 93.7 
40 0.3 0.5 104 101 93.7 
10 0 0 102 103 93.5 

 
 
NOTE:  “Overconfidence” is defined in Equation (5) in the text.  Column (4) reproduces BK’s results from their TABLE 4 (Beck and Katz, 
1995, page 642).  Column (6) reports the results of our efforts to replicate their findings.  “Coverage Rate” reports the percent of 95% confidence 
intervals (out of 1000 replications) that contained the true population parameter in the respective experiment. 
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TABLE 2  
Replication of TABLE 5 in Beck and Katz (1995) 

 

  CONTEMPORANEOUS CORRELATION 
OF THE ERRORS 

N T ρij =0 ρij =0.25 ρij =0.50 ρij =0.75 

BK’s Results:  

10 

10 102 100 99 97 
20 109 101 88 72 
30 112 105 90 68 
40 109 101 87 66 

      

15 

15 101 100 99 98 
20 108 102 93 84 
30 111 101 88 72 
40 111 100 83 64 

      

20 

20 102 101 100 99 
25 107 102 97 90 
30 107 100 91 80 
40 112 104 92 76 

Replication:  

10 

10 102 100 98 96 
20 107 98 85 71 
30 109 101 86 67 
40 107 99 85 65 

      

15 

15 101 100 99 98 
20 107 99 90 83 
30 107 101 89 74 
40 111 99 83 65 

      

20 

20 101 100 99 98 
25 105 100 93 88 
30 109 101 93 83 
40 112 99 84 70 

 
NOTE:  The top panel reproduces BK’s results from their TABLE 5 (Beck and Katz, 1995, 
page 642).  The bottom panel reports the results of our efforts to replicate their findings.   
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TABLE 3 
Description of Data Sets 

 

Data Set Dependent Variable Independent Variables Source 

1 Log of real GDP Ratio of government expenditures to GDP 
Country fixed effects Penn World Table 

2 Real GDP growth Ratio of government expenditures to GDP 
Country fixed effects Penn World Table 

3 Log of real state PCPI Tax Burden  
State fixed effects Reed (2008) 

4 Real state PCPI growth Tax Burden  
State fixed effects Reed (2008) 

5 Log of real GDP 
Ratio of government expenditures to GDP 
Country fixed effects 
Time fixed effects 

Penn World Table 

6 Real GDP growth 
Ratio of government expenditures to GDP  
Country fixed effects 
Time fixed effects 

Penn World Table 

7 Log of real, state PCPI 
Tax Burden  
State fixed effects 
Time fixed effects 

Reed (2008) 
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Data Set Dependent Variable Independent Variables Source 

8 Real state PCP growth 
Tax Burden  
State fixed effects 
Time fixed effects 

Reed (2008) 

9 Log of the value of real bilateral trade Log product of real GDP 
Trade pair fixed effects Rose (2004) 

10 GDP growth rate  Measure of disaster magnitude 
Country fixed effects Noy (2009) 

11 Expenditure on dental services per day 
Dentist-population ratio 
(Interpolated) Annual household income 
Dentist fixed effects 

Jones and Lee (2004) 

12 Number of dental visits per day 
Dentist-population ratio 
(Interpolated) Annual household income 
Dentist fixed effects 

Jones and Lee (2004) 
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TABLE 4 
Replication of BK’s TABLE 4 with Serially Correlated Independent Variable and Errors 

 
EXPERIMENTAL PARAMETERS SERIAL CORRELATION OF ERRORS  

 
T 

 
Heteroscedasticity 

Contemporaneous 
Correlation ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9 

 
Mean 

(1) (2) (3) (4) (5) (6) (7)  
10 0 0 90.9 89.3 85.1 71.4 84.2 
10 0 0.25 91.1 89.0 84.0 69.9 83.5 
10 0.3 0 91.0 89.3 85.5 72.1 84.5 
10 0.3 0.25 90.7 88.8 84.1 70.7 83.6 
20 0 0 93.5 92.4 90.1 80.2 89.1 
20 0.3 0 93.5 92.6 90.7 81.2 89.5 
20 0.3 0.5 92.9 91.4 88.3 78.0 87.7 
30 0 0 93.3 92.7 91.3 85.2 90.6 
30 0 0.5 93.4 93.0 91.2 84.3 90.5 
30 0.3 0.5 93.1 92.6 91.0 84.8 90.4 
40 0 0 94.1 93.9 93.1 90.6 92.9 
40 0 0.5 94.2 93.6 91.7 88.6 92.0 
40 0.3 0 94.4 94.2 93.2 90.7 93.1 
40 0.3 0.5 94.4 93.4 91.9 89.0 92.2 

  Mean 92.9 91.9 89.4 81.2 88.8 

 
NOTE: The primary difference between the experiments underlying this table and those underlying TABLE 1 above is that both the independent 
variable and the error term are allowed to have serial correlation.  Details are provided in the text. 
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TABLE 5 
Replication of BK’s TABLE 4 with a Serially Correlated Independent Variable  

and Error Structures from “Real” TSCS Data Sets 
 

 

T 
SERIAL CORRELATION OF ERRORS 

0 < ρ < 0.2 0.2 < ρ < 0.6 0.6 < ρ 

10 91.6 
(7) 

84.7 
(5) n.a. 

20 92.7 
(6) 

93.0 
(1) 

85.8 
(5) 

30 94.0 
(4) 

93.4 
(3) 

87.5 
(5) 

40 94.3 
(3) 

93.2 
(3) 

92.2 
(5) 

 
 
NOTE:  The top number in each cell is the average coverage rate for the experiments 
satisfying the respective parameters (T,ρ) for that cell.  The value in parentheses reports the 
number of real TSCS data sets (see TABLE 3) underlying the results for that cell.  As there 
are twelve TSCS data sets, there are twelve experiments for each T, except for T=40, because 
one of the data sets is less than 40 years in length.  The primary difference between the 
experiments underlying this table and those underlying TABLE 4 is that the error variance-
covariance matrix, including the serial correlation of the errors, is representative of those 
from real TSCS data sets.  Details are provided in the text. 
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TABLE 6 
Replication of BK’s TABLE 5 with  

Error Structures from “Real” TSCS Data Sets 
 

  CONTEMPORANEOUS CORRELATION 
OF THE ERRORS 

N T 0<ρij<0.25 0.25<ρij<0.50 0.50<ρij<0.75 ρij>0.75 

10 

10 n.a. 0.97 
(10) 

0.95 
(2) n.a 

20 1.00 
(3) 

0.61 
(7) 

0.59 
(1) 

0.53 
(1) 

30 0.72 
(6) 

0.51 
(4) 

0.53 
(1) 

0.53 
(1) 

40 
 

0.61 
(5) 

 

0.41 
(4) 

 

0.54 
(1) 

 

0.43 
(1) 

 

15 

15 1.01 
(2) 

0.96 
(8) 

0.97 
(2) n.a 

20 0.94 
(3) 

0.78 
(7) 

0.78 
(1) 

0.75 
(1) 

30 0.77 
(5) 

0.57 
(5) 

0.62 
(1) 

0.52 
(1) 

40 
 

0.62 
(5) 

 

0.47 
(4) 

 

0.54 
(1) 

 

0.45 
(1) 

 

20 

20 0.97 
(4) 

0.97 
(6) 

0.98 
(1) 

0.98 
(1) 

25 0.87 
(5) 

0.81 
(5) 

0.81 
(1) 

0.79 
(1) 

30 0.81 
(5) 

0.70 
(5) 

0.71 
(1) 

0.67 
(1) 

40 
 

0.67 
(5) 

 

0.57 
(4) 

 

0.59 
(1) 

 

0.52 
(1) 

 
 
NOTE:  The top number in each cell is the average “Efficiency” value for the experiments 
satisfying the respective parameters (T,ρ) for that cell.  The value in parentheses reports the 
number of real TSCS data sets (see TABLE 3) underlying the results for that cell.  As there 
are twelve TSCS data sets, there are twelve experiments for each row, except when T=40, 
because one of the data sets is less than 40 years in length.  The primary difference between 
the experiments underlying this table and those underlying TABLE 2 is that the error 
variance-covariance matrix, including the cross-sectional correlation of the errors, is 
representative of those from real TSCS data sets.  Details are provided in the text. 
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APPENDIX A 
Results Underlying TABLE 4 

 
Data 
Set T Hetero. CSCorr Rho Coverage Rate 

1 10 0.42 0.36 0.48 84.5 

2 10 0.54 0.30 -0.05 92.1 

3 10 0.26 0.61 0.38 81.9 

4 10 0.29 0.58 0.02 89.7 

5 10 0.53 0.34 0.48 86.5 

6 10 0.53 0.30 -0.06 91.2 

7 10 0.38 0.33 0.48 83.8 

8 10 0.39 0.32 -0.04 91.4 

9 10 0.37 0.32 0.39 86.6 

10 10 0.50 0.29 0.11 92.7 

11 10 0.36 0.28 -0.02 91.3 

12 10 0.40 0.28 -0.02 93.0 

1 20 0.40 0.34 0.71 85.0 

2 20 0.48 0.26 0.00 92.7 

3 20 0.20 0.78 0.62 81.4 

4 20 0.26 0.66 0.15 91.5 

5 20 0.51 0.30 0.73 85.2 

6 20 0.49 0.25 -0.02 93.4 

7 20 0.34 0.30 0.71 88.5 

8 20 0.35 0.29 0.02 94.1 

9 20 0.38 0.30 0.66 89.0 

10 20 0.48 0.23 0.23 93.0 

11 20 0.33 0.22 0.12 92.9 

12 20 0.35 0.22 0.11 91.8 

1 30 0.40 0.32 0.81 87.6 

2 30 0.49 0.22 0.03 94.0 

3 30 0.20 0.78 0.75 87.1 

4 30 0.26 0.65 0.19 93.2 
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Data 
Set T Hetero. CSCorr Rho Coverage Rate 

5 30 0.50 0.29 0.82 88.3 

6 30 0.48 0.22 0.01 95.1 

7 30 0.34 0.28 0.81 86.4 

8 30 0.34 0.25 0.04 93.7 

9 30 0.38 0.32 0.75 88.3 

10 30 0.46 0.21 0.23 94.7 

11 30 0.32 0.21 0.23 92.5 

12 30 0.31 0.21 0.21 92.9 

1 40 0.40 0.31 0.86 92.7 

2 40 0.50 0.20 0.02 94.6 

3 40 0.21 0.77 0.82 92.4 

4 40 0.25 0.63 0.21 94.0 

5 40 0.48 0.28 0.86 93.1 

6 40 0.49 0.21 -0.01 93.5 

7 40 0.35 0.26 0.86 95.2 

8 40 0.34 0.23 0.03 94.8 

9 40 0.36 0.30 0.80 87.7 

11 40 0.31 0.19 0.31 92.9 

12 40 0.28 0.19 0.27 92.8 
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APPENDIX B 
Results Underlying TABLE 5 

 
Data 
Set N T Hetero. CSCorr Rho RelEff 

1 10 10 0.37 0.39 0.47 0.94 
2 10 10 0.50 0.30 -0.03 0.95 
3 10 10 0.27 0.62 0.38 0.98 
4 10 10 0.29 0.57 0.08 0.97 
5 10 10 0.51 0.37 0.49 0.94 
6 10 10 0.49 0.31 -0.04 0.92 
7 10 10 0.34 0.34 0.50 0.94 
8 10 10 0.34 0.31 0.09 0.94 
9 10 10 0.37 0.31 0.34 0.99 
10 10 10 0.46 0.28 0.11 0.99 
11 10 10 0.33 0.28 -0.04 1.01 
12 10 10 0.42 0.28 -0.05 1.01 
1 10 20 0.36 0.37 0.71 0.76 
2 10 20 0.47 0.26 0.03 0.78 
3 10 20 0.19 0.79 0.62 0.74 
4 10 20 0.26 0.66 0.23 0.81 
5 10 20 0.50 0.35 0.75 0.58 
6 10 20 0.46 0.27 0.01 0.52 
7 10 20 0.34 0.30 0.73 0.59 
8 10 20 0.31 0.27 0.19 0.53 
9 10 20 0.40 0.30 0.62 0.80 
10 10 20 0.45 0.21 0.20 0.92 
11 10 20 0.29 0.23 0.08 1.05 
12 10 20 0.39 0.22 0.04 1.03 
1 10 30 0.36 0.36 0.80 0.66 
2 10 30 0.45 0.24 0.06 0.73 
3 10 30 0.20 0.80 0.74 0.52 
4 10 30 0.26 0.65 0.27 0.57 
5 10 30 0.49 0.34 0.83 0.42 
6 10 30 0.45 0.25 0.04 0.36 
7 10 30 0.34 0.28 0.82 0.44 
8 10 30 0.31 0.24 0.22 0.38 
9 10 30 0.40 0.31 0.72 0.69 
10 10 30 0.45 0.20 0.15 0.97 
11 10 30 0.28 0.20 0.16 0.98 
12 10 30 0.34 0.20 0.11 0.95 
1 10 40 0.36 0.36 0.86 0.59 
2 10 40 0.46 0.22 0.06 0.68 
3 10 40 0.21 0.77 0.82 0.43 
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Data 
Set N T Hetero. CSCorr Rho RelEff 

4 10 40 0.25 0.61 0.29 0.49 
5 10 40 0.48 0.32 0.88 0.30 
6 10 40 0.44 0.24 0.05 0.28 
7 10 40 0.34 0.27 0.86 0.28 
8 10 40 0.30 0.22 0.16 0.28 
9 10 40 0.39 0.30 0.78 0.64 
11 10 40 0.26 0.20 0.24 0.96 
12 10 40 0.29 0.20 0.20 0.92 
1 15 15 0.41 0.35 0.62 0.97 
2 15 15 0.50 0.27 -0.01 0.95 
3 15 15 0.22 0.70 0.53 0.97 
4 15 15 0.26 0.65 0.10 0.97 
5 15 15 0.52 0.31 0.64 0.96 
6 15 15 0.50 0.27 -0.03 0.95 
7 15 15 0.35 0.31 0.62 0.96 
8 15 15 0.35 0.30 0.00 0.95 
9 15 15 0.38 0.31 0.56 0.96 
10 15 15 0.50 0.25 0.19 0.96 
11 15 15 0.33 0.24 0.06 0.98 
12 15 15 0.37 0.24 0.06 1.03 
1 15 20 0.40 0.34 0.71 0.87 
2 15 20 0.48 0.26 0.00 0.82 
3 15 20 0.20 0.78 0.62 0.87 
4 15 20 0.26 0.66 0.15 0.94 
5 15 20 0.51 0.30 0.73 0.78 
6 15 20 0.49 0.25 -0.02 0.74 
7 15 20 0.34 0.30 0.71 0.78 
8 15 20 0.35 0.29 0.02 0.75 
9 15 20 0.38 0.30 0.66 0.84 
10 15 20 0.48 0.23 0.23 0.86 
11 15 20 0.33 0.22 0.12 0.94 
12 15 20 0.35 0.22 0.11 1.01 
1 15 30 0.40 0.32 0.81 0.74 
2 15 30 0.49 0.22 0.03 0.67 
3 15 30 0.20 0.78 0.75 0.61 
4 15 30 0.26 0.65 0.19 0.61 
5 15 30 0.50 0.29 0.82 0.58 
6 15 30 0.48 0.22 0.01 0.52 
7 15 30 0.34 0.28 0.81 0.57 
8 15 30 0.34 0.25 0.04 0.53 
9 15 30 0.38 0.32 0.75 0.67 
10 15 30 0.46 0.21 0.23 0.86 
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Data 
Set N T Hetero. CSCorr Rho RelEff 

11 15 30 0.32 0.21 0.23 0.86 
12 15 30 0.31 0.21 0.21 0.96 
1 15 40 0.40 0.31 0.86 0.64 
2 15 40 0.50 0.20 0.02 0.57 
3 15 40 0.21 0.77 0.82 0.46 
4 15 40 0.25 0.63 0.21 0.49 
5 15 40 0.48 0.28 0.86 0.43 
6 15 40 0.49 0.21 -0.01 0.39 
7 15 40 0.35 0.26 0.86 0.41 
8 15 40 0.34 0.23 0.03 0.40 
9 15 40 0.36 0.30 0.80 0.61 
11 15 40 0.31 0.19 0.31 0.83 
12 15 40 0.28 0.19 0.27 0.92 
1 20 20 0.43 0.35 0.72 0.97 
2 20 20 0.55 0.25 0.04 0.96 
3 20 20 0.20 0.77 0.63 0.91 
4 20 20 0.26 0.65 0.19 0.96 
5 20 20 0.62 0.30 0.72 0.97 
6 20 20 0.53 0.25 0.02 0.96 
7 20 20 0.36 0.32 0.71 0.97 
8 20 20 0.38 0.29 0.12 0.97 
9 20 20 0.37 0.31 0.68 0.97 
10 20 20 0.50 0.24 0.15 0.97 
11 20 20 0.36 0.23 0.10 0.96 
12 20 20 0.36 0.23 0.10 0.98 
1 20 25 0.44 0.35 0.78 0.87 
2 20 25 0.56 0.24 0.05 0.81 
3 20 25 0.19 0.79 0.70 0.80 
4 20 25 0.26 0.65 0.21 0.79 
5 20 25 0.62 0.28 0.78 0.82 
6 20 25 0.54 0.23 0.02 0.79 
7 20 25 0.36 0.31 0.77 0.83 
8 20 25 0.37 0.28 0.14 0.79 
9 20 25 0.37 0.31 0.74 0.86 
10 20 25 0.49 0.22 0.17 0.87 
11 20 25 0.36 0.22 0.16 0.90 
12 20 25 0.35 0.22 0.15 0.95 
1 20 30 0.43 0.34 0.81 0.80 
2 20 30 0.56 0.22 0.06 0.73 
3 20 30 0.20 0.78 0.75 0.73 
4 20 30 0.25 0.64 0.23 0.68 
5 20 30 0.60 0.28 0.81 0.71 
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Data 
Set N T Hetero. CSCorr Rho RelEff 

6 20 30 0.53 0.22 0.03 0.67 
7 20 30 0.36 0.30 0.81 0.71 
8 20 30 0.37 0.27 0.15 0.68 
9 20 30 0.36 0.31 0.78 0.78 
10 20 30 0.48 0.21 0.17 0.82 
11 20 30 0.36 0.21 0.20 0.87 
12 20 30 0.34 0.21 0.20 0.93 
1 20 40 0.44 0.33 0.86 0.66 
2 20 40 0.54 0.20 0.05 0.67 
3 20 40 0.21 0.78 0.82 0.56 
4 20 40 0.25 0.62 0.25 0.55 
5 20 40 0.58 0.27 0.87 0.55 
6 20 40 0.52 0.20 0.03 0.51 
7 20 40 0.36 0.27 0.86 0.52 
8 20 40 0.36 0.24 0.12 0.51 
9 20 40 0.35 0.30 0.83 0.71 
11 20 40 0.35 0.20 0.28 0.83 
12 20 40 0.32 0.20 0.27 0.85 

 

 


