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Abstract

In this paper, we use a range of statistical models to forecast
New Zealand house price inflation. We address the issue of model
uncertainty by combining forecasts using weights based on out-
of-sample forecast performance. We consider how the combined
forecast for house prices performs relative to both the individual
model forecasts and the Reserve Bank of New Zealand’s house
price forecasts. We find that the combination forecast is on par
with the best of the models at each horizon, and has produced
lower root mean squared forecast errors than the Reserve Bank’s
forecasts.
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1 Introduction

Forecasting house prices is important for monetary policy, particularly in
New Zealand. This is because house prices play a significant role in the
evolution of business cycles in the New Zealand economy. De Veirman
and Dunstan (2008) found significant wealth effects on consumption in
New Zealand, arising from housing wealth. As such, house prices are
an important leading indicator of inflationary pressures. For an inflation
targeting central bank, this is important.

In recent years, many developed and emerging countries have experienced
very strong increases in house prices. Corresponding wealth and housing
collateral effects on consumption have been widely investigated.1 Hous-
ing wealth can also have an inflationary effect via private investment. As
house prices increase relative to the value of housing-related construction
costs (i.e. Tobin’s q for residential investment), new housing becomes
relatively more profitable. Moreover, as the value of assets that can be
used as collateral increase (value of houses and land), the ability of firms
to borrow and finance their business investment increases. As a result,
one would expect a strong correlation between house prices and private
investment.

Given the importance of house prices, there have been many studies
that investigate ‘fundamental house prices’ in New Zealand, including
Fraser et al (2008) and Herring (2006). Furthermore, O’Donovan and
Rae (1997), and Briggs and Ng (2009) model the short-run dynamics of
New Zealand house prices around their fundamental level, using error
correction models. However, there can be considerable uncertainty sur-
rounding the fundamental level of house prices and also what drives the
short run dynamics. Nonetheless, to our knowledge there has been little
published research that attempts to forecast house prices outside of the
equilibrium-type framework.

In light of this, we use a range of time series models to forecast house price
inflation, including an autoregressive model (our benchmark model), a
single equation indicator model, four variations of Bayesian vector autore-
gression models, a factor model, and an error correction model. Though
we consider many models, this is not an exhaustive list. That is, there
are many other models that we could develop.

The motivation behind using these models is to capture a large range of
empirical time series approaches. Also, we have tried to include a wide

1For example see Muellbauer (2007), Dvornak and Kohler (2007) and, for the case
in New Zealand, De Veirman and Dunstan (2008).
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range of indicators. However, having such a range of models presents a
problem. That is, which forecast do we focus on? Or, perhaps, is an
average better still? To investigate, we consider two types of combina-
tion: a simple average, and a weighted average (where weights are based
on inverse mean squared errors). We find that these approaches produce
similar root mean squared forecast errors. Further, we compare the per-
formance of these combination methods to a model selection approach.
Model selection involves forecasting with the best model in real time for
each horizon. We find that an average outperforms a selection approach
over our sample.

Lastly, we consider how this combined forecast for house prices performs
relative to both the individual models and the Reserve Bank of New
Zealand’s (RBNZ) house price forecasts.2 We find that the combination
forecast always beats the AR(1) benchmark model and is on par with the
best of the models at each horizon. The combination forecast has also
produced lower root mean squared errors than the RBNZ’s published
forecasts.

The remainder of the paper is structured as follows. Section 2 outlines
the data that we used to produce real time forecasts. Section 3 introduces
the eight models that we have developed. Section 4 discusses combination
methods. Section 5 presents results and, finally, section 6 concludes.

2 Data

To produce historic house price forecasts we have tried to use real time
data. That is, the data that was available at the time when the forecast
would have been made. For key variables used in the RBNZ forecast pro-
cess (such as GDP, CPI and house prices), real time data has been stored
at the time of each quarters publication. However, for many other vari-
ables this real time data is not available. As such, we use the most recent
series and crop it back to what would have been available at the time of
the forecast (quasi-realtime). For these variables, we have assumed that
revisions are relatively small or non-existent.3 It is our opinion that these

2We use the RBNZ forecasts as a comparison because to our knowledge there are
no house price forecasts published by an alternative source each quarter. Also, the
RBNZ does not publish its house price forecasts on a regular basis, however, real time
forecasts are produced each quarter for internal use.

3In New Zealand, the real variables from the National Accounts are subject to the
largest revisions. Generally, other data is not revised or the revisions are relatively
small.
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unaccounted for revisions would have little effect on the results presented
in this paper.

The house price series that we forecast in this paper is the Quotable
Value (QV) quarterly house price index. This series has been forecast
at the RBNZ for the last decade. This house price series is generally
considered New Zealand’s most robust, though it is somewhat untimely
(four-month lag).

The untimely nature of the QV house price index is its weakness. As such,
in much of our analysis we have used the REINZ monthly house price
index, which only has a two week lag, to forecast the first quarter.4 We
considered forecasts both with and without the REINZ monthly data. As
this additional information was found to improve forecast performance,
we have included this data where possible in our models.5 We fore-
cast annual house price inflation so any improvement in the root mean
squared errors (RMSEs) in the first quarter, will improve the RMSEs in
the first four quarters. The REINZ index was only developed in 2009, so
comparing the forecast performance of the models and the RBNZ in the
first four quarters should be done with care. Although, the information
incorporated in the REINZ index has essentially been available to the
RBNZ for a number of years.

3 Models

To forecast house prices we use a range of empirical time series ap-
proaches. We started with models as simple as an AR process and simple
equations, but have developed more dynamic models, some of which are
fairly data rich. We have produced four Bayesian VARs, with the number
of variables ranging from four to 50. We also developed a factor model,
which uses 500 data series, and an error correction model. While this is
a fairly broad range of models this is not an exhaustive list and further
model development is likely.

AR(1)

We started with a simple AR(1) forecast of quarterly house price inflation
(∆hpt). This can be thought of as a benchmark model. We considered

4See McDonald and Smith (2009) for information on the REINZ house price index.
5For a comparison of results see appendix A, figure 7 and table 1.
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other AR processes, but the Bayesian information criteria suggested that
adding more lags was not worthwhile.

∆hpt = γ0 + γ1∆hpt−1 + εt (1)

Migration and Mortgage Rate indicator (MM indi-
cator)

This indicator model uses just one equation. Using OLS we regress quar-
terly house price inflation against the 5-year mortgage rate, permanent
and long-term (PLT) arrivals and PLT departures.6 This type of indica-
tor has been considered in the RBNZ’s forecasting process for a while.

∆hpt = γ0 + γ1∆PLTAt−2 + γ2∆PLTDt−2 + γ3Rt−2 + ςt (2)

To produce house price forecasts this equation relies on forecasts for both
components of PLT migration and the 5-year mortgage rate. We use the
published RBNZ forecasts for these.7

Bayesian Vector Autoregression (Small BVAR)

This four variable Bayesian VAR uses the same variables as the simple
indicator equation above. Its advantage is that it does not require ex-
ogenous forecasts. This VAR is in the form shown below (equation 3),
and includes four lags for each of the explanatory variables.

Consider a VAR(p) model:

Yt = c+B1Yt−1 +B2Yt−2 + ...BPYt−p + vt (3)

We use Bayesian techniques to estimate this VAR, in part because of few
degrees of freedom. We use Minnesota priors which assume the mean of
prior distribution is a random walk. The specification of the standard
deviation of the prior imposed on variable j in equation i at lag k is:

6Both migration series are de-trended using working aged population and all ex-
planatory variables are lagged two quarters.

7There is no 5-year mortgage rate forecast so this is proxied by 5-year swap rates
plus a margin which is held constant over the forecast.
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σijk = θw(i, j)k−φ
(
σ̂uj
σ̂ui

)
(4)

Where θ is the ‘overall tightness’ parameter, reflecting the standard devi-
ation of the prior on the first lag of the dependent variable. The k−φ term
is the lag decay parameter. Increasing φ reduces the standard deviation
of the priors on lags greater than one. Also, w(i, j) allows us to weight
the priors on variables differently. For a good summary of the priors see
LeSage (1999)

In regards to the BVAR we estimate, we have set θ to one and made
w(i, j) a scalar also equal to one (thus we do not weight variables differ-
ently). However, we made φ equal to 100. This gives us very tight priors
on coefficients of lags greater than one, such that coefficients on longer
lags tend to be close to zero, unless a strong relationship exists in the
data. This, in part, combats the problem we face with having relatively
few degrees of freedom.8

Bayesian Vector Autoregression (BVAR)

This model is similar to the Bayesian VAR described above, but with
five additional variables. We have included terms of trade, quarterly
GDP growth, the 90-day interest rate, the New Zealand dollar TWI, and
the Australian unemployment rate. We have aimed to include variables
that have some leading information for house prices, or are key macroe-
conomic indicators. For example, we use the Australia unemployment
rate because it seems to help predict the number of PLT departures to
Australia. The structure of the model is very similar to the small BVAR
above, with four lags and tight priors on those lags greater than one.

Bayesian Vector Autoregression (Big BVAR)

This is a large Bayesian VAR developed by Bloor and Matheson (2009)
using the conditional forecasting estimation techniques of Waggoner and
Zha (1999). The model includes 50 domestic and international variables
including house prices. There are four lags in the model and they also use
Minnesota priors. To overcome the problem of having a short sample and

8We use the LeSage MATLAB package to estimate this Bayesian VAR and iterate
the Gibbs sample 10000 times. For further details on these functions see LeSage
(1999).
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few degrees of freedom they also apply tight priors. Further, they incor-
porated some structural aspects to the VAR. Notably, they treat the lags
of foriegn variables as exogenous to the domestic variables. Though this
model was not developed to forecast house prices, it is worthwhile con-
sidering because the forecasts were easily accessible. Unlike the BVARs
above, this model is estimated using log-levels data (not in differences).

Monthly Vector Autoregression (REINZ VAR)

While the other models use the monthly REINZ housing price index to
forecast the first quarter, there is typically an extra month’s data not
considered by these other models. This REINZ monthly VAR fully uses
this timely data, and was developed for its ability to forecast near-term
house price inflation.

This model has two stages. The first stage estimates a small four vari-
able Bayesian VAR using monthly data. We include the REINZ housing
price index, house sales de-trended using working aged population, me-
dian days to sell, and the 90-day interest rate. We use the Bayesian
information criteria to choose the lag length. In this case, we apply
fairly loose random walk priors (again Minnesota priors). In particular,
the overall tightness hyperparameter is set to three. For coefficients on
longer lags, we have applied tighter priors so that coefficients will tend
to be close to zero. Using this VAR, we forecast each of the four monthly
variables.

In the second stage of this model, we forecast quarterly house price infla-
tion using a simple equation. We use OLS to regress quarterly QV house
price inflation (∆hp) on the quarterly change in the REINZ housing price
index (∆rhp) and de-trended house sales (HS) .

∆hpt = γ0 + γ1∆rhpt + γ2HSt + ςt (5)

Using the forecasts produced in the first stage, collapsed to quarterly
frequency, we can apply the coefficients estimated in this equation to
generate a quarterly QV house price inflation forecast.

Error Correction Model

This is a simple two-step error correction model. The first step esti-
mates the fundamental house price level. The second step uses the error
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correction term, amongst other data, to forecast quarterly house price
inflation.

In our long-run equation, fundamental house prices are driven by nomi-
nal GDP, population and a user cost term. Nominal GDP is designed to
capture the income effect on housing demand. The user cost is an effec-
tive mortgage rate less the expected capital gain (proxied by the most
recent 3-year moving average of house price inflation).9

Long-run equation:

hpt = α0 + α1gdpt + α2popt + α3UCt + εt (6)

The short-run equation uses the error correction term (difference of house
prices from their fundamental level) to forecast house price inflation.10

The lag of house price inflation and population are also included in this
equation.

Short-run equation:

∆hpt = β0 + β1εt−1 + β2∆gdpt−1 + β3∆popt−1 + ςt (7)

where hp is the log of house price, gdp is the log of nominal GDP, pop is
the log of population, and UC is the user cost.

Factor model

The most data-rich model in our suite is a dynamic factor model. This
model uses factors from as many as 500 series. It was developed by Math-
eson (2006) and is used at the RBNZ to forecast other macroeconomic
variables (for example GDP and CPI inflation). As such, the included
series were not specifically chosen to forecast house prices.

This model forecasts using factors from four different subsets of the data.
It takes factors from the entire data set, then repeats this with the 25,
50 and 75 percent best fitting series. The forecasts are made using the
following equation, where ∆hpt+h is the quarterly house price inflation
forecast at horizon h, ft is a matrix of factors, ∆hpt is the end point

9The series we have used is the floating first-mortgage new customer rate.
10We have used a linear error correction term. However, O’Donovan and Rae (1997)

find evidence that the error correction term for New Zealand house prices may be
asymmetric. We plan to investigate this further.
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for quarterly house price inflation, and (L) denotes the variations on lag
lengths.

∆hpt+h = φ+ β(L)∆hpt + γ(L)ft + ϑt+h (8)

Further to varying the size of the data set, this factor model allows for
many variations in its structure, similar to Stock and Watson (2002).
In particular, it allows for variations in the number of factors, lags of
the dependent variables, and lags of the factors. It uses the Bayesian
information criteria to choose between different structures.

4 Combination approach

Using many forecasting models can make it difficult to know which fore-
cast to focus on. Furthermore, because the data generating process is
unknown, model uncertainty will also be an issue. Combining the fore-
casts may provide a solution to these issues. As such, forecast combi-
nation is becoming increasingly popular in central banks. The Reserve
Bank of New Zealand currently uses a suite of statistical models to pro-
duce forecasts for key macroeconomic variables. The combined forecast
is used to highlight any potential risks around the central projection.11

Other central banks that use forecast combination include the Bank of
England, the Riksbank (Sweden), Norges Bank (Norway) and the Bank
of Canada, see Bjørnland et al (2009) for an overview.

Timmermann (2006) provides a survey of the large literature on forecast
combination. Two motivations for undertaking a combination approach
are: (i) combination forecasts may be more robust to unknown insta-
bilities (structural breaks) than forecasts from an individual model; and
(ii) individual models may be subject to misspecification bias and these
biases may be averaged out in the combination forecast.

In empirical studies, combination forecasts have been found to frequently
outperform forecasts from the best-performing model in real time. Tim-
mermann (2006) highlights that simple combination schemes (using equal
weights or inverse mean squared error weights) are hard to beat.

11Combination forecasts are produced for GDP, CPI, tradable CPI, non-tradable
CPI, the 90-day interest rate and the NZD TWI.
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4.1 Our method

We consider two combination approaches and a model-selection approach
to produce point forecasts at each horizon. The combination approaches
that we consider use equal weights and mean squared error weights.
When using equal weights, each model receives a 1/N weighting, where
N is the number of models. Mean squared error (MSE) weights are cal-
culated using the inverse of the model’s mean squared error. Hence, the
model with the lowest average forecast error receives the highest weight
for the combination forecast.

MSE weights:

MSEi =
1

T

T∑
t=1

(yt+h − ŷt+h)2 (9)

MSEweighti =
1

MSEi∑N
i=1(

1
MSEi

)
(10)

Where T refers to the number of forecasts h-horizons ahead and N to the
number of models.

In addition to the two combination methods, we also consider a model
selection approach. This method forecasts using the model with the
lowest mean squared error up until that point in time, for each horizon.
The fact that a model has forecast accurately in the past, does not mean
that this will be true in the future.

Initially, all models are estimated on data up to 2000Q1 and the models
forecast the annual percent change (apc) of house prices up to two years
ahead.1213 All models are then re-estimated each quarter using new data
to produce a new set of forecasts. This process is repeated until 2010Q1
which is the final estimation period.

All models are evaluated in each forecast horizon using actual data. The
relative performance of the individual models can vary across forecast
horizons (some models are good for near-term forecasting and others
are better for medium-term forecasting), so our weights are horizon-
specific. The weights are calculated recursively and are updated each
period. Using these weights combination forecasts are generated from

12Due to data limitations the simpleHP, smallBVAR and BVAR models produce
their first set of forecasts from 2001Q1.

13Because of the four-month lag in house price outturns, the first forecast horizon
is in the past.
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2002Q2. As such, the evaluation period for all results presented in this
paper is 2002Q2-2010Q1.

5 Results

In this section we describe the main results. First, we look at the forecast
performance of the individual models. Then we compare the performance
of the combination approaches against a model selection approach. Fi-
nally, our preferred combination forecast, which uses MSE weights, is
compared to both the individual model forecasts and the Reserve Bank
of New Zealand’s forecasts of house price inflation.

5.1 Individual model results

Figure 1 shows the root mean squared errors (RMSEs) and biases of
the individual model forecasts. It seems there is no dominant model for
forecasting house price inflation over all horizons. However, all models,
with the exception of the big BVAR and factor models, produce more
accurate forecasts than our AR(1) benchmark.

Figure 1: Root mean squared errors (left) and biases (right) of individual
forecasts
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For forecasting two to four quarters ahead the REINZ VAR has the
lowest RMSE. This model uses monthly housing-specific data, whereas a
majority of the data used by the other models is general macroeconomic
data measured at a quarterly frequency. Thus, the use of higher frequency
and more timely housing-specific data is beneficial for forecasting house
price inflation in the near term.
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The small BVAR and the MM indicator models use the same data and
both have low RMSEs for forecasts five to seven quarters ahead. Thus,
it seems that net migration and mortgage rates are important indicators
for predicting house price inflation at these horizons.

The error correction model (ECM) is the most accurate model for fore-
casting house price inflation eight quarters ahead (the longest horizon we
look at). This suggests that house prices may revert back towards some
fundamental level in the medium term.

While performing well at longer horizons, the ECM has had a large neg-
ative bias for all forecast horizons. Though, many of the other models
also have a negative bias for most of the forecast horizons. In recent
years there have been many studies that have found New Zealand house
prices to be above their fundamental levels.14 The negative bias of the
ECM is consistent with this idea.

The small BVAR and the BVAR are the only models to have a positive
bias when averaged over all horizons.15 These models are not influenced
by the level of house prices relative to other variables.

Figure 2: Root mean squared errors of individual models over time
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Figure 2 illustrates how the performance of the models has changed over
time. The RMSE is on the vertical axis and the forecast date on the
horizontal axis. Once the RMSEs have stabilised (after a couple of years)
the model rankings do not change much. At least, not until the sharp
downturn in house price inflation in 2007/08.

Before the downturn, the relative performance of the ECM was deterio-
rating. But subsequently the ECM forecast the downturn in house price

14These include Briggs and Ng (2009), Fraser et al (2008) and Herring (2006).
15Appendix B, table 3
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inflation better than other models, causing an improvement in its rela-
tive performance. Looking at the RMSE four quarters ahead, the MM
indcator model performed relatively badly during the downturn in house
price inflation.

5.2 Combination results

We combine the individual forecasts using equal and MSE weights. Fig-
ure 3 shows the RMSE of these combination forecasts compared to the
forecasts produced using a model selection approach.

Figure 3: Root mean squared errors of forecasts using different weighting
methods
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The performance of the different combination methods varies across fore-
cast horizons. For all forecast horizons the difference in the RMSEs of the
combination forecasts using equal weights or MSE weights is marginal.

For most horizons our combination forecasts have produced more accu-
rate out-of-sample forecasts than forecasting using the best-performing
model (model selection). This result highlights the value of placing
weight on a number of different forecasting models. This may reflect
that the good forecasting performance of a model in the past does not
guarantee good performance in the future.

Figure 4 graphs the RMSE and bias of the MSE-weighted combination
forecast (solid black line) against the individual model forecasts. The
combination forecasts for house price inflation for one and two quarters
ahead have a lower RMSE than any of the individual model forecasts.
For the other forecast horizons, there is at least one individual model
with better forecast accuracy. However, the combination forecast is still
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reasonably accurate over these horizons. That is, the RMSE of the combi-
nation forecast is only marginally greater than the best individual model
at each horizon.

Figure 4: Root mean squared errors (left) and biases (right) of individual
and combination forecasts
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Do the combination forecasts outperform the Re-
serve Bank of New Zealand’s forecasts?

We now compare the performance of the combination forecasts with the
RBNZ’s forecasts.16 The combination forecasts use MSE weights rather
than equal weights because MSE weights can vary over time and the
models with lower forecast errors are given higher weights. The RMSEs
and biases of both forecasts are shown in figure 5. Over this evaluation
period, the combination forecasts have been considerably more accurate
than the RBNZ forecasts for all horizons. The increased accuracy of the
combination forecasts is particularly pronounced for forecasting house
price inflation between four and eight quarters ahead.

Over recent years the RBNZ has held the view that house prices were
above their fundamental values.17 Consequently, they were forecasting
house prices to decrease. This is apparent in RBNZ forecasts for more
than 4 quarters ahead. Figures 6 shows the RBNZ and combination fore-
casts graphed against actual outturns.18 Before the recent downturn in
the housing market (2007/08), the RBNZ’s long-run forecasts for annual

16The RBNZ forecasts are used as a comparison because to our knowledge there
are no house price forecasts published by an alternative source each quarter.

17Reserve Bank of New Zealand (2005) and Reserve Bank of New Zealand (2008).
18Forecasts for all horizons can be found in appendix C, figures 8 and 9.
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Figure 5: Root mean squared errors (left) and biases (right) of combina-
tion and Reserve Bank forecasts
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house price inflation were consistently below 5 percent and often nega-
tive. However, house price inflation was persistently above 10 percent.

The strong negative bias of the RBNZ’s forecasts highlights that the
RBNZ has tended to place a lot of weight on the fundamental level of
house prices. With the exception of the ECM, and in part the big BVAR,
the models used in the combination do not have a ‘fundamental house
price value’. Hence, the combination forecasts tended to be higher than
the RBNZ forecasts and consequently were closer to actual house price
inflation.

The ability of models to forecast turning points is important. Evaluating
a model using only the RMSE and bias does not capture this. Looking at
the four quarter ahead forecast, the RBNZ did well, relative to the com-
bination, in forecasting the downturn in house price inflation in 2007/08.
The combination forecasts predicted a downturn to house price inflation
but the predicted magnitude was too small. This highlights a weakness
of using a pure statistical model approach. It seems our statistical mod-
els struggle to forecast extreme events in house price inflation. A further
weakness of our combination approach is the relatively short sample, as
the results may differ over a longer sample.
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Figure 6: Combination and RBNZ Forecasts
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6 Conclusion

In this paper we developed a range of statistical models to forecast house
price inflation. The best-performing models (based on RMSEs) were
those that used small housing-specific data sets, such as the REINZ VAR,
the small BVAR and the MM indicator model. All models that were
developed to specifically forecast house price inflation (that is, all mod-
els except the big BVAR and factor models), outperformed our AR(1)
benchmark.

We generate a summary forecast using three approaches: equal weights,
MSE weights and model selection. We found that the averaging methods
had lower forecast errors than the model selection approach. This result is
consistent with the empirical evidence, outlined in Timmermann (2006),
that simple averages often produce more accurate out-of-sample forecasts
than the best-performing model in real time.

We also evaluated the combination forecast against both the individual
models’ and the RBNZ’s forecasts of house price inflation. Over our
evaluation period, the combination forecast is on par with the best of
the individual models at each horizon, and has produced lower RMSEs
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than the RBNZ’s forecasts. However, the combination forecast struggled
to capture turning points and was outperformed by the RBNZ during
the strong downturn in house price inflation in 2007/08.

Nonetheless, these results suggest statistical model forecasts for house
price inflation should be considered in the forecast process. Further, a
combined forecast is beneficial in that it produces low RMSEs and is
a clear communication tool. However, while the results are somewhat
striking, we recognise that the sample is relatively short.
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Appendices

A. First forecast horizon

Because there is a two quarter lag in the QV house price index, all results
in this paper use the more timely REINZ housing index for the first
forecast horizon.19 Figure 7 shows the RMSEs of the model forecasts
with and without this data.

Figure 7: No REINZ data (left), including REINZ data (right)
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Using the REINZ index decreases the RMSE of all models. Further,
table 1 shows that the REINZ index improves the RMSE for more than
just the first horizon, in part because this is based on forecasts of annual
house price inflation. The improvement is the largest for the models that
contain a lot of persistence, for example the AR and Factor models.

Table 1: Difference in RMSE when the REINZ housing index is used for
the first horizon forecast

1 2 3 4 5 6 7 8 Mean
AR 1.039 2.116 2.342 2.630 1.591 0.813 0.566 0.219 1.414

Factor 1.140 2.338 2.574 2.727 1.361 0.328 -0.163 -0.341 1.245
MMindicator 0.591 0.964 0.972 0.993 0.000 0.000 0.000 0.000 0.440

BVAR 0.610 0.946 0.894 0.966 0.241 0.205 0.040 -0.071 0.479
smallBVAR 0.530 0.748 0.758 0.845 0.505 0.410 -0.318 -0.534 0.368

ECM 0.825 1.619 1.518 1.441 0.221 -0.241 -0.365 -0.276 0.593
Cmb 0.436 0.669 0.621 0.630 0.240 0.048 -0.119 -0.161 0.295

19This is true for all models except the big BVAR and the REINZ VAR. These
models generate their own first horizon forecast.
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B. Model Evaluation

Tables 2 and 3 outline the RMSE and bias of each model over all horizons.
Table 4 shows the RMSE of forecasts produced using equal weights, MSE
weights and model selection.

Table 2: Root mean squared error

1 2 3 4 5 6 7 8 Mean
bigBVAR 1.803 3.306 5.326 7.563 8.846 9.557 10.020 10.143 7.070

AR 1.387 2.612 4.501 6.066 8.218 9.361 9.858 10.004 6.501
Factor 1.308 2.505 4.450 6.210 8.644 10.082 10.881 11.128 6.901

MMindicator 1.308 2.327 3.708 4.793 6.214 6.828 7.761 8.667 5.201
BVAR 1.308 2.479 4.172 5.660 7.672 8.283 8.667 8.989 5.904

smallBVAR 1.308 2.336 3.586 4.536 5.777 6.665 7.902 8.617 5.091
reinzVAR 1.610 2.291 3.241 4.341 5.837 7.341 8.240 8.487 5.173

ECM 1.387 2.514 4.226 5.644 7.501 8.267 8.582 8.249 5.796
Cmb 1.304 2.277 3.593 4.820 6.234 7.385 8.147 8.408 5.271

RBNZ 2.301 4.315 6.854 9.368 11.278 12.571 13.127 12.669 9.061

Table 3: Mean forecast error (bias)

1 2 3 4 5 6 7 8 Mean
bigBVAR -0.197 -0.685 -1.159 -1.708 -1.966 -1.685 -1.385 -0.940 -1.216

AR -0.488 -0.734 -0.872 -0.767 -0.930 -0.729 -0.454 -0.103 -0.635
Factor -0.526 -0.778 -0.870 -0.647 -0.513 -0.131 -0.230 -0.483 -0.522

MMindicator -0.526 -0.432 -0.183 0.172 0.203 0.153 0.104 0.436 -0.009
BVAR -0.526 -0.662 -0.464 0.194 0.632 1.192 1.310 1.231 0.363

smallBVAR -0.526 -0.615 -0.475 -0.094 0.172 0.673 0.942 1.429 0.188
reinzVAR -0.657 -0.849 -0.856 -0.536 -0.273 0.156 0.724 1.316 -0.122

ECM -0.488 -1.341 -2.521 -3.772 -5.375 -6.171 -6.507 -6.339 -4.064
Cmb -0.513 -0.773 -0.893 -0.901 -0.907 -0.875 -0.452 -0.471 -0.723

RBNZ -1.341 -2.844 -4.829 -6.783 -7.914 -8.642 -8.900 -8.541 -6.224

Table 4: Root mean squared errors of forecasts using different weighting
methods

1 2 3 4 5 6 7 8 Mean
Equal 1.291 2.311 3.729 4.903 6.429 7.315 7.955 8.204 5.267
MSE 1.304 2.277 3.593 4.820 6.234 7.385 8.147 8.408 5.271

ModelSelection 1.602 2.394 3.524 5.668 6.380 7.467 9.323 9.723 5.760
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C. Forecasts

Figure 8 shows the combination and RBNZ forecasts for 1, 3, 5 and 7
horizons ahead. These forecasts tell a similar story to the forecasts that
were shown in section 5. Namely, that the RBNZ consistently under-
predicted annual house price inflation. However, the RBNZ was more
accurate, relative to the combination method, in forecasting the strong
downturn in house price inflation in 2007/08.

Figure 8: Combination and Reserve Bank Forecasts
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Figure 9 shows the RBNZ and combination forecasts made at a particular
date. The title provides the date that the forecast was made and the
vertical black line shows the date of the latest house price outturn.
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Figure 9: Combination and RBNZ Forecasts
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