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Zha (2007) for SVAR models to invertible dynamic stochastic general equilibrium
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of shocks matters for the identification, the methodology can be a useful tool in
the development process of DSGE models, to help to discriminate among model
structures. I demonstrate the use of the methodology on a basic New Keynesian
business cycle model.

∗ I am indebted to Jaromír Beneš for many provocative and discerning discussions on this topic.
This paper was also greatly influenced by numerous conversations with Tao Zha. I also thank
the participants of the research seminars at RBNZ, 13th Australasian Macroeconomics Work-
shop in Sydney, and of the Phillips Symposium in Wellington in 2008 for their comments.
The views expressed in this paper are those of the author(s) and do not necessarily reflect those
of the Reserve Bank of New Zealand.
† Economics Department, 2 The Terrace, Wellington, New Zealand. E-mail: first-

name.lastname@rbnz.govt.nz.
ISSN 1177-7567 c©Reserve Bank of New Zealand



1

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 The identification problem . . . . . . . . . . . . . . . . . . . . . 4
3 Identification methodology . . . . . . . . . . . . . . . . . . . . . 6

3.1 Inverting a DSGE model . . . . . . . . . . . . . . . . . . 6
3.2 Impulse response identification . . . . . . . . . . . . . . . 7
3.3 Checking minimal system realisation . . . . . . . . . . . 10

4 An application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . 21
B Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . 22
C Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 22
D Solution to examples in Section 3 . . . . . . . . . . . . . . . . . 23
E Matrix pseudoinverse . . . . . . . . . . . . . . . . . . . . . . . . 27



1 Introduction

I advance the idea that the identifiability of impuls responses should be one of the
key criteria during the development phase of dynamic stochastic general equilib-
rium (DSGE) models in central banks, in particular if such models are intended to
be core models to produce central forecasts. In my view, only a limited attention
has been devoted to the problem of impulse response identification as a key to
unique story-telling forecast. In this paper, I show how an existing methodology
for structural vector autoregressions (SVAR) developed in Rubio-Ramirez, Wag-
goner, and Zha (2008) can be adopted for the identification of invertible DSGE
models.

There is a growing interest among central banks to employ (DSGE) models as
their central or secondary forecasting models. The success of their application
depends on models’ ability to credibly replicate and interpret key economic data.
In the central banks’ slang this is often referred to as producing story-telling fore-
casts, and draw inferences for the future. Some DSGE models are calibrated, but
the credibility of the story embeded in such a model structure is enhanced if it
is estimated. Consistent estimation depends, however, on the ability to uniquely
inform model parameters by the data (structural identification).

In this paper, I analyze the structural identification problem from the perspective
of structural shocks estimates, and model impulse responses. This takes us only a
half way towards full DSGE model identification, but it is sufficiently far to find
out if an estimated DSGE model has (i) a unique estimate of initial conditions (like
position in the business cycle), which are the result of the cummulative effect of all
past shocks the model economy faced, and (ii) unique impulse responses to cur-
rent structural shocks. This is very useful for practical purposes as (i) guarantees
consistent and unique interpretation of historical data, and (ii) guarantees unique
model forecasts. The SVAR identification methodology by Rubio-Ramirez et al.
(2009) provides a neccessary condition for global identification, which is elegant
and easy to apply to invertible DSGE models.

The methodology, I propose here, consists of 3 steps. After a log-linearisation,
the model is solved for rational expectations and represented in its state-space

2



form (the core model dynamics is captured by the system of state equations. The
states – model endogenous variables, are mapped to observable data series via the
system of measurement equations). The first step is to invert the state-space model
in to a structural VAR model. You will see that it is only possible the number of
observable variables is the same as the number of shocks. I call the inverted state-
space model as the semi-structural model here. The second step is the application
of SVAR identification theory by Rubio- Ramirez et al. (2009), which provides a
necessary condition for global identification. The third step is to check if the state-
space model is of a minimal realisation. I believe that it is desirable that a policy-
oriented model exhibits such a property. If a system is minimal it meanns that it
is both controllable and observable. Observability guarantees that all the model
endogenous (state) variables can be uniquely recovered from observed data. And
controllability guarantees that unique exogenous shocks can be recovered from the
state variables. If the state-space model is minimal, then if the model is estimated
we can identify unique initial conditions for the given set of observable data and
model. In the current DSGE literature, it seems that this property is omitted,
or does not play a central role. But minimal state-space system realisation is
important for policy oriented models and forecasting models, in particular, if one’s
aim is a coherent and unique structural story, and the provision of credible policy
recommendations.

In the rest of the paper I describe the methodology in details. The problem of
impulse response identification is discussed in the next section. In the third section
I propose how to apply the SVAR identification approach to DSGE models. As
a byproduct, I show how Rubio, Waggoner, and Zha’s (2007) approach can be
easily extended to models with more shocks than observable variables. In the
fourth section I demonstarte this paper’s methodology on an example of a simple
New Keynesian business cycle model.
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2 The identification problem

A typical DSGE model is non-linear and forward-looking expectations are its dis-
tinctive feature:

0 = Θ(Etxt+1,xt ,xt−1,ut). (1)

xt is (r×1) vector of model variables; ut is the (k×1) vector of structural shocks,
where k ≤ r. The shocks are uncorrelated iid N(0,σ2

ui
) for i = 1, ...,k. Θ is a non-

linear function relating the endogenous and exogenous variables using a set of
deep-structural parameters θ . θs captures microeconomic characteristics of the
economic agents in the model (like their time preferences, risk aversion, frequency
of price adjustment, retained earnings, tax rates or inflation target).

I shall work with the (log)linearised form of the DSGE model (1), and call it the
structural model:

B0xt = B1Etxt+1 +B2xt−1 +Fut , (2)

B0, B1, B2 ∈ Rr×r (r× r) and F ∈ Rr×k are full column rank matrices. The
elements of these matrices are functions of the deep-structural parameters θ .

For simplicity at this stage, I assume that all model variables are measurable.
Solving the structural model for the rational expectations (e.g., by the method of
undetermined coeficients), I obtain the semi-structural model:1

G0xt = G1xt−1 +ut .

The semi-structural form is the object of interest here. G0 ∈Rr×r defines the con-
temporaneous relations among the endogenous variables, and G1 ∈Rr×r captures
their dynamics. The elements of the Gs, which I denote as η , are functions of the
deep-structural parameters θ : η = η(θ). Note that the semi-structural model is
nothing else but a finite order SVAR model, where ηs determine the responses of
the model to exogenous shocks.

The central question of this paper is: Are the restrictions on G0 such that impulse
responses are identified? An impulse response is identified if ηs can be uniquely
estimated from available data.

1 I use the term “semi” because the model does not explicitly contain the forward-looking terms.
As the rational expectations are model consistent, they are still present implicitly.
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Definition 1. The impulse responses of (2) are globally identified if the set of
G0 and G1’s elements η ∈ R is not observationally equivalent with another set
η̃ ∈ R. The two sets are observationally equivalent if L(η) = L(η̃), where L(.) is
a likelihood function.

Definition 2. The impulse responses of (2) are locally identified if there exists
some neighborhoud B in which the set of G0 and G1’s elements η ∈ R is not
observationally equivalent to another set η̃ ∈ R∩B.

When we estimate a DSGE model, we estimate the deep structural parameters
θ , so why does it make sense to look at the identifiability of ηs rather than θs?
Fukač, Pagan, and Pavlov (2007) touch this question. Unique θs are key for pol-
icy experiments and welfare analysis, but if the model is used for forecasting,
ηs is the sufficient object of interest. Lets use the prisim of the Fisher informa-
tion matrix from Rothenberg (1971), where the general conditions for the global
identifiability are laid down. The Fisher information matrix for the set of deep

structural parameters θ , is given by the variance of the scores: E
[

∂L(θ)
∂θ

]2
. L(.) is

the likelihood function. By the chain rule the likelihood gradient can be decom-
posed as ∂L(θ)

∂θ
= ∂L(θ)

∂η

∂η

∂θ
. The information for θ will be the Fisher information

for η times the square of ∂η

∂θ
. If the latter is singular then the information matrix

for θ is singular, which indicates that some of the parameters in θ are not iden-
tified. That is what all standard identification checks would find. But note that
the singularity can appear even though that for η may not. Even though looking
at the identifiability of θs is natural, it is an unnecessarily strict (and also irele-
vant) prism for the purposes of impulse responses identification. Even though θ

lacks identification, the model can generate unique dynamics because η can be
identified.

The identification problem for the semi-structural model is in principle the same
as for a structural VAR model. The major difference is that the DSGE model
may contain latent variables, in which the problem of DSGE model invertibility
arises. It depends on the number of model variables (how many of them we can
statistically measure), and on the number of exogenous shocks. In the next section
we will see that the dimension of shocks is key.
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3 Identification methodology

The model (2) has the minimum state variable (MSV) solution of the form

G0xt = G1xt−1 +Qut , (3)

where G0 and G1 are (r× r) matrices, and Q is a (r×k), full column rank matrix.
G0 = B0−B1G−1

0 G1, G1 = B2, and Q = F .

For estimation the Kalman filter is used, and model (3) is put into a state-space
form. The MSV solution establishes the transition equation:

xt = Axt−1 +But . (4)

A = G−1
0 G1, and B = G−1

0 F . The map of the state (model endogenous) variables
to their observable counterparts establishes the measurement equation

yt = Cxt . (5)

yt is the (n× 1) vector of observable variables. C is a (n× r) matrix, and r ≥ n.
For simplicity, I do not assume any measurement errors in (5) but the reader is
invited to check that the derivations below also hold in that case.

3.1 Inverting a DSGE model

To be able to apply the methodology by Rubio-Ramirez et al. (2009) and identify
impulse responses, the model (4)-(5) has to be written in terms of endogenous
observable variables and their own past values. Inverting the state-space system
in such a form yields a SVAR model type structure, which I am going to call the
semi-structural model here. In the engeneering literature, where such an inversion
comes from, is called the impulse response function (see Ljung, 1999, Section
4.3). Villaverde et al. (2007) study the properties of such transformation for
economic problems.
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In general, there are more state variables than observable variables2. As the first
step in deriving the semi-structural form, I substitute (4) into (5) and rewrite the
measurement equation as

yt = Cxt−1 +Dut , (6)

where C =CA and D =CB. D might not be invertible (or left invertible), because,
it does not necessary have a full column rank, which is key in rewriting the model
in terms of observable variables only. I have to impose the following assumption.

Assumption 1. D is invertible, or at least left invertible, ie. D+D = I.

This assumption restricts us to the state-space models that have the same number
of shocks (structural and/or measurement errors) as observable variables.

As the next step, I use Assumption 1 and solve for ut from (6) by taking the left
inverse of D. Then ut = D+yt −D+Cxt−1. I plug this expression into (4), and
re-arrange to get xt = [I− (A−BD+C)L]−1BD+yt . Substituting that back to the
measurement equation (6), we get a SVAR(∞) representation of our DSGE model

D+yt = D+C
∞

∑
j=0

(A−BD+C) jBD+yt− j−1 +ut . (7)

3.2 Impulse response identification

Before mapping the identification theory of SVAR models by Rubio-Ramirez,
Waggoner, and Zha (2007; RWZ) in to the DSGE model problem, for the readers’

2 This creates only a minor complication for the invertibility technique itself. If C is invertible
(k = n), then it is straightforward to solve for the semi-reduced form. From the state equation
(4), I express xt and substitute it to the measurement equation (5).

(I−AL)xt = But

(I−AL)C−1yt = But

B+C−1yt = B+AC−1yt−1 +ut

A0yt = A1yt−1 +ut

with A0 = B+C−1 and A1 = B+AC−1. If A is a stable matrix – which is almost always, because
it comes from the rational expectations solution – the state-space model can be represented as
an structural VAR(1).
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convenience, let me re-state here the key features of the theory. The next text fol-
lows the structure in RWZ (2007, Section II). I extend the theory to the situations
where a SVAR representation has more shocks than observable variables.

To apply their methodology, I have to rewrite (7) as

y′tA0 = y′tA+(L)+u′t . (8)

A0 = (D+)′= [(CG−1
0 F)−1]′ is an (n×n) matrix capturing contemporaneous rela-

tionships among observed endogenous variables implied by the theoretical model.
yt = [yt−1yt−2...y−∞]′. A+(L)′ = [I− (A−BD+C)L]−1BD+ is an infinite polyno-
mial. If (A−BD+C) is stable then yt is a bounded sequence. Please the footnote
2 that if n = k = r and C is an identity matrix, then (8) shrinks to SVAR(1) – the
MSV solution (3).

The adjustment For the sake of wider exposition, lets ommit Assumption 1 for
a moment, and assume instead that A0 is of the dimension (k× n). It is not an
invertible matrix, but it has a full row rank. A reduced form representation is
obtained by using the pseudoinverse.3 As A0 has a full row rank, pseudoinverse
A+

0 (dimension (n× k)) is a right inverse matrix, i.e. A0A+
0 = I, where I is an

(n×n) identity matrix. The full row rank assumption must hold, in order to have
n observable variables in the model. The reduced form is then

y′t = y′tB+u′t ,

where B = A+A+
0 is of dimension (m× n), and u′t = ε ′t A

+
0 is an (1× n) vector of

reduced structural shocks. Note that the dimension corresponds to the number of
yts. We have as many reduced form shocks as observable variables. E[utu′t ] =
E[A+′

0 εtε
′
t A

+
0 ] = (A0A′0)

+ = Σ, where Σ is an (n× n) variance-covariance matrix
of reduced form shocks.

The first key theorem in Rubio-Ramirez et al. (2009) is about the observability
equivalence.

3 I recall the key computational rules with the pseudoinverse operator in Appendix E.
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Theorem 1 (Observability equivalence). Two sets of structural parameters in (7),
(A0,A+) and (Ã0, Ã+), are observationally equivalent if and only if there exists
k× k orthogonal matrix P such that A0 = Ã0P and A+ = Ã+P.

Proof. see Appendix A.

Representing restrictions For 1 ≤ j ≤ k and f (A0,A0) = [A0 A+]′ of the di-
mension (g× k), where g = n+m, RWZ define matrix

M j( f (A0,A+)) =

[
Q j f (A0,A+)
I j 0

]

where I j is an ( j× j) identity matrix, and 0 is an ( j× k− j) zero matrix. The
linear restrictions can be represented by (g×g) matrices Q j for 1 ≤ j ≤ k. Each
matrix Q j has rank q j. The structural parameters (A0,A+) satisfy the restrictions
if and only if

Q j f (A0,A+)e j = 0,

where e j is the jth column of the (k× k) identity matrix Ik. The ordering of
restrictions is important. The ordering of Q j is such that

q1 ≥ q2 ≥ ...≥ qk.

The following theorem is adjusted Theorem 5 from RWZ (2007).

Theorem 2 (The general rank condition). If (A0,A+) ∈ R and M j( f (A0,A+)) is
of rank k for all 1≤ j ≤ k, then the SVAR is globally identified at (A0,A+).

Proof. see Appendix B

Checking identifiability Now we can return back to the impulse response iden-
tification in the DSGE case. Having the SVAR representation of the DSGE model,
we can apply Theorem 2. Since A+ is an infinite order polynomial, f (A0,A+),
is of an infinite size. But to apply the theorem, we can focus on a finite or-
der model with j = 1, i.e. A′2 = D+C(A−BD+C)BD+, because the matrices
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A′j = D+C(A−BD+C) jBD+ for j > 1 are combinations of A2, and the rank of
A+ will be equal to the rank of A2. Thus it is sufficient to construct f (A0,A+) as

f (A0,A1,A2) =

 A0

A1

A2

=

 [(D+]′

[D+CBD+]′

[D+C(A−BD+C)BD+]′

 .

Given f (A0,A1,A2), we can form Q j to represent zero restrictions, and corre-
spondingly M j( f (A0,A+)) for all 1≤ j ≤ k.

Lemma 1. If {(A−BD+C) j}∞
j=3 is not an alternating series, then f (A0,A1,A2)

captures characteristic exclusionary restrictions of (8).

Proof. see Appendix C

3.3 Checking minimal system realisation

I motivated this paper by the need of central banks to provide a credible interpre-
tation of economic events in terms of structural shocks, and their effects on the
current and future economic development. An essential part of a credible story is
its consistency over time, as it is communicated to market participants on a reg-
ular basis. A typical central bank runs quarterly forecasting rounds, which result
in an advice to policy makers. The estimation or judgement of the initial state of
the economy is a typical challenge in each forecasting round. (i) What is the cur-
rent position in the business cycle? (ii) What are the shocks that the economy has
been facing and what will the economy’s most likely response? This section dis-
cusses a necessary and sufficient conditions for state-space models, to get unique
information on both (i) and (ii) above.

Having properly identified initial conditions is necessary for unique forecasts. The
condition is met if the state-space representation is of a minimal realisation. The
minimal realisation comes from the control theory and is related to model observ-
ability and controllability. Lets formally introduce these terms and explain what
they mean in terms of DSGE models in a policy environment. I recapitulate the
concepts of controllability and observability from the engeneering literature,
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The condition of minimal realisation may appear quite restrictive, as one may
belive that we live in uncontrolable world, but from a perspective of a decision-
maker, it is appealing to work with the model structures that satisfy such a prop-
erty. She needs to have a fixed point from which she can disentangle the economic
story. Uniquely estimated initial conditions provide such a fixed point. Further-
more, the uniqueness should also guarantee that the interpretation of the past de-
velopment will not dramatically change and stays consistent over time. This is
important for bank’s communication policy.

Definition 3 (Observability). The state-space system {A,B,C,D} is called observ-
able if the observability matrix On(C,A) has rank n.

OT (C,A) =


C

CA
...

CAT−1


If the system is observable, then we can always solve for the initial state x0 from
given set of shocks ut (typically being assumed to be zero), and observables yt ,
for t ≥ 0.

Definition 4 (Controllability). The state-system {A,B,C,D} is called controllable
if the controllability matrix Cn(B,A) has rank n.

CT (B,A) =
[
B AB . . . AT−1B

]
.

If the system is controllable, then for any initial state it is possible to design a
unique set of shocks that will lead to a desired trajectory of states xt .

Theorem 3 (System minimal realisation). The system {A,B,C,D} is minimal if it
is observable and controllable.

Proof. See Kalman (1962)

De Schutter (2000, p.332) describes the problem of minimal state space realisa-
tion (of a state-space model) as: “... given some data about linear time invariant
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system, find a state space description of minimal size, that describes the given
data.”

The following theorem states how the minimal realisation problem is related to
the initial condition identification.

Theorem 4. If the order of the state-space system is minimal then we can uniquely
recover the structural shocks {ut}T

t=1 and state variables {xt}T
t=0.

Proof. The problem can be broken up in to two parts. First, if I know {yt}T
t=1

can I get a unique x0, that is a unique {xt}T
t=0 that leads to x0? This is equivalent

to checking the observability condition. Second, knowing x0 (and {xt}T
t=1), can I

get a unique sequence of exogenous shocks {ut}T
t=1 that explains such trajectory?

This is equivalent to checking the controllability condition.

Looking at the first problem, we solve the following system of equations:

y1 = Cx0 +Du1

y2 = CAx0 +CBu1 +Du2

y3 = CA2x0 +CABu1 +CBu2 +Du3
...

yT = CAT−1x0 +CAT−2Bu1 + ...+CBuT−1 +DuT

In a matrix form
y1

y2

y3
...

yT

−


D 0 0 0 . . . 0
CB D 0 0 . . . 0

CAB CB D 0 . . . 0
...

...
...

...
... 0

CAT−2B CAT−3B CAT−4B . . . CB D




u1

u2

u3
...

uT

=


C

CA
CA2

...
CAT−1

x0

(9)
If the matrix on the right-hand side of the equation (the observability matrix) is
left invertible, i.e. it has full column rank, then the system can be uniquely solved
for x0.

Looking at the second problem, we know x0 and solve the system for the unique
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realisation of {ut}T
t=1:

x1 = Ax0 +Bu1

x2 = A2x0 +ABu1 +Bu2

x3 = A3x0 +A2Bu1 +ABu2 +Bu3
...

xT = AT x0 +AT−1Bu1 + ...+ABuT−1 +BuT


x1

x2

x3
...

xT

−


A
A2

A3

...
AT

x0 =


B 0 0 . . . 0

AB B 0 . . . 0
A2B AB B . . . 0

...
...

...
...

...
AT−1B AT−2B AT−3B . . . B




u1

u2

u3
...

uT

 (10)

The solution is unique if the matrix on the right-hand side is invertible. It is
invertible if the controllability matrix CT (B,A) has full column rank. Thus is
the state-space model is minimal we get unique trajectory for both {xt}T

t=0 and
{ut}T

t=1

4 An application

Lets have a look at an example now. For demonstration purposes, I use a simpli-
fied version of the new Keynesian business cycle model:

πt = βEtπt+1 +
(ϕ +ν)(1−ζ β )(1−ζ )

ζ
ξt +uS,t (11)

ξt = Etξt+1 +
1
ϕ

[rt−Et(πt+1)]+uD,t (12)

rt = φrrt−1 +(1−φr)(φππt +φyξt)+ur,t (13)

The Phillips curve (11) is firms’ linearized pricing rule, where πt is the aggre-
gate price level inflation rate. The IS curve (12) is households’ linearized Euler
equation capturing the output ξt . The nominal side of the economy is controlled
by the central bank’s interest rate rule (13), where rt is the nominal interest rate
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set at the period t. uS,t , uD,t , and ur,t are the supply (cost-push) shock, deman
shock, and monetary-policy shock, respectively. All shocks are iid N(0,σ2

ui
) for

all i = {S,D,r}. The model’s deep structural parameters (earlier denoted as θs)
are 0 < β < 1, ν > 0, ϕ > 0, ζ > 0, 0 ≤ φr < 1, and φπ and φξ are such that the
Taylor principle holds.

We can immediately see that ν and ζ cannot be identified. But as discussed in
section 2, for our purposes we do not need to worry about it. The deep structural
parameters itself are not that important. It is their product (ϕ+ν)(1−ζ β )(1−ζ )

ζ
that

detemines the impulse response function.

The semi-structural form After solving the model for rational expectations,
we receive the minimum-state variable (MSV) model, which represents the law
of motion for ξt , πt , and rt . As discussed above, the MSV representation is im-
portant for recovering matrices A0 and A1, which have an essential place in the
identification methodology. The MSV form for (11)-(13) is4

A0yt = A1yt−1 +ut ,

where yt =
[

πt ξt rt

]′
, ut =

[
uD,t uS,t ur,t

]′
, and

A′0 =

 a0,11 0 a0,13

a0,21 a0,22 a0,23

a0,31 a0,32 a0,33

 , A′1 =

 0 0 0
0 0 0
0 0 a1,33

 .

For model dynamics, it is essential that the semi-structural parameters a0,i j and
a1,i j for all i, j = 1,2,3 can be uniquely estimated.

Case 1: n = k = r

To demonstrate the use of the identification methodology, it is the best to start with
the simplest possible case. Lets begin with the special case where we observe all
model variables, and the number of shocks is equal to the number of observables,
i.e. n = k = r = 3. It is the simplest case, because all variables are observable and

4 The full derivation is in Appendix A.
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C is an identity matrix, The MSV solution is then also a SVAR(1) model, which
allows for a direct application of Rubio-Ramirez et al.’s (2009) theory.

First, we form the transformation f (A′0,A
′
1) by stacking A′0 and A′1

f (A′0,A
′
1) =

[
A′0
A′1

]
.

Second, we re-order the equations, which are now captured by collums in f (A′0,A
′
1),

by putting the equation with most exclusionary restrictions as the first one. Here,
it is the IS curve. Swapping the second column of f (.) with the first one, we get

f (A′0,A
′
1) =



0 a0,11 a0,13

a0,22 a0,21 a0,23

a0,32 a0,31 a0,33

0 0 0
0 0 0
0 0 a1,33


Third, we represent the zero restrictions in f (A′0,A

′
1) by Q j matrices that form the

nulspace with f (A′0,A
′
1). Each Q j captures the exclusionary restrictions in the j’s

column of f (A′0,A
′
1). For the first column, the IS curve, we have Q1

Q1 =



1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


.

For the second and third column, the Phillips curve and the policy rule, respectiv-
elly, we form

Q2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, Q3 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0


.
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The fourth and final step is to construct the matrices M j( f (A′0,A
′
1)) from Theorem

5 for all j = 1,2,3. Skipping the zero rows, we get

M1 =

 0 a0,12 a0,13

0 0 a1,33

1 0 0

 ,M2 =

 0 0 a1,33

1 0 0
0 1 0

 ,M3 =

 1 0 0
0 1 0
0 0 1

 .

Again, each M j represents individual model equation, which are ordered as the
columns in f (.). The rank of M j can be interpreted as the check of partial iden-
tification of an individual equation. If rank(M j) = n, one can say that the shock
associated with the j-equation is identified. Clearly, rank(M j) = 3 for all js, and
thus we can conclude that the semi-structural model is identified. Note that the
identification comes from the lagged interest rate, rt−1 in the policy rule. If φr = 0
then the model does not produce enough instruments to identify the Phillips curve,
the second equation, and the rank condition would be violated, rank(M2) = 2.

In the following two cases, I demonstrate the usefulness of the methodology in
the case when modellers have available less observable variables than there are
model variables. It is interesting, because then the inverted DSGE model will
have an infinite SVAR representation. I show that the location of shocks matters
for identification in such a case.

Case 2: n = k < r

Lets reduce the number of shocks and observable variables.5 The choice of shocks
and model observable variables is purposefull. I abstract from any economic
meaning the choice may make. I only wish to show that the location of shocks
matters for their identifiability.

No demand shock: σ2
uD

= 0

I will assume now that I do not observe the output ξ (or output gap), and I will treat
the IS curve as deterministic, and put σ2

uD
= 0. As a model designer, I make the

5 This exercise is equivalent to compounding the shocks, so that their number is reduced to n in
the measurement equation (6).
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choice that the model economy will only be driven by supply (cost-push) shocks,
and monetary policy shocks. Because we have n = k = 2 and r = 3, the inverted
model will be of an infinite order. Now we have to construct f (A0,A1,A2) as in
section 3. In this example, A2 turns out to be a zero matrix, so I am going to ommit
it.

Following the four-step procedure above, the f (A′0,A
′
1) representation is

f (A′0,A
′
1) =


a0,11 a0,21

a0,12 a0,22

0 0
a1,12 a1,22

 .

Corresponding M j( f (A0,A1)) for j = 1,2 are

M1 =

 0 0
0 0
1 0

 , M2 =


0 0
0 0
1 0
0 1

 .

Because rank(M1) = 1 and rank(M2) = 2, the semi-structural model without a
demand shock and observable output cannot be identified. The Phillips curve and
the cost-push shock are lacking identification. What happens if we change the
assumption about shocks?

No monetary policy shock: σ2
uR

= 0

Lets consider exactly the same set-up as in the previous case, but now the theo-
retical model includes demand shocks, σ2

uD
> 0, but there are not any monetary

policy shocks, σ2
uR

= 0, and the policy rule holds exactelly. We still observe only
inflation and interest rates. Again we have

f (A′0,A
′
1) =


a0,11 a0,21

a0,12 a0,22

0 0
0 a1,22

 ,
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and correspondingly M j( f (A0,A1)) for j = 1,2, which are

M1 =

(
0 a1,22

1 0

)
, M2 =


0 0
0 0
1 0
0 1

 .

We immediately see that rank(M1) = rank(M2) = 2, and can conclude that the
semi-structural model is identified. The impulse response response of observable
variables to structural shocks is uniquelly informed by the data. Thus changing
the assumption about the shocks results in impulse response identifiability.

18



5 Conclusion

I showed how to applied the SVAR identification methodology by Rubio- Ramirez,
Waggoner and Zha (2007) to DSGE models. I used the methodology to determine
if the model’s semi-structural form is globally identifiable, and if we are able to
recover data consistent and unique impulse responses. If there is no other ob-
servationally equivalent set of structural shocks that would explain the data, such
model is said to have unique (identified) impulse responses. The methodology
consists of a few matrix operations and evaluations, and is straightforward to code
and apply. Because no evaluation of likelihood function is involved, the method-
ology is computationally cheap. The methodology is very powerful, and provides
useful piece of information for DSGE model developers. As they are many kinds
of structural shocks that would classify as demand, supply or policy shocks, their
identifiability may serve as one of the criteria for a discrimination among them.
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Appendices

A Proof of Theorem 1

Proof. If A0 = Ã0P and A+ = Ã+P, then

B = A+A+
0 = Ã0PP−1Ã+

0 = Ã+Ã+
0 = B̃

Σ = (A0A′0)
+ = (Ã0PP′Ã′0)

+ = (Ã0Ã′0)
+ = Σ̃

If they are observationally equivalent then A+A+
0 = Ã+Ã+

0 and (A0A′0)
+ =(Ã0Ã′0)

+.
From the latter it follows that

(A0A′0)
+ = (Ã0Ã′0)

+

A+′
0 A+

0 = Ã+′
0 Ã+

0

A′0A+′
0 A+

0 = A′0Ã+′
0 Ã+

0

A+
0 = A′0Ã+′

0 Ã+
0

A′0(A0A′0)
−1 = (Ã+

0 A0)′Ã+
0

A′0 = (Ã+
0 A0)′(Ã+

0 A0)A′0
(A0A′0)

′[(A0A′0)
′]−1 = (Ã+

0 A0)′(Ã+
0 A0)(A0A′0)

′[(A0A′0)
′]−1

I = (Ã+
0 A0)′(Ã+

0 A0)

Therefore P = Ã+
0 A0 is orthogonal and Ã0P = A0; that is

P = Ã+
0 A0

Ã0P = Ã0Ã+
0 A0

Ã0P = Ã0Ã′0(Ã0Ã′0)
−1A0

Ã0P = A0
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Using this result for A+A+
0 = Ã+Ã+

0 , we obtain

A+A+
0 = Ã+Ã+

0

A+A′0(A0A′0)
−1 = Ã+Ã+

0

A+A′0 = Ã+Ã+
0 A0A′0

A+(A0A′0)
′ = Ã+Ã+

0 A0(A0A′0)
′

A+(A0A′0)
′[(A0A′0)

′]−1 = Ã+Ã+
0 A0(A0A′0)

′[(A0A′0)
′]−1

A+ = Ã+Ã+
0 A0

A+ = Ã+P

B Proof of Theorem 2

Proof. With a minor modification, the proof is the same as in RWZ (2007, p.15).
Let q j = Pe j − p j je j, where P = Ã+

0 A0 is (k× k) orthogonal matrix, p j is the
first column of P with non-zero off-diagonal elements, e j is the jth column of
an identity matrix Ik. To proof the theorem, it is sufficient to show, that the
rank of M j( f (A0,A0)) is strictly less than k. Since q j 6= 0, it suffices to show
that M j( f (A0,A+))q j = 0. Because both (A0,A+) and (A0P,A+P) are in R, by
construction of Q j it holds that Q j f (A0,A+)q j = 0. Thus the upper block of
M j( f (A0,A+)) is zero. The lower block [I 0]q j is also equal to zero, because I
is ( j× j), and first j elements of e j are zero.

C Proof of Lemma 1

TBA
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D Solution to examples in Section 3

Case 1: r = n = k

x′tB0 = xt−1C +(Etxt+1)′D+u′t ,

xt = [πt ξt rt ], B0, C, and D are 3× 3 matrices of the semi-structural form
parameters, and ut is iid N(0,1).

The MSV solution to the model is

x′tA0 = xt−1A1 +u′t ,

where

B0−CA−1
0 D = A0

A1 = C

Now, the task is to characterize the structure of A0. We know that

B0 =

 + 0 +
+ + +
0 + +

, D =

 + + 0
0 + 0
0 0 0

, C =

 0 0 0
0 0 0
0 0 +

.

Let A−1
0 =

 a∗0,11 a∗0,12 a∗0,13

a∗0,21 a∗0,22 a∗0,23

a∗0,31 a∗0,32 a∗0,33

, and substitute to (3) to get an idea how the

structure of A0 looks like and we can apply the counting rule from Tao’s paper.
We get  + 0 +

+ + +
0 + +

−
 0 0 0

0 0 0
+ + +


 + + 0

0 + 0
0 0 0

= A0,

and from there A0 =

 + 0 +
+ + +
+ + +

.
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Now we can apply Theorem 2 to check the general rank condition.

f (A0,A1) =

(
A0

A1

)
=



+ 0 +
+ + +
+ + +
0 0 0
0 0 0
0 0 +


=



0 + +
+ + +
+ + +
0 0 0
0 0 0
0 0 +



Q1 =


1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



Q2 =


0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Now I have to check the rank condition:

M1

(
A0

A1

)
=

 Q1 (
A0

A1
)

1 0 0

=


0 + +
0 0 0
0 0 0
0 0 +
1 0 0



M2

(
A0

A1

)
=


Q1 (

A0

A1
)

1 0 0
0 1 0

=



0 0 0
0 0 0
0 0 0
0 0 +
1 0 0
0 1 0


We can see that rank(M1) = 3 and rank(M2) = 3, and thus we can conclude that
the model is globally identified.
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Case 2: n = k < r

I.) No demand shock: σ2
uD

= 0

In this exercise, I assume that the output gap ξ is unobservable, and there is no
demand shock uD,t . The solved structural model than takes the form

A0xt = A1xt−1 +Fut .

A0 =

 + 0 +
+ + +
+ + +

, A1 =

 0 0 0
0 0 0
0 0 +

, F =

 0 0
1 0
0 1

.

yt = Cxt

= CA−1
0 A1xt−1 +CA−1

0 Fut

= Cxt−1 +Dut

C =

(
1 0 0
0 0 1

)
, C =

(
0 0 +
0 0 +

)
, D =

(
+ +
+ +

)
.

Solving for a SVAR representation of the DSGE model we get

A0yt = A1yt−1 +ut

A0 = D+ =

(
+ +
+ +

)
, A1 = D+CBD+ =

(
0 +
0 +

)
.

f (A′0,A
′
1) =


+ +
+ +
0 0
+ +

 Q1 =
(

0 0 1 0
)

, Q2 =
(

0 0 1 0
)

.

M1 =

(
0 0
1 0

)
, M2 =

 0 0
1 0
0 1

.

We can see that rank(M1) = 1 and rank(M2) = 2 – the model is not identified.
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II.) No monetary policy shock: σ2
uR

= 0

I assume the same setting as in Case 2.I, with the only difference, that there is no
monetary policy shock in the Taylor rule uI,t , but there is a demand shock, uD,t .

F =

 1 0
0 1
0 0

, C =

(
0 0 +
0 0 +

)
, B =

 + +
+ +
+ +

.

Similarly as above, A0 =

(
+ +
+ +

)
, A1 =

(
0 0
0 +

)
.

f (A′0,A
′
1) =


+ +
+ +
0 0
0 +

, Q1 =

(
0 0 1 0
0 0 0 1

)
, Q2 =

(
0 0 1 0
0 0 0 0

)
.

M1 =

 0 0
0 +
1 0

, M2 =


0 0
0 0
1 0
0 1

. rank(M1) = 2 whereas rank(M2) = 2 – the

model is identified.
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E Matrix pseudoinverse

Definition 5 (Matrix pseudoinverse). For a matrix A whose elements are real num-
bers, its pseudoinverse A+ is a unique transformation which meets the following
criteria:

AA+A = A;

A+AA+ = A+;

(AA+)′ = AA+;

(A+A)′ = A+A;

Some useful properties:

• Pseudoinversion is reversible: (A+)+ = A;

• (A′)+ = (A+)′;

• A+ = A+A+′A′;

• A+ = A′A+′A+;

• If A is of full column rank then A+ = (A′A)+A′, and A+A = I; A+ is left inverse
of A;

• If A is of full row rank then A+ = A′(AA′)+, and AA+ = I; A+ is right inverse of
A;

• If A is square, non-singular matrix then A+ = A−1.
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