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Abstract 

This paper is part of a wider research programme using a dynamic-programming 
approach to modelling the choices about the amount of risk to take by batting and 
bowling teams in One Day International cricket. An important confounding variable in 
this analysis is the ground conditions (size of ground, nature of pitch and weather 
conditions) that affect how many runs can be scored for a given amount of risk. This 
variable does not exist in our historical data set and would regardless be very difficult to 
accurately observe on the day of a match. 

 
In this paper, we consider a way of estimating a distribution for the ground conditions 
using only the information contained in the first-innings score and the result of the 
match. The approach uses this information to estimate the importance of ground 
conditions in the determination of first innings total scores. We assume a functional form 
for a model of first innings scores and we estimate the parameters of our model using 
Monte Carlo methods. We test the impact of a significant rule change and we apply our 
findings to selected matches before and after the new rules came into play. 

 

_________________________ 
 
*This paper was prepared especially for the New Zealand Association of Economists 
(NZAE) Conference. 
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1 The influence of ground conditions 
The ground conditions present on the day of a match play an important role in the 

sport of cricket, but they are certainly not easy to measure. In this paper, we develop a 

method of inferring the contribution of the variability of ground conditions to the total 

variability of the score. We use this information to construct conditional distributions 

for ground conditions based on the outcomes of matches. We are able to extract a 

measure of ground conditions where no direct measure is available in our data set. We 

assume that the reader has a basic understanding of the structure of a game of One 

Day International (ODI) cricket; should this not be the case we recommend the 

reading of Appendix 1 before continuing. 

The outcomes that take place on a sports field are related closely to the 

performance and ability of the players or athletes taking part in the sport; however, 

these are not the sole determinants. The sporting world contains many examples 

where factors unrelated to player and team ability have an impact on the type of game 

played and the result. The main factors of this type relate usually to weather 

conditions either prior to or during the time of competition, as well as the 

characteristics of the venue. The impact varies significantly from sport to sport. In 

sports mostly played indoors, such as basketball, the impact of weather conditions 

should be close to zero but “stadium” factors such as the quality of the lighting may 

have an impact. In rugby union, wet and muddy conditions often lead to a more 

conservative game, involving less lateral movement of the ball and lower scores. In 

sprinting, athletes are able to run faster with the wind, but the administrators of the 

sport decide that world record times will not be counted if there is deemed to be too 

much wind assistance. In the extreme, a sporting event may not even take place 
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because of weather conditions; for example, the postponement of sailing events due to 

insufficient wind. 

 

1.1 Factors contributing to the outcome of a game of ODI cricket 

We outline five main factors that influence the first innings score as well as the 

likelihood of each score being a winning one. These factors are: 

• The skill levels of the players on both teams; 

• Luck; 

• Ground size; 

• Pitch conditions; 

• Weather conditions. 

The skill measure includes the overall strength of the teams as well as the 

relative strengths of the players in bowling, fielding and batting. While a first innings 

score of 280 might produce a close contest between two strong batting teams, a score 

of 220 could produce an equally close contest between two strong bowling and 

fielding teams, given the same conditions.  

Luck plays a role in the outcome of a match; for example, poor umpiring 

decisions can have a marked influence, as can uncontrolled aerial shots that fall safely 

rather than going directly to the fielder.  

On a small ground, it is relatively easier for the batsmen to hit the ball out of 

the playing field for boundaries and for this reason scores tend to be higher on small 

grounds than on large grounds.  

Pitches are extremely variable in their nature. The moisture content, the type 

of soil used, the hardness, the amount of grass and any cracking present on the pitch 

all have an impact on how the ball behaves when it bounces on the pitch. Any 
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movement or change of direction of the ball after hitting the pitch makes batting more 

difficult, as does inconsistent bounce, extreme pace off the pitch and extreme lack of 

pace off the pitch. Pitches are very individual; therefore, it is not appropriate to 

assume that all pitches at a particular ground will behave in the same way. 

A fascinating aspect of the game of cricket is the tendency of the ball to 

“swing”, or change direction, in the air after it has been bowled. This swing, if 

present, makes batting significantly more difficult and is likely to lead to lower scores. 

On a cloudy or humid day the ball generally swings significantly more than on sunny 

dry days. For this reason the weather is our final factor influencing the outcome of the 

game. 

Our analysis of the game of cricket is limited if we ignore the variability of 

ground conditions. We explain this by way of example. One of the models in our 

research programme predicts the average additional runs scored from any possible 

point in the first innings. If we do not include a variable for ground conditions in our 

model, we are effectively assuming that all ground conditions are the same. It seems 

intuitive that this would be a model for what would happen in average ground 

conditions, but on closer inspection this is not the case. Consider a team that makes a 

very poor start to a match, perhaps two batsmen are out on the first two balls of a 

match. Given this start, it is more likely than not that this match is being played in 

worse than average ground conditions, from the point of view of the batting team. 

This likelihood, implicitly built into the model, means that the predicted average 

additional runs for this situation will incorporate the fact that we have a higher 

probability of being in poor batting conditions than good batting conditions. If we are, 

in fact, on an average pitch and the poor start was due to bad batting, good bowling or 

simply luck then our model is going to underestimate the expected number of future 
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runs. The opposite holds for situations where the batting team makes a very good 

start. Including a ground conditions variable in our model has two effects; improving 

the accuracy of the model for average ground conditions and identifying the 

sensitivity of the model in various situations to different ground conditions. 

Directly observing a ground conditions variable is extremely difficult. While 

the size of a ground is generally constant, weather conditions and the nature of the 

pitch are certainly not. Some grounds are more likely to have certain weather and 

pitch conditions than others, but there is significant variation due to the time of year 

and beyond this a large random component. Measuring the pitch conditions would be 

difficult and measuring the effect of the weather conditions would be almost 

impossible, as there are such a variety of factors that can make a ball swing. There 

may be, to the naked eye, two identical days and the cricket ball may swing one day 

and not the next. A further issue is that our data set is historical and therefore 

determining the nature of the pitch, in particular, in games played several years ago is 

problematic. We decide that an indirect approach to estimating the ground conditions 

is required. In the remainder of this paper we present a possible approach. 

 

2 The theoretical model 

We create two variables by separating the factors influencing the outcome of a game 

into two groups. Those factors that are specific to the ground conditions on the day 

are ground size, pitch conditions and weather conditions. We combine these factors 

into a variable “Conditions”. The remaining factors, skill and luck, ought to be 

independent of the ground conditions on the day and we combine these factors into a 

new variable “Performance”. Note that we will consider performance to be a positive 

function of the batting team’s skill and luck and a negative function of the bowling 
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team’s skill and luck; therefore, an above average value for performance will imply a 

better performance by the batting team than the bowling team, but not a particular 

level of either batting or bowling performance. 

 

2.1 The assumed relationship  between the two factors 

Let S = ρ χ+ , where S is the first innings score, ρ  is a measure of “Performance” 

and χ  is a measure of “Conditions”. We assume an additive relationship between our 

two right-hand-side variables since we do not expect the deviations from the value of 

conditions of the total scores achieved to vary between different sets of conditions. 

We further assume that ρ  and χ  are independent and normally distributed 

variables having distributions ρ ~N(0, 2
ρσ ) and χ ~N( 2,χ χμ σ ), where  Sχμ μ= . This 

normality assumption is based upon an understanding of the game of cricket. The 

performance measure is a combined measure of batting team performance and 

fielding team performance. This means that the most extreme performances would 

require an extremely good performance from one team and an extremely poor 

performance from the other team. This would be less likely than an average total 

performance, which could be caused by almost unlimited combinations of good 

batting / bad bowling, or vice versa, completely cancelling each other out. This is true 

even if the separate batting and bowling performance distributions were uniform.  

Conditions have an element of repeated sampling from the same distribution, 

as there are some constant factors associated with playing multiple matches at 

repeated venues. These include soil type, ground size and predominant climate. This 

again means that extreme values of conditions are going to be less likely than the 

values in the middle, assuming that there is greater variability of conditions within a 

ground than between grounds. 
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Since the sum of two normally distributed independent random variables is 

normal, we are also implicitly assuming that the first innings scores have a normal 

distribution1. We note that assuming normality for performance and conditions raises 

the prospect of a negative total score; however, this is extremely unlikely over the 

range of the data. The log-normal distribution, while having the desirable property of 

being bounded at zero, does not fit the data well.  

We centre the conditions variable around the mean first innings score and the 

performance variable around zero in order to create the interpretation that a 

performance is a certain number of runs more or less than the conditions are worth. 

This approach, however, is simply a normalising assumption that we make without 

loss of generality.  

 

2.2 Calculating the conditional distributions for conditions 

Let ω  be a binary variable taking a value of one if the team batting first wins the 

match and zero otherwise. Using Bayes’ theorem, we can create conditional 

distributions for conditions, given the first innings score and the result of the game. 

Let f( χ ), g(S), k( ρ ) and h(S, ω )  denote the density functions of χ , , S ρ  

and the joint density function of S andω , respectively. Additionally, let Pr(ω ) be the 

probability of observing outcome ω . We define the conditional density function for 

conditions in match i as 

 

 ( ) ( | ) Pr(( | ) | )( | , )
( , )

i i i i
i i

i i

f g S S S Sf S S
h S S

iχ χ χ ω ω χ χχ ω ω
ω ω

= = = = =
= = =

= =
. (1) 

 

                                                 
1 We test this assumption in a later section. 
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We need to determine Pr(ω |S), ( )f χ and k( ρ ) before we can estimate 

equation (1). Estimating Pr(ω |S) is a simple probit model which we will define later 

in the paper. To determine (f )χ and k( ρ ) we will firstly need to determine the values 

of 2
ρσ  and 2

χσ . 

 

2.3 Inferring the values of 2
ρσ  and 2

χσ  

In order to show how we might go about estimating 2
ρσ  and 2

χσ , consider two 

hypothetical games. In hypothetical game one, we assume constant conditions 

( ). Team one draws a number from the performance distribution 2 0χσ = ρ  and team 

two then draws a number from the same distribution. The team drawing the higher 

value of ρ  wins and the first innings score S is equal to χ  + ρ . In this game, the 

probability of achieving a score in the first innings is exactly the same as the 

probability of successfully beating that score in the second innings. That is, the graph 

of the cumulative distribution of first-innings scores will be identical to the graph 

showing the probability that a team with a given score in the first innings will win the 

game. 

In hypothetical game two, we allow conditions to have a positive variance 

( ). This time nature draws a value fo2 0χσ f r χ  before the game begins and teams 

one and two subsequently draw values for ρ . As with hypothetical game one, the 

team drawing the higher value of ρ  wins and the first innings score S is equal to χ  + 

ρ . In this game, however, the presence of variability in conditions will affect both the 

observed distribution of S and the probability of each score being a winning one. If we 

only observe the distribution of first innings scores; that is, we do not observe any 

information about performance or conditions, the scores achieved contain information 

about the conditions. If we observe a relatively low first innings score, it is more 
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likely that this game was played under a relatively low draw from the conditions 

distribution. The opposite holds for a high first innings score. 

This conditions variance affects the second innings probability of winning 

function. Given that a low score is likely to have come from a low conditions draw, 

the probability of team one successfully defending the score is higher than the a priori 

probability of scoring that score in the first innings when nothing is known about the 

conditions. The probability of winning function is therefore flatter than the cumulative 

density of scores function where we have a non-zero variance of conditions. The 

higher is the variance of the conditions, the flatter is the probability of winning 

function, assuming a constant total variance of scores. We illustrate this in Figure 2.1. 

 

 Figure 2.1: First Innings Score and Probability of Winning 
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At this point, we need to define the second innings distribution as the function 

whose cumulative density function is identical to the probability of winning function. 
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Note that this is a very different concept to the distribution of the actual scores 

observed in the second innings, which we do not use in this paper other than in 

determining the value of iω for each game. It follows that we can infer the 

contributions of 2
χσ  and 2

ρσ  to 2
Sσ  by comparing the variances of the first and second 

innings distributions. We show this in Figure 2.2 where we plot combinations of 

conditions variance and second innings variance for a given value of the first innings 

score variance.  

 

Figure 2.2: Inferring the contribution of conditions variance for a given 2
Sσ  

 

 
 

 

A conditions variance of zero (see Point “A”) will lead to the second innings 

variance being equal to the first innings variance; this is the case in hypothetical game 

one, where the variation of performance explains the total variation of score. At the 

other extreme, a conditions variance tending to the first innings score variance (see 

Point “C”) will lead to the second innings variance tending to infinity. In this case, the 
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entire variation in score is due to the conditions and the level of performance is 

constant. If we know the value of the second innings variance then we can read the 

value of the implied conditions variance from the vertical axis of the graph (see Point 

“B”). 

 

2.4 Accounting for the second innings advantage 

We need to make an additional adjustment before we can begin to estimate the values 

for 2
χσ  and 2

ρσ . Hypothetical game two assumes that the two teams draw from a 

distribution of ρ  whose mean and variance are exogenous; that is, both teams are 

drawing from the same distribution so there is no advantage in the order of drawing. 

However, there is a second-mover advantage in ODI cricket. This is due to the team 

batting second having a known target score, resulting in them being able to adjust 

their risk strategy depending on the target. While the team batting first wishes to, in 

most situations, maximise their expected total score and therefore chooses the 

distribution of ρ  with the highest mean, the team batting second wishes to maximise 

the probability of scoring a higher total than the team batting first achieved. The 

binary nature of the outcome of the second innings ensures that a team chasing a high 

total optimises by drawing from a high variance distribution, while a team chasing a 

low total optimises by drawing from a low variance distribution. In both cases the 

optimal distribution from which the second mover draws ρ  would likely have a lower 

mean than the optimal distribution from which the first mover draws ρ . A team 

chasing 200 runs in conditions which are worth 250, for example, might optimise by 

drawing from a distribution with a mean of 240 and standard deviation of 10 runs, 

rather than the optimal first innings distribution which might have a mean of 250 and 

standard deviation of 30 runs.  
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We assume that the second innings advantage is the difference between the 

means of the first and second innings distributions and that it is a constant number of 

runs regardless of the first innings score. We will incorporate this second innings 

advantage into our Pr(ω ) functions in our conditional probability formula for 

conditions given score and result. 

 

3 The Data 

 

3.1 Sources and timeframe 

The data used in the majority of analyses in our wider research programme is a set of 

311 matches over the period 20 July 2001 to 25 January 2008. It consists of ball-by-

ball information collected by New Zealand Cricket. The research described in this 

paper only requires three pieces of information; the date that the match was played, 

the first innings score and the result of the match. This information is publicly 

available on www.cricinfo.com. We therefore use the complete set of matches played 

by the top eight ranked cricket countries2 over the period 9 January 2001 to 4 July 

2008, totalling 591 matches. Our ball-by-ball data set is a subset of this data set. The 

wider data set gives us greater estimation power without venturing too far from the 

date range of our ball-by-ball data. Using this data set also eliminates a selection bias 

towards matches played by New Zealand. 

 
                                                 
2 Rankings are calculated using a system that allocates points for each win and loss. The number of 
points is adjusted for the strength of the opposition and the average points per match played determines 
the team ranking.. The top eight ranked ODI teams as at 17 February, 2009 are, in order: South Africa, 
Australia, India, New Zealand, Pakistan, England, Sri Lanka and West Indies. While the ordering 
within this top eight often changes, the countries making up the top eight do not. The range in points 
between the top team (South Africa) and the eighth team (West Indies) is 34 points, while the ninth-
placed team (Bangladesh) is 45 points short eighth place. Any team in the top eight would feel that they 
are a reasonable chance to beat anyone else; however, it is a major surprise when a top eight country 
loses to a country outside the top eight. For this reason we exclude matches involving non top eight 
countries for fear that they may distort the data. 
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3.2 A potential structural break 

A major rule change occurred in ODI cricket during the period of our data set. All 

matches played prior to 1 July, 2005 required that the fielding side could place no 

more than two fielders outside an approximate oval (know as the “circle”) drawn 30 

yards from either end of the pitch for the first 90 balls of each innings. This is a 

fielding restriction as compared to the five fielders allowed outside the circle for the 

remainder of the innings. In contrast, matches played between 1 July, 2005 and 30 

September, 2007 required the above restriction to be in place for the first 60 balls of 

an innings and for two additional periods of 30 balls, the timing of which were 

decided by the fielding captain. These 30-ball periods are known as “power plays”. A 

smaller rule change occurred on 1 October 2007, from when fielding sides were 

allowed three fielders, rather than two, outside the restricted area during the second 

power play3.  

The increased presence of fielders close to the batsman and the lack of fielders 

patrolling the boundary serve to increase both scoring rates and the risk of a batsman 

getting out. There are generally more runs available but it is more difficult to score 

these runs without hitting the ball over the top of the fielders, rather than along the 

ground, resulting in the batsman risking hitting a catch. Before we move forward with 

our analysis, we assume that the minor rule change allowing three fielders in the 

restricted area during the second power play has no significant effect. By far the more 

significant rule change is the extension of the fielding restrictions from 90 balls to 120 

balls in total. This enables us to divide our data set into two subsets, matches played 

without the power play rule (Era 1) and with the power play rule (Era 2). Era 1 

contains 344 matches while Era 2 contains 247 matches. 
                                                 
3 As from 1 October 2008, this rule has significantly changed again as now the batting side is 
responsible for electing the timing of one of the power plays and both power plays allow three fielders 
outside the circle. 
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3.3 Testing for the significance of a rule change 

We have, from our 591 matches, a distribution of first innings scores as well as the 

match result for each one of those 591 scores. We initially want to estimate the 

probability of winning for a given first innings score. For each era, we construct a 

probit model where we regress the outcome of the game on the score achieved by the 

team batting first. We exclude tied matches, as they are so rare that they cannot be 

accurately included in the estimation. We define the probability of winning given first 

innings score S function Pr(ω |S) as a simple probit model in equation (2). Let 

 

   
1
0

if theteambatting first wins the game
if theteam batting second wins the game

ω
⎧

= ⎨
⎩ ⎭

⎫
⎬

 Pr( 1| ) ( )iS S Sω α β= = =Φ +   (2) 

where is the cumulative distribution function of the standard normal distribution. It 

follows that  

Φ

ω =0|S = Si) = 1 - Pr(ω =1|S = Si). (3)  Pr(

In Era 1, 3.5168α =  and 0.0145β = , while in Era 2, 2.7168α =  and 

0.0104β = . These probit models reveal the probability of winning for the team 

batting first, given that they scored a particular total. We establish second innings 

distributions in terms of score by a Monte Carlo method. We sample 10000 random 

numbers ~ U(0, 1) as probabilities of winning. Each probability corresponds to a score 

in the probit model and we create a distribution for second innings score in each era. 

The probability of a particular score being a winning score is the percentile of this 

created “second innings distribution” at which the score occurs. 

We plot the cumulative distribution of first innings scores under both sets of 

rules in Figure 3.1. To the naked eye there does not seem to be a large difference 

between the two distributions. We also plot the cumulative distribution of the 
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probability of defending each score in Figure 3.2. Clearly, there is a difference 

between the probit models created for the games played under each set of rules. 
 

Figure 3.1: The first innings distributions 
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Figure 3.2: The second innings distributions 
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3.4  The Monte Carlo test procedure 

Table 3.1 shows the key summary statistics of the first and second innings 

distributions, both before and after the implementation of the power play rules.  
 

Table 3.1: Means and Variances of the distributions 

 N Mean 
1st Innings 

Variance 
1st Innings 

Mean 
2nd Innings 

Variance 
2nd Innings 

Before Power Play Rule 344 239.68 3144.03 242.52 4757.15 
With Power Play Rule 247 247.89 3300.87 261.08 9250.81 

Total 591 243.11 3220.50 249.54 6499.13 
 

Our first and second innings distributions have a different variance before and 

after the implementation of the power play rules. This makes standard t-tests of the 

difference between two samples inappropriate. We test for significant differences in 

the mean and variance of the pre power play and post power play distributions by 

conducting a Monte Carlo simulation. Our null hypothesis is that the 591 games all 

come from the same distribution; therefore, we randomly allocate the games to the 

two eras and compare the resulting means and variances with the actual means and 

variances in each era. Our Monte Carlo simulation design is included as Appendix 2. 

Since we assume normality for our first and second innings distributions, the 

mean of each distribution is identical to the median and therefore the mean of the 

second innings distribution has the interpretation of being the score resulting in a 50% 

chance of winning. The Monte Carlo simulation generates 10,000 observations from 

the distributions of the following eight sample statistics: 

 
• Mean score, first innings distribution, with 344 games. 

• Variance of score, first innings distribution, with 344 games. 

• Mean score, second innings distribution, with 344 games. 
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• Variance of score, second innings distribution, with 344 games. 

• Mean score, first innings distribution, with 247 games. 

• Variance of score, first innings distribution, with 247 games. 

• Mean score, second innings distribution, with 247 games. 

• Variance of score, second innings distribution, with 247 games. 

We now determine the percentiles of our simulated distributions at which the 

means and variances of our actual distributions occur. In table 3.2, we repeat the 

means and variances information from table 3.1, this time including the percentiles. 

 
 
Table 3.2: Percentiles of the simulated distributions for calculated parameters 

 N Mean 
1st Innings 

Variance 
1st Innings 

Mean 
2nd Innings 

Variance 
2nd Innings 

Before Power Play Rule 344 239.68 3144.03 242.52 4757.15 
Percentile  4.28% 31.47% 3.38% 3.79% 

With Power Play Rule 247 247.89 3300.87 261.08 9250.81 
Percentile  95.71% 64.05% 98.25% 93.74% 

 

The interpretation of the percentiles is straightforward. Using the first innings 

mean score as an example, the simulated distribution is telling us that we expect a 

mean first innings score of 239.68 or lower in only 4.28% of randomly selected 

samples of 344 games. Likewise, we would expect a mean first innings score of 

247.89 or lower in 95.71% of randomly selected samples of 247 games. 

At the 5% significance level, the results of our simulation study suggest that 

there is a difference between the mean first innings scores as well as a difference in 

both the mean and variance of the second innings distributions of the matches played 

under the different sets of rules. The only parameter that we cannot conclude is 
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significantly different under the two sets of rules is the variance of the first innings 

scores.  

The variance of the second innings distribution is significantly different in Era 

2 to Era 1 while the variance of the first innings does not seem to be significantly 

different. This may be because conditions have genuinely become more variable in 

Era 2, or it may be because the rule change has led to conditions becoming more 

important in the second innings. A possible explanation is that, in good batting 

conditions, a team batting second is in a better position to take advantage of the extra 

fielding restrictions and is therefore able to chase higher totals successfully. Note that 

the opposite should not hold for teams chasing low scores. In this case, the fielding 

captain will want the batting team to engage in a high risk strategy, which he 

encourages by positioning more fielders closer to the batsmen who attempt to stop the 

easy, safe scoring opportunities for the batsmen. It is certainly possible that a poor 

batting pitch will allow the bowling team to create relatively more pressure with this 

strategy than a good batting pitch, therefore increasing the bowling team’s chances of 

winning. The rule, however, is a fielding restriction on how defensive the bowling 

side can be. There has never been a restriction on how attacking the bowling team can 

be so a possible conclusion is that if the Era 2 rules have made it easier for teams to 

defend low totals, then the rule change might simply be forcing sub-optimal bowling 

captains into the optimal strategy.  

The differences in the means can be attributed to the extra restriction on the 

bowling team making it easier for batting teams to achieve higher scores. There has 

been a large increase in the second innings advantage, which we suggest is due to 

batting teams having an additional ability to engage in a high risk strategy when the 

situation requires it. 
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Although we cannot conclude with any certainty that the first innings 

distributions have different variances between Era 1 and Era 2, we decide that the 

difference in means as well as the variances of the second innings distributions is 

sufficient for us to proceed by treating the two eras as separate data sets. 
 

3.5 Testing the distributions for normality 

For our method of determining the share of first innings score variance attributable to 

conditions variance, it is convenient to assume that the first innings scores follow a 

normal distribution. We test the data for this normality in this section. 

Our Era 2 data set of first innings scores fails to reject normality for both a 

Jarque-Bera (P-value=0.771) and a Kolmogorov-Smirnov test of normality (P-

value=0.150). However, both tests reject the null hypothesis of normality at the 0.05% 

significance level when we assess the Era 1 data.  

Figure 3.3 shows the cumulative distribution function of first innings scores 

for the Era 1 data as well as the cumulative normal distribution function with mean 

239.68 and variance 3144.03. Figure 3.4 is the same graph but this time comparing 

the Era 2 data with the cumulative normal distribution function with mean 247.89 and 

variance 3300.87. It is apparent that a normality assumption would be the best option 

available here and we proceed despite our imperfect normality. 
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Figure 3.3: Comparison of Era 1 scores with a normal distribution 
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Figure 3.4: Comparison of Era 2 scores with a normal distribution 
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4 Analysis of the data 
We split our data into games played before (Era 1) and after (Era 2) the 

implementation of the power play rules. We provide a reminder of table 3.1 as table 

4.1. Note that there is a difference between the first innings mean and the second 

innings mean of approximately three runs in Era 1 and approximately 13 runs in 

Era 2. Also, note that the second innings variance is significantly higher than the first 

innings variance, more markedly in Era 2. These differences will play a major rule in 

determining our measures of conditions and performance. 
 

 Table 4.1: Means and Variances of the distributions 

 N Mean 
1st Innings 

Variance 
1st Innings 

Mean 
2nd Innings 

Variance 
2nd Innings 

Before Power Play Rule 344 239.68 3144.03 242.52 4757.15 
With Power Play Rule 247 247.89 3300.87 261.08 9250.81 

Total 591 243.11 3220.50 249.54 6499.13 
 

Figures 4.1 and 4.2 show the differences between the first and second innings 

distributions. We have linearly adjusted the second innings distributions to remove the 

second innings advantage (three runs in Era 1 and 13 runs in Era 2). It is clear, 

particularly in Era 2, that the cumulative distribution functions cross over at 

approximately the 50% mark4. The implication of this crossover is that, after the 

removal of the second innings advantage, scores in the upper ranges of the 

distributions are easier to chase successfully than they are to score in the first innings. 

Conversely, scores in the lower ranges of the distributions are more difficult to chase 

successfully than they are to score. This is due to the second innings distribution 

having a greater variance.  
 

                                                 
4 The crossover point is higher in the distributions of games without the power play rules due to the 
minor amounts of non-normality present in the first innings distribution under these rules. 
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 Figure 4.1: Adjusted Era 1 cumulative distributions 
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Figure 4.2: Adjusted Era 2 cumulative distributions 
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4.1 The procedure for splitting the total first innings variance 

At this point, we change our notation slightly in order to incorporate the separate data 

sets from each era. 

 
1
2

ij

ij

ij

wherethe power play rules are not in place
Let j

wherethe power play rules arein place

Let bethe performancevariable for gamei in data set j

Let betheconditions variable for gamei in data set j

Let S bethe first innings sc

ρ

χ

⎧ ⎫
∈⎨ ⎬
⎩ ⎭

(0, )

( , )

ij j

ij j j

ij ij ij

ore for gamei in data set j

N

N

S

ρ

χ χ

ρ σ

χ μ σ

ρ χ= +

�

�

 

Next, we investigate combinations of jρσ  and jχσ  in order to find a 

combination that would result in a second innings distribution with similar variance to 

that obtained from the model of the actual data observed. We assume that jχ , the 

conditions factor, is constant throughout a game. This enables us to construct a 

distribution of first innings score  as a function only of performance jS jρ , where this 

new distribution represents the level of performance that is required on average to 

achieve each score. As this distribution assumes that conditions are unknown, this is 

exactly the situation that we are faced with when we estimate the second innings 

distribution. It follows that this distribution should approximate the second innings 

distribution; since we are assuming that the conditions are the same for both teams 

then if jρ  is higher in the second innings then the team batting second should win. 

    22



We set up a macro in SAS to split the first innings variance for each era into 

performance variance and conditions variance sixty5 different ways and run a Monte 

Carlo simulation to determine the most appropriate split for rule set j. Each iteration 

of the Monte Carlo simulates values for jχ  and jρ  and calculates the variance of the 

second innings distribution implied by these values. We then select the values of 2
ρσ  

and 2
χσ  that provide the closest second innings variance to that observed in our data 

set. The full Monte Carlo steps are described in Appendix 3. 

The 12th iteration of the Monte Carlo study using the first innings variance for 

games played in Era 1 provides the nearest second innings variance to the true Era 1 

second innings variance. This implies that 80% of the first innings variance can be 

attributed to performance and the remaining 20% attributed to conditions. In Era 2, 

the 29th iteration of the Monte Carlo provides the nearest second innings variance to 

the true value. Here, performance accounts for 51.67% of the first innings variance 

with conditions accounting for the remaining 48.33%. It is clear that conditions have 

become relatively more important in Era 2 than they were in Era 1. 

Table 4.2 outlines the variances of performance and conditions and their 

shares of the total first innings variance in each era, while Figure 4.3 displays a 

graphical representation of the performance and conditions distributions from each 

era. 
 

                                                 
5 This enables us to increase the variance of performance and decrease the variance  of conditions by 
about 50 each iteration. The complex nature of the simulation combined with the processing power and 
time available parameters of the experiment led us to select this value. Note that without vastly 
increasing estimation time, using a higher number of splits/iterations led to us being unable to select a 
single best iteration with confidence as resulting second innings variances were no longer ordinal in 
conditions variance. 
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Table 4.2: Splitting the first innings variance 

Era (j) var( )jS var( )j ρ  var( )jχ  var( )jρ share var( )jχ share
1 3144.03 2515.22 628.81 80.00% 20.00% 
2 3300.87 1705.45 1595.42 51.67% 48.33% 

 

 

Figure 4.3: Graphing the performance and conditions variables 
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4.3  Establishing the conditional distributions using Bayes’ Theorem 

We now have the distribution functions from which conditions and performance are 

drawn. We can use these functions and conditional probability rules to determine the 

distribution from which conditions are drawn for an individual game. We need to 

calculate the probability of obtaining each value for conditions, given the first innings 
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score and the result of the game. First we provide a reminder of our conditional 

density function for conditions, updated to take into account the two eras. 

 

 
( ) ( | )Pr(( | ) | )

( | , )
( , )

ij ij ij ij ij
ij ij

ij ij

f g S S S S
f S S

h S S
χ χ χ ω ω χ χ

χ ω ω
ω ω

= = = = =
= = =

= =
 (4) 

 ( )f χ  (5) 

and 

 ( |ij ijg S S )χ χ= =  = ( )ij ijk S χ−   (6) 

can be directly estimated from the conditions distribution and performance 

distribution respectively. ( ,ij ijh S S )ω ω= =  can be expanded as follows: 

 

 ( ,ij ijh S S )ω ω= = = ( ) Pr( | )ij ij ijg S S S Sω ω= = =   (7) 

 

and Pr( | )ij ijS Sω ω= =  can be directly estimated from the second innings probability 

of winning distribution. This leaves us with Pr(( | ) | )ij ij ijS Sω ω χ χ= = = still to 

estimate. Since S = ρ + χ , we can write 

 

 Pr(( | ) | ) Pr( | )ij ij ij ij ijS Sω ω χ χ ω ω ρ= = = = = = ρ . 

 

The second innings performance distribution is the same as the first innings 

performance distribution and there exists a second innings advantage of three runs in 

Era 1 and 13 runs in Era 2. We can then write 
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η η
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−

−∞
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∫
∫

 

Now we have estimated all the components of equation (4). We simply 

substitute in equations (2), (3), (4) and (5) to determine the probability of a certain 

value of conditions given the first innings score and the outcome of the game, two 

variables that are observable in the data set. 

 

4.4 Selected Results 

We plot selected examples of the conditional distributions of conditions given score 

and result in Figures 4.4 to 4.6. In our three examples, we show the effect of a 

different first innings score, a different game result and a different set of game rules. 
 

Figure 4.4: Conditional pitch distribution for j=1, ijω =1 
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Figure 4.5: Conditional pitch distribution for j=1, =250 S
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Figure 4.6: Conditional pitch distribution for ω =0, =250 S
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5 Assessing the fit of the conditional distributions to the data 

Theoretically, matches played in conditions with a particular value should result in an 

average first innings score of that value. We test the accuracy of our distributions by 

employing several Monte Carlo simulations. Initially we test our method by randomly 
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drawing one value from the distribution of jχ  and two values from the distribution of 

jρ . We add the first draw of jρ  to jχ  in order to determine a first innings score, Sj, 

which we round to the nearest integer. If the first draw of jρ  is greater than the 

second, this is a win to the team batting first, otherwise it is a loss. We obtain 10000 

scores and results by repeating these steps. We then can apply the appropriate 

conditional distribution for conditions to each game and we draw 5000 conditions 

values from this distribution, again rounding to the nearest integer. This gives us a 

generated data set with 50000000 observations of score and conditions and we can 

subsequently determine the average score achieved for each (rounded) value of 

conditions. We plot the results in Figure 5.1  and figure 5.2 below, showing the 2.5th 

and 97.5th percentiles of the overall conditions distributions to show the conditions 

that are most likely to be experienced. 
 

Figure 5.1: Average Score in generated data set, Era 1 
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Figure 5.2: Average Score in generated data set, Era 2 
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It is clearly apparent that the average first innings score in a given set of 

conditions closely approximates the value of those conditions. We have, to this point, 

simply tested whether our method works in theoretical games and we need to check 

whether we can apply it accurately to our actual data sets of matches. As before, we 

generate 5000 values for conditions from the conditional distribution for each match. 

There are four graphs showing the results; Figures 5.3 and 5.4 use the matches in our 

wider data set, while Figures 5.5 and 5.6 use the matches for which we have ball-by-

ball data. The latter set provides the most stringent test as the ball-by-ball data differs 

from the data that was used to create the conditional distributions, as it is a subset of 

this data. 
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Figure 5.3: Average Score in wider data set, Era 1 

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500

Conditions

Fi
rs

t I
nn

in
gs

 S
co

re

Average Score

95% points for
conditions

Conditions

 
 

 

Figure 5.4: Average Score in wider data set, Era 2 

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500

Conditions

Fi
rs

t I
nn

in
gs

 S
co

re

Average Score

95% points for
conditions

Conditions

 

    30



Figure 5.5: Average Score in ball-by-ball data set, Era 1 
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Figure 5.6: Average Score in ball-by-ball data set, Era 2 
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 It is clear that the conditional distributions for conditions are doing a good job of 

predicting the first innings total. The average score deviates significantly from the 

conditions value only in conditions that are unlikely to be experienced. The part of the 

Era 2 graphs where the average score is much higher than the conditions occurs due to 

the influence of one match between Australia and South Africa on 12 March 2006. In 

this match, Australia scored 434, the highest first innings score achieved against top 

eight opposition; remarkably, South Africa won this game to create a record for the 

highest score successfully achieved to win batting second. 
 

6 Conclusions 

By assuming a functional form for a model of first innings score, determining the 

contribution to the total score variance of each component in the model and applying 

Bayes’ Theorem, we have obtained information pertaining to a critical but 

unobservable variable. This information is in the form of a distribution that is 

conditional on the first innings score and the result of the game. In our wider research 

programme, we are able to randomly draw values from these conditional distributions 

in order to include conditions as a right-hand-side variable, greatly enhancing the 

predictive ability of our other models. 
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Appendix 1: The necessary basics of the game of cricket 
 

Cricket is a sport played between two teams of 11 players on a large, approximately 

circular field with a 22-yard-long strip of pressed clay, soil and grass known as a 

“pitch” in the centre. One team will initially be the bowlers and the other team will be 

the batsmen. All 11 members of the bowling team are on the field while only two 

members of the batting team are on the field at any one time. The basic idea of the 

game is relatively simple. A bowler bowls a ball from one end of the pitch by 

releasing it with a straight arm action in the direction of the batsman. The ball will 

usually bounce once before reaching the batsman. The two main goals of a batsman 

are to score “runs” and avoid getting “out”. A run is scored each time a batsman, 

having hit the ball with his bat, running to swap ends of the pitch with the other 

batsman. Alternatively, a batsman may score an automatic four or six runs by hitting 

the ball so far that it leaves the playing field. These automatic runs are known as 

“boundaries”, with four being scored if the ball bounces before leaving the playing 

field and six otherwise. If a batsman is “out” then his turn at batting is over and he 

must leave the field to be replaced by a team mate.  

The batting side may continue batting until ten of the 11 members of their side 

are out, then the two teams switch roles. A team’s turn at batting is called an innings 

and each team will have either one or two innings depending on the type of game. In 

general, the team that scores the highest number of runs wins the game. 

There are three main versions of the game. In test cricket, the traditional  form 

of the game, each team bats for two innings and a match lasts a maximum of five 

days, with the match being declared a draw if it is not finished in this time. One Day 

International (ODI) cricket allows each team to bat for one innings but with a limit of 

300 balls per innings. The innings finishes when ten batsmen are out or the 300 balls 
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are up. As the name suggests, this type of game is all over in a day, running for 

approximately eight hours. Twenty20 cricket is the newest form of the game and is 

similar to ODI cricket except that the limit is 120 balls per innings and the game takes 

approximately three hours. In this paper, we consider only ODI cricket. 
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Appendix 2: Monte Carlo study design for randomly allocating the matches in 
each era. 
 

1. Generate a random number for each of the 591 games. 

2. Rank the 591 games according to their random number. 

3. Assume that the 344 highest-ranked games were played before the 

power play rules came into effect, regardless of the actual date of the 

game. 

4. Assume that the remaining 247 games were played under the power 

play rules. 

5. Calculate the means and variances of the first innings totals in our two 

randomly split distributions and store these values. 

6. For each randomly split distribution, run a probit regression to 

determine the probability of winning function. 

7. Simulate from each probit regression by generating 10000 random 

numbers and determining the scores associated with each random 

number. 

8. Calculate the means and variances of the scores generated from each 

probit and store these values as the means and variances of the second 

innings distributions. 

9. Repeat 10 000 times steps 1 to 8. 
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Appendix 3: Monte Carlo study design for determining the shares of conditions 
and performance variance. 
 

1. For the first iteration, choose  and 2
ρσ  = 2

Sσ , 2
χσ = 0 

2. Generate 100 000 pairs of random numbers x and y to represent the 

percentiles of the performance distribution and the conditions distribution 

respectively. 1)  , (0,x y U�

3. Use the inverse normal distribution function to determine the values of 

jρ and jχ for each x and y. Note that jχ will equal jχμ in the first iteration 

as 2
χσ = 0. 

4. Add each pair of jρ  and jχ  to get the first innings score jS . 

5. Round these values of jS  to the nearest whole number. These 100 000 

rounded sums will give us the discrete distribution for jS , the first innings 

scores. 

6. Group the observations by value of jS  and calculate the mean value of 

x for each value of jS . Denote this number ( )j jx S  and store it for each 

jS . This tells us the mean percentile of the performance distribution that 

the teams have to be at to achieve a particular score. 

7. Sort the stored values of jS and ( )j jx S  in ascending order of ( )j jx S . For a 

large enough number of simulated pairs of x and y, jS should also appear 

in ascending order. 

8. Generate 100 000 more random numbers (0,1) . z U�

9. Compare each z to the stored values of ( )j jx S . For each z, store the value 

of jS with the highest value of ( )j jx S  less than z.  
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10. Calculate and store the variance of the distribution of jS created in step 9.  

11. Let 2
ρσ  = 2

ρσ  - 
2

60
Sσ , 2

χσ  and 2
χσ = 2

χσ +
2

60
Sσ . 

12. Repeat steps 2 to 11, for 60 iterations. 

13. Find the closest value of the stored variances obtained from each iteration 

of step 10 to the observed variance of the simulated second innings 

distribution. Store the associated values of 2
ρσ  and 2

χσ as the performance 

and conditions shares, respectively, of the total variance of the first innings 

distribution 2
Sσ . 
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