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“In those days there was no king in Israel; everyone did 
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I.  INTRODUCTION 
 
This study examines a problem that faces many researchers:  How should one pick the 

“best” regression equation, or a set of “best” regression equations?  Without some 

objective standard, efforts to select a “best” regression equation may, at best, innocently 

miss superior specifications; or, at worst, strategically select results to support the 

researcher’s preconceived biases.  

 A substantial literature has grown that demonstrates that model selection matters.  

For example, many studies of economic growth find that results that are economically 

and statistically significant in one study are not robust to alternative specifications (cf. 

Levine and Renelt, 1992; Fernandez et al., 2001; Sala-i-Martin et al., 2004; Hoover and 

Perez; 2004).  For these and related reasons, a literature has grown up that addresses the 

question of how to choose the best model(s).   

 A non-exhaustive list of the associated proposals include choosing a single best 

model based upon an information criterion such as the Akaike Information Criterion 

(AIC) or the Schwarz Information Criterion (SIC) (cf. McQuarrie and Tsai, 1998); 

following a General-to-Specific (GETS) algorithm of eliminating insignificant variables 

(cf. Hoover and Perez, 1999; Hendry and Krolzig, 2005); selecting a “portfolio” or best 

subset of models (cf. Poskitt and Tremayne, 1985); and combining models using 

Bayesian Model Averaging (cf. Hoeting et al., 1999; Sala-i-Martin, 2004). 

 Not only is there a variety of proposed MSC, but there is also a variety of 

measures to determine “best” MSC performance.  A non-exhaustive list of performance 
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measures include counts of the number of times the MSC correctly picks the true DGP, 

number of times the MSC “overfits’ (selects too many variables) or “underfits” (selects 

too few variables) (cf. McQuarrie and Tsai, 1999); whether the size of the statistical tests 

on the “best” model conform to the nominal significance levels (Hendry and Krolzig, 

2005); and whether the MSC selects the model with greatest predictive efficiency (Kuha, 

2004; Burnham and Anderson, 2004). 

 This study makes the following contributions to this literature:  We empirically 

compare a larger number of MSC’s than previous studies, including MSC’s based on 

information criteria, General-to-Specific modelling, Bayesian Model Averaging, and 

portfolio models.  We propose a different measure of estimator performance – MSE of 

estimated coefficients – and demonstrate its usefulness in explaining the relative 

performances of competing MSC.  Our Monte Carlo analyses find that the best overall 

MSC is the “small-sample corrected” version of the SIC (cf. McQuarrie, 1999).  

However, we also find that no one MSC works best in all – or even most – 

circumstances.   

 It is well-known that MSC differ with respect to “overfitting” and “underfitting”.  

Our simulations identify two important determinants of MSC performance:  (i) overall fit 

of the equation as measured by R2, and (ii) the ratio of relevant variables to total 

candidate variables.  We show that these two factors matter because they relate to MSC 

“overfitting” and “underfitting,” which in turn relate to the Bias and Variance 

components of MSE.  We proceed to identify circumstances in which some MSC are 

likely to dominate others. 
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II.  A FRAMEWORK FOR COMPARING MODEL SELECTION CRITERIA 
 
The Problem.  We investigate the following problem.  We have a data set consisting of N 

observations on variables Y, X1, X2, … , XL.  We assume that the data generating process 

(DGP) producing these observations is given by:  

(1) nLnL2n21n1n εXβXβXβY ++++= Lα , N1,2,...,n = , 

where K of the β ’s are nonzero and L-K are zero, LK1 ≤≤ ; and the  are i.i.d., with nε

( )2
εn σ0,N~ε .  We want to choose the “best” MSC, where “best” is defined as the MSC 

that results in the most accurate estimates of the β ’s.  We define this more precisely 

below. 

 The Model Selection Criteria (MSC).  We study 15 different MSC drawn from a 

variety of approaches.  These are listed in TABLE 1, along with a brief description.  The 

first four are based on information criteria (IC).  While there are many information 

criteria, most of these are asymptotically related to either the Akaike Information 

Criterion (AIC) or the Schwarz Information Criterion (SIC) (Weakliem, 2004).  Both the 

AIC and the SIC have the same general form:  l2− + Penalty, where l  is the maximized 

value of the log-likelihood function for the given specification, and Penalty is a function 

that monotonically increases in the number of coefficients to be estimated.  In both cases, 

smaller is better, and the specification with the smallest AIC/SIC value is considered to be 

“best.”  The SIC generally penalizes the inclusion of parameters more harshly than the 

AIC, and thus favors more parsimonious models.   

 The AIC and SIC have asymptotic justification.  The SIC is consistent.  That is, if 

the true DGP is included among the set of candidate models, the SIC will select the true 

DGP with probability approaching one as the sample size increases.  The AIC is 
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asymptotically efficient.  It assumes that the true DGP is not included in the set of 

candidate models.  It selects the model having the smallest expected prediction error with 

probability approaching one as the sample size increases (Kuha, 2004). 

 It is well-known that both the AIC and SIC tend to “overfit” (i.e., include more 

variables than the DGP) in small samples.  As a result, small-sample corrections for these 

have been developed by Hurvich and Tsai (1989) and McQuarrie (1999), respectively.  

These are denoted in TABLE 1 as AICC and SICC, where the last “C” denotes that it is 

the “corrected” version of the respective information criterion.   

 For each of these four MSC, IC values are calculated for all 2L possible models.  

Coefficient estimates are taken from the model with the lowest IC value.  If a variable 

does not appear in that model, then the associated estimate of that coefficient is set equal 

to zero. 

 The fifth MSC uses General-to-Specific (GETS) modeling.  At its simplest, GETS 

starts with a fully-parameterized model and sequentially deletes insignificant variables.  

Modern versions of GETS emphasize multiple reduction paths, which greatly reduce path 

dependence with little abuse of nominal significance levels (Hoover and Perez, 1999; 

Campos et al. 2003; Hendry and Krolzig, 2005).  Our version of GETS employs a 5% 

significance level and sequentially eliminates the variable with the smallest t-statistic 

until all insignificant coefficients are removed.  As noted by Campos et al. (2003), this 

procedure should produce results very close to the more sophisticated, multi-path 

versions of GETS when the explanatory variables are orthogonal, as will be the case in 

our Monte Carlo experiments.  Individual coefficient estimates are taken from the final 
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model.  If a variable does not appear in that model, then the associated estimate of that 

coefficient is set equal to zero. 

 The next eight MSC are based on the idea of selecting – not a single “best” model 

– but a “portfolio” of models that are all “close” as measured by their information 

criterion (IC) values.  Poskitt and Tremayne (1987) derive a measure based on the 

posterior odds ratio, ( ⎥⎦
⎤

⎢⎣
⎡ −−=ℜ mminm ICIC

2
1exp ) , where ICmin  is the minimum IC value  

among all 2L models, and ICm is the value of the respective IC in model m, m=1,2,…,2L.  

They suggest forming a portfolio of models all having 10m ≤ℜ .  Alternatively, 

Burnham and Anderson (2004) suggest a threshold mℜ  value of 2.   We use both values.  

The MSC AIC < 2, AICC < 2, SIC < 2, and SICC < 2 each construct portfolios of models 

that have AIC, AICC, SIC, and SICC values that lie within 2 of the minimum value 

model.  The next four MSC (AIC < 10 , AICC < 10 , SIC < 10 , and SICC < 10 ) 

do the same for models lying within 10  of the respective minimum value model.   

 In our experiments, coefficient estimates are set equal to zero for all variables that 

never appear in the portfolio.  For variables that appear at least once in the portfolio of 

models, we calculate the respective coefficient estimates as the arithmetic average of all 

nonzero coefficient estimates.  The reason for not including zero values will be discussed 

below. 

 The last two MSC are examples of Bayesian Model Averaging (Hoeting, 

Madigan, Raftery, and Volinsky, 1999).  In Bayesian Model Averaging, a composite 

model is constructed by taking a weighted average of a set of models, which might 

consist of all possible models, with weights consisting of the posterior model 
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probabilities.  In the composite model, each of the variable coefficients equals the 

weighted average of the individual estimated coefficients for that variable.  We calculate 

model weights using the maximized value of the log-likelihood function.  The MSC 

LL_Weighted uses the full set of 2L models to construct weighted average, coefficient 

estimates.  The MSC LL_Weighted( ) restricts itself to the set of all 20βk ≠ˆ L-1 models 

where the given variable is included in the model. 

  Monte Carlo Experiments and the Performance Measure.  Our experiments all 

use the DGP, nLnL2n21n1n εXβXβXβY ++++= Lα , N1,2,...,n = , where 5=α , 

, 1βββ K21 ==== L 0βββ L2K1K ==== ++ L , LK1 ≤≤ .  The  are i.i.d. and 

normally distributed with mean 0 and variance a function of K,  as will shortly be 

described.  Each experiment has K “relevant” variables and L-K “irrelevant” variables, 

with relevancy is defined according to whether that variable has a nonzero coefficient in 

the DGP.  We simulate 1000 data sets for each experiment.   

nε

 For given L, we run L consecutive experiments where K starts at 1 and progresses 

through L.  The individual X realizations are distributed i.i.d. both within and across 

variables, such that ( )1σ0,N~X 2
Xkn = , L1,2,...,k = , N1,2,...,n = .  The X variables are 

held constant throughout all L experiments, so that the only things that change in the 

DGP across experiments are the values of the ’s and the distribution of the error terms. kβ

 We alter the distribution of the ’s across experiments because we are interested 

in studying how MSC performance changes as a function of the R

nε

2 of the estimated 

equation.  Ceteris paribus, as K increases, and more variables are “relevant,” R2 will 

increase.  In response, we increase the variance of the error terms in an ad hoc fashion so 
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that the R2 values remain relatively constant as K increases.1  For given L, we study four 

R2 values: , , , and .   90%R2 = 70%R2 = 50%R2 = %53R2 =

 Thus, for each value of L, there are L experiments for each R2 level, producing a 

total of 4L experiments.  We set L=5, 10, and 15, producing a total of 120 experiments.  

Finally, we set N equal to 75 observations in all our experiments.  This was done 

primarily for technical reasons:  We encountered computing problems as N increased, 

both in terms of the time it took to run our programs, and in constructing the weights for 

the Bayesian Model Averaging MSC.2    

 As our basis for measuring MSC performance we use Mean Squared Error 

(MSE).  For each data set/replication r, and each MSC, we have a set of estimates, 

( )MSC
rL,

MSC
r2,

MSC
r1, β,...,β,β ˆˆˆ .  Let  be the true value of the slope coefficient for Xkβ k.  For the 

1000 replications of the experiment, we calculate a coefficient-specific MSE as follows: 

(2) 
( )

1000

ββ
 MSE

1000

1r

2

k
MSC

rk,
MSC
k

∑
=

−
=

ˆ
, k = 1,2, …, L. 

Because MSE is not comparable across coefficients, we assign a coefficient-specific 

ranking from 1 to 15,  with the MSC producing the lowest MSE for that coefficient 

receiving a rank of 1, the MSC with the next smallest MSE receiving a rank of 2, and so 

on.   These rankings are then averaged across all L coefficients to produce an overall 

MSC ranking for that experiment.  For example, if L = 5 and a given MSC has individual 

coefficient rankings { , it would receive an average rank of 11. }

                                                

1013121010 ,,,,

 
1 We use the general formula, .  The values of a and b were determined experimentally, with b 
held constant for given L, and a adjusted with K so that the R

baKεσ =
2 of the estimated equations remained 

approximately constant as K increased. 
2 A typical program with L=15 and a given R2 took 5-6 days to run on our laptops. 
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 There are several advantages to using MSE as a measure of MSC performance.  

First, it coincides with a key goal of estimation: that of producing accurate coefficient 

estimates.  For example, researchers examining the effects of various policy variables 

want accurate estimates of those effects.  Further, it is important to obtain accurate 

estimates for both “relevant” and “irrelevant” variables.   

 Another advantage to using MSE is that is can be decomposed into (i) Bias and 

(ii) Variance components.  Some of the MSC are weak on one dimension, but strong on 

the other, so that their relative performance depends on tradeoffs between Bias and 

Variance.  This can provide insights as to the conditions under which particular MSC are 

likely to be effective. 

 For example, it is well-known that model-averaging over all possible (2L) models 

produces biased coefficient estimates for relevant variables (Hendry and Krolzig, 2005; 

Reed, 2008).  The logic is this:  In each model in which the variable Xk appears, the OLS 

estimate of the associated coefficient is unbiased, ( )kk ββE =ˆ .  However, Xk only appears 

in half of all possible models (2L-1).  In the other 2L-1 models, where Xk is excluded,  is 

set equal to .  It follows that the corresponding weighted average over all possible 

models will be biased.  This, by the way, is the motivation for why some of the MSC do 

not include 0 values when averaging coefficient estimates across models.  On the other 

hand, using an average of estimated coefficients, rather than a single coefficient, reduces 

Variance.  Thus it is possible for an MSC that produces biased coefficient estimates to 

perform better on MSE than an MSC that produces unbiased estimates. 

kβ̂

kβ0 ≠
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 A related example concerns MSC that underfit.  If 0βk ≠ , an MSC that tends to 

underfit will set  every time it does not include variable X0βk =ˆ k in its selected model.  

While these estimates are biased, they could reduce the Variance.  In the extreme, if the 

MSC sets  for every replication, Variance( ) = 0.  The net effect could be a 

lower MSE than produced by an MSC that was more successful in selecting the true 

DGP. 

0βk =ˆ
kβ̂

 Finally, we include a second performance measure, Mean Absolute Deviation 

(MAD).   

(3) 
1000

ββ
 MAD

1000

1r
k

MSC
rk,

MSC
k

∑
=

−
=

ˆ
, k = 1,2, …, L. 

MAD also measures coefficient accuracy, but without the convenient decomposition 

between Bias and Variance.  We include it as a consistency check on our MSE results.  

As with MSE, we calculate an experiment-specific, average MAD rank across all L 

coefficients to measure overall MSC performance. 

 
III.  RESULTS 
 
TABLE 2 summarizes the results from the 120 experiments.  The first three columns use 

Mean Squared Error (MSE) to measure MSC performance.  The next three use Mean 

Absolute Deviation (MAD).  There is little difference between the two.  This result holds 

not only in the aggregate, but also at the level of individual experiments.  As a result, we 

focus the subsequent discussion on MSE. 

 The numbers in the table report average rankings.  A smaller number represents a 

higher ranking, with 1 being the best.  The individual unit of observation is the 

 9



experiment.  For example, the mean MSE ranking for the AIC MSC over all 120 

experiments is 7.22.  The highest ranking achieved by this MSC in any one experiment is 

2.60 (for the experiment L=5, K=4, R2=70%).  This number is itself an average rank over 

the 5 coefficients in that experiment.  The lowest ranking achieved by this MSC is 13.67 

(for the experiment L=15, K=15, R2=35%).   

 In terms of overall performance, the top six MSC in descending order are: 

1. SICC (5.91) 
2. SIC (6.24) 
3. GETS (6.44) 
4. LL_Weighted (6.53) 
5. AICC (6.81) 
6. AIC (7.22) 
 
However, these rankings disguise substantial variation in MSC performance.  For 

example, SICC’s minimum rank is 1.00, achieved in 20 of the 120 experiments.  The 

interpretation of this number is that SICC had the lowest MSE value for every coefficient 

in each of these 20 experiments.  On the other hand, SICC’s maximum rank is 15.00, 

achieved in 5 experiments.  It had the highest MSE for every coefficient in these 

experiments.   

 In terms of overall mean rankings, the portfolio MSC all perform worse than their 

non-portfolio analogs.  For example, the mean ranks for AIC < 2 and AIC < 10  (8.68 

and 9.10, respectively) are worse than for AIC (7.22).  We also find that model averaging 

over all possible models (LL_Weighted) is generally superior to model averaging over 

only those models in which the respective variable appears (LL_Weighted( )), even 

though the former produces biased coefficient estimates.  That being said, there are 

0βk ≠ˆ
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scenarios where portfolio MSC and LL_Weighted( ) do better.  We discuss these 

further below.  In the meantime, we focus discussion on the top 6 MSC identified above. 

0βk ≠ˆ

 FIGURE 1 plots the rankings of these 6 MSC as a function of K, R2, and L; where 

L  represents the total number of variables available to the researcher, K represents the 

number of variables in the DGP, and R2 (approximately) measures the average R2 value 

from estimating a fully specified model in a given experiment.  The individual data points 

consist of the same, experiment-specific, average rankings summarized in TABLE 2. 

 There are a total of 12 graphs in the figure.  Each graph shows how MSC ranking 

changes with K, holding L and R2 constant.  Moving from top to bottom in a given 

column shows the effect of R2 decreasing from 90% to 70% to 50% to 35%, holding L 

constant.  Moving from left to right in a given row shows the effect of L increasing from 

5 to 10 to 15, holding R2 constant. 

 The factors driving the changing, relative performances of the MSC are best 

illustrated through a closer look at the individual experiments.  Consider the case R2 = 

70% and L=5 in FIGURE 1.  Note that SICC goes from best MSC to worst MSC as the 

number of relevant variables (K) increases from 1 to 5.  TABLE 3 allows one to study 

this result in greater detail. 

 The table is divided into 4 panels, each summarizing the results of 1000 

replications of an experiment whose DGP includes K relevant variables and L-K 

irrelevant variables (K=2 to K=5).  The numbers in the table represent coefficient-

specific ranks for each of the MSC using the MSE values calculated from Equation (2).  

Since L=5, there are 5 rows for each panel/experiment.  The first K rows of each panel 
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correspond to the relevant variables.  The following L-K rows correspond to the irrelevant 

ones, with the solid line within each panel separating the two sets of coefficients.   

 For example, when K=3, the AIC rank for the first coefficient is 2.  The 

interpretation is that the 1000 estimates of 1β  taken from the models selected by AIC in 

that experiment produced an MSE value that ranked 2nd lowest among all 15 MSC.  The 

AIC rank for the second coefficient in that experiment is 4.  Thus, the MSE calculated 

from the respective 1000  values was 42β̂
th lowest among all MSC.  Since X1 and X2 are 

both relevant variables, this difference in ranks must be due to sampling variability. 

 We now consider the top panel (K=2) of TABLE 3.  The latter three rows of this 

panel report results for the variables that are excluded from the DGP (the “irrelevant” 

variables).  When it comes to correctly estimating the coefficients of these variables, 

SICC always performs best. The average rank of SICC for the irrelevant variables equals 

1.0 in every panel of TABLE 3.  Further, this result is robust across all experiments, not 

just the ones reported in TABLE 3. 

 The reason for SICC’s top performance with irrelevant variables is due to its 

penalty function.   SICC has the largest marginal cost for adding additional variables 

(followed by SIC, AICC, and AIC, in that order).  It selects, on average, the fewest 

number of variables.  Therefore, it is the MSC most likely to choose model specifications 

that correctly leave out irrelevant variables.  All of the MSC produce unbiased coefficient 

estimates for the irrelevant variables.  However, SICC-selected models have lowest 

variance, since omitted variables are assigned coefficient values of 0.   

 When K is small, SICC also produces the most accurate coefficient estimates for 

the relevant variables.  Its average performance rank for relevant variables when K=1 
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(not shown) and K=2 is 1.0.  When K=3, it rises to 2.7, which is still lowest among the 

MSC.  The explanation again is due to the variance component of MSE.  When K is 

relatively small, SICC-selected models are the most likely to be correctly specified, and 

thus the most likely to produce accurate estimates.  In contrast, the model specifications 

of other MSC’s are more likely to include irrelevant variables (overfit).  This reduces the 

precision of the estimated, relevant coefficients due to multicollinearity. 

 When the number of relevant variables increases further, SICC’s performance 

worsens relative to the other MSC.  When K=4,  Average(Relevant) = 7.0, higher than all 

other MSC’s.  When K=5, Average(Relevant) = 15.0, which means that SICC performs 

dead last among all MSC.  The reason is twofold:  As K increases, SICC becomes more 

likely to leave out relevant variables from the regression (underfit).  This biases 

coefficient estimates of the relevant variables.  Further, as L – K gets smaller, the 

opportunity narrows for other MSC to include irrelevant variables (i.e., less overfitting).  

This makes their estimates of the relevant variables more precise.  The combination of 

these two effects causes SICC’s relative performance to deteriorate quickly as K gets 

close to L.  Indeed, this behaviour is evident in all 9 panels of FIGURE 1. 

 The changing, relative performance of SICC in TABLE 3 is illustrative of the 

factors that influence MSC performance.  Underfitting biases coefficient estimates of 

relevant variables.  Overfitting increases the variance of both relevant and irrelevant 

variables.  The importance of these effects is weighted by the ratio of relevant to 

irrelevant variables (K/L) in the DGP and, as we shall see below, the “signal-to-noise” 

ratio as represented by the R2 of the equation (cf. McQuarrie and Tsai, 1998).  These 

factors combine to determine overall MSC performance.   
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 Turning back to FIGURE 1, one observes some correspondence in the relative 

performance of the MSC within rows.  The MSC rankings are related to the position of K 

relative to L.  This is consistent with the performance effects we identify above.  It further 

confirms K/L as an important parameter in MSC performance.   

 R2 also matters.  This can also be related to the effects identified above.  As the 

error term grows larger, the respective MSC differ in their abilities to (i) correctly include 

and (ii) correctly exclude variables.  As discussed above, this feeds into the bias and 

variance components of MSE to determine overall performance.3

 TABLE 4 reports the results of a simple regression where MSC performance is 

regressed on K/L and R2.  The units of observation are the 120 experiments summarized 

in TABLE 2.  Except for LL_Weighted, these two parameters explain about half of the 

overall variation in MSC rankings.  R2 is significant in every regression.  K/L is 

significant in every regression except the LL_Weighted equation. 

 Based on the preceding experimental results, we make the following observations:  
 
1. When K/L is relatively small (i.e., when 0.40K/L ≤ ), SICC is almost always the 

best MSC.  Forty-eight of the 120 experiments fit these criteria, and SICC 
performs better than the other MSC in all but three of these experiments.  

 
2. When R2 = 90%, SICC outperforms all other MSC except when K is very close to 

L (i.e., when ).  Twenty-six of the 120 experiments fit these criteria, 
and SICC performs better than the other MSCs in every one of these experiments. 

0.90K/L ≤

 
3. The only other MSC which is consistently superior for given ranges of K/L and R2 

values is LL_Weighted.  LL_Weighted tends to do well when R2 < 90% and K/L is 
relatively large.  However, the performance of LL_Weighted never dominates to 

                                                 
3 The reader might notice that MSC performance is less consistent for the smallest R2 cases (bottom row of 
FIGURE 1).  This may be explained as follows:  As discussed above, as we increase K, we also increase the 
variance of the error term in the DGP in order to keep R2 relatively constant.  However, we were unable to 
push R2 much below 35%.  Increasing the variance of the error term beyond a certain point had virtually no 
effect on R2. Practically, that meant that there was not a one-to-one mapping between the variance of the 
error term and R2, which makes conformity within rows more tenuous.  This is not a problem as long as R2 
is above its lower threshold. 

 14



the degree that SICC does.  For example, there are 48 experiments where R2 < 
90% and .  LL_Weighted does best in about three-fourths of these. 0.50K/L >

 

  Results for Portfolio Models.  As discussed above, several authors argue that it is 

better to select a set of “good” models, as opposed to a single, best model (Poskitt and 

Tremayne, 1987; Kuha, 2004; Burnham and Anderson, 2004).  An argument in favor of 

this portfolio approach is that the MSC are themselves random variables.  “Single best” 

MSC will select inferior model specifications as a result of sampling variability.  

Portfolio MSC have a greater probability of selecting the true DGP as additional models 

are selected. 

 There is an additional argument in favor of portfolio MSC that relates to the use 

of MSE as a measure of MSC performance.  Averaging coefficient estimates can reduce 

variance.4  If the additional coefficient estimates are unbiased, a reduction in MSE is 

possible.  We average over nonzero coefficient estimates only.  If the variable is relevant, 

and a given model in the portfolio does not include this variable, then including the 

associated zero coefficient will bias the average, possibly mitigating – and even reversing 

– the advantage of averaging.  The “less extreme bounds analysis” employed by Reed 

(2008) relies on the same motivation for identifying “robust” variables.  

 TABLE 2 makes clear that this approach does not, in general, result in improved 

MSC performance.  All of the portfolio models are dominated in mean overall 

performance by their non-portfolio counterparts.  However, when R2 is low, and K/L is 

relatively high, portfolio models can consistently outperform “single best” models. 

 TABLE 5 illustrates the main issues using the L=5 experiments for the AIC MSC.  

The left hand side of the table reports coefficient-specific performance for each of the 
                                                 
4 This assumes that the additional coefficient estimates do not have larger variances. 
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respective MSC when R2 is high.  The right hand side does the same when R2 is low.   

When R2 = 90%, (“single best”) AIC does a relatively good job of selecting the correct 

DGP.  The additional models included by the portfolios are inferior/misspecified models.   

As a result, the portfolio AIC’s generally do a worse job estimating coefficients for both 

relevant and irrelevant variables. 

 In contrast, when R2 is low (R2 = 35%),  (“single best”) AIC tends to do a 

relatively poor job of including the correct variables.  When the correct variable is not 

included in the best AIC specification, its coefficient is estimated to be zero, contributing 

to the bias-component of MSE.  In contrast, portfolio models have a greater likelihood of 

including the correct variable.  Not only will each of these estimates be unbiased, but 

averaging multiple coefficient estimates should reduce the variance-component of MSE.   

 TABLE 5 provides evidence of this.  With only one exception (K=1), AIC<2 and  

AIC< 10  have larger MSE’s for the relevant variables than (“single best”) AIC when 

R2=90%.  In contrast, when R2=35%, AIC<2 and AIC< 10  perform better than AIC 

across all relevant variables, with no exceptions. 

 The advantage enjoyed by portfolio MSC on relevant variables when R2 is low 

does not extend to irrelevant variables.  The imposed restriction that portfolio MSC 

average only over non-zero coefficients inflates the variance-component of MSE 

whenever the single-best AIC would have chosen a model that did not include the 

irrelevant variable.  This is illustrated in TABLE 5.  A comparison of AIC<2 and  

AIC< 10  with AIC shows little difference in relative performance for the irrelevant 

variables between high and low R2 experiments.   
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 When R2 is low and (K/L) increases, the advantage that portfolio models have on 

relevant variables causes their overall ranking to improve.  This is evidenced by the three 

columns on the right-hand side of TABLE 5.  When K=1, the average rank of the AIC 

MSC is 6.6, compared to 9.7 for the two portfolio models.  As one moves down the 

panels, the relative rank of the AIC MSC gets larger, while those of the portfolio models 

get smaller.  When K=5, AIC has an average rank of 11 compare to 5.1 for the portfolio 

models.   

 While the preceding discussion has focused on AIC, the arguments carry over to 

the other portfolio models.  TABLE 6 reports that, over all 120 experiments, the portfolio 

models for the AIC, AICC, SIC, and SICC do better than their single-best counterparts 

about a third of the time.  When the sample of total experiments is restricted to those 

where (i) R2 is 35% or 50% and (ii) (K/L) > 0.50 this proportion rises to about three-

fourths.   

 The last row shows that a portfolio model was top-ranked of all 15 MSC in 

approximately one out of 6 experiments.  For the sample of experiments where (i) R2 was 

35% or 50% and (ii) (K/L) > 0.50, a portfolio model was best in approximately one out of 

2 experiments.  

 To summarize, our results lead us to make the following observation:  

4. Portfolio models are most likely to do better than their single-best counterparts 
when R2 is relatively low and the proportion of relevant variables (K/L) is 
relatively high.    

 

 Results for Bayesian Model Averaging.  Like the portfolio models discussed 

above, Bayesian Model Averaging (BMA) relies on averaging coefficient estimates 
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across a set of models.   However, BMA uses a weighted average.  Individual coefficient 

estimates are weighted by their posterior model probabilities.   

 In a recent paper, Sala-i-Martin et al. (2004) propose a procedure for obtaining an 

overall estimate of  in which all possible models are weighted by their respective log-

likelihood values.   Given L candidate variables, there are 2

kβ

L total variable combinations, 

and hence 2L possible models.  2L-1
 of these models contain Xk, and 2L-1

 do not.  Models 

that do not contain Xk are assigned a coefficient estimate of zero.  The 2L-1
 nonzero 

coefficient estimates and the 2L-1
 zero values are combined to produce a single, weighted 

average estimate of kβ .   

 This procedure will produce a biased coefficient estimate for any variable whose 

true coefficient is nonzero ( ).  Each of the 20βk ≠
L-1

 models containing Xk produces an 

unbiased estimate of .  Therefore, any linear combination of these with zero values 

biases the estimate of  towards zero.  This bias is mitigated to the extent that the 

models that (incorrectly) exclude X

kβ

kβ

k receive small weights.   

 When it comes to MSE, there are both bias and variance considerations.  For 

relevant variables, these two conflict.  Adding the 2L-1 models that do not include Xk 

reduces variance; both because more models are included in the average, and because 

these additional models assign the scalar 0 as their coefficient estimate.  For relevant 

variables, the net effect on MSE of including the 2L-1 (incorrect) models that do not 

contain Xk is ambiguous. 

 For irrelevant variables, there is no ambiguity.  ( ) 0βE k =ˆ  for each of the 2L 

models.  As a result, there is no bias penalty from calculating a weighted average using 

 18



all possible models.  At the same time, there is an unambiguous decrease in the variance, 

for both of the reasons identified above.  As a result, MSE is unambiguously lower for 

irrelevant variables when the weighted average of kβ  is calculated using all 2L models. 

 To summarize, we cannot predict how LL_Weighted and LL_Weighted( ) 

will compare for relevant variables, but LL_Weighted should perform best for irrelevant 

variables.  Panel A of TABLE 7 illustrates these effects for the experiment L=10, 

R

0≠β̂

2=50%, and K=4.  The first four variables have nonzero population coefficients in the 

DGP, and the remaining 6 do not.  LL_Weighted( ) outperforms LL_Weighted  for 

each of the four relevant variables.  This is an example of the bias advantage of 

LL_Weighted( ) MSC outweighing its variance disadvantage.  However, as 

predicted, LL_Weighted is the better MSC for the six irrelevant variables.  Overall, the 

superior performance of LL_Weighted for the irrelevant variables is sufficient to produce 

a better overall ranking (6.7 versus 10.2). 

0≠β̂

0≠β̂

 Panel B of TABLE 7 continues the comparison of LL_Weighted and 

LL_Weighted( ), but focuses solely on the relevant variables.  When R0≠β̂ 2 is large, and 

thus the variance of the estimated coefficients is relatively small, the bias effect 

dominates and LL_Weighted( ) outperforms LL_Weighted.  As R0≠β̂ 2 decreases, the 

variance of  increases, and the performance of LL_Weighted( ) deteriorates. kβ̂ 0≠β̂

 Finally, we consider the overall performance of these MSC.  When performance 

is aggregated over both relevant and irrelevant variables, LL_Weighted does better than 

LL_Weighted( ) in 92 of the 120 experiments.  As suggested by Panel B, 0≠β̂
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LL_Weighted( ) performs best when R0≠β̂ 2 is high and K/L is large.  This leads us to 

our final observation: 

5. Bayesian Model Averaging using all possible models generally does better than 
using only those models having nonzero estimated coefficients, except when both 
R2 and K/L are relatively high. 

 
 
IV.  CONCLUSION 

This study compares the performance of a large number of model selection criteria 

(MSC).  It is distinguished from previous studies in a number of ways.  It includes a 

larger number of MSC than previous studies (15).  It includes a wider variety of MSC.  

We examine (i) conventional information criteria such as the AIC and SIC, (ii) General-

to-Specific modelling, (iii) portfolio modeling where a set of models are chosen rather 

than a “single best” model; and (iv) Bayesian model averaging where models are 

weighted by their posterior probabilities to produce a composite model.   

 An innovation of our study is that we use the Mean Squared Error of individual 

coefficients as our performance measure.  This has the advantage of allowing us to 

classify MSC performance in terms of bias and variance.  We show how this provides a 

useful framework for understanding the relative performances of MSC.  

 A further contribution of our study is that we relate MSC performance to two 

“observable” regression characteristics: (i) R2 and (ii) the ratio of relevant to total number 

of candidate variables (K/L).  While the latter cannot be directly observed, it can be 

indirectly approximated from regression results.  In any case, we argue that this is an 

improvement over the methodology of Sala-i-Martin (2004) whose approach requires that 

the researcher assume the absolute number of relevant variables. 
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 Our experimental results indicate that there is no best MSC for all R2 and K/L  

values.  However, for certain ranges of R2 and K/L values, we find that some MSC 

perform consistently better than others.  Our main experimental results are summarized 

as follows: 

1. We find that the overall best model selection criterion is the small-sample 
corrected version of the Schwarz Information, SICC (McQuarrie, 1999).  
However, there is much variation in MSC performance and no model selection 
criterion works best in all circumstances. 

 
2. SICC consistently outperforms other MSC when either R2 is very high or K/L is 

relatively small. 
 
3. Bayesian Model Averaging, where all possible models are weighted by their 

maximized log-likelihood values, tends to outperform other MSC when R2 is 
relatively low and K/L is relatively large. 

 
4. Portfolio models are usually dominated by their single-best counterparts; 

however, they can do better when R2 is relatively low and the proportion of 
relevant variables (K/L) is relatively high 

 
5. Bayesian Model Averaging using all possible models generally does better than 

using only those models having nonzero estimated coefficients, except when both 
R2 and K/L are relatively high.   

 
 These results come with many caveats.  First, our Monte Carlo analyses are based 

on small sample sizes (N = 75).  We need to confirm whether these results hold as sample 

size increases.  Second, our Monte Carlo analyses are based on a single set of coefficient 

values for relevant variables.  We need to confirm the robustness of our results for 

alternative coefficient values.  Third, our Monte Carlo analyses assume that the 

explanatory variables are orthogonal, and that the error term in the DGP is spherical.  

Fourth, our experimental design assumes that the true model is one of the candidate 

models.  Fifth, alternative performance measures, such as reliability of hypothesis testing 
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as opposed to MSE of estimated coefficients, could result in different conclusions 

regarding MSC performance.   

 That being said, the main contribution of our study is that it highlights the value 

of information criteria in general – and the SICC in particular – as an effective model 

selection criterion.   Recent research in economics has emphasized the utility of General-

to-Specific modeling and Bayesian Model Averaging (Hendry and Krolzig, 2005; Sala-i-

Martin et al., 2004).  Our results suggest that the SICC may prove superior in many 

circumstances.  This would be good news from a computational perspective.  Because 

information criteria use the sum of squared residuals from linear regressions, it is now 

relatively easy to search over very large numbers of models in order to find a single best 

model, or set of models.  For example, Reed (2008) appends a standard procedure in SAS 

that relies on the “leaps and bounds” algorithm developed by Furnival and Wilson 

(1974).  He is able to sort through all possible combinations of 60 variables – a total of 

approximately 1018 models  – to find a best AIC and best SIC model.  The associated 

computer program requires about an hour to run on a standard desktop computer.  It is 

hoped that this study stimulates further research into these topics. 
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TABLE 1 
Description of Model Selection Criteria 

Information Criterion (IC) Models: 

1)  AIC ( ) ( )
N

2K2σlnAIC 2 +
+=

~
ˆ  

2)  AICC ( ) ( )
( )3KN

1KNσlnAICC 2

−−
++

+= ~
~

ˆ  

3)  SIC ( ) ( ) ( )
N

Nln1KσlnSIC 2 ⋅+
+=

~
ˆ  

4)  SICC ( ) ( ) ( )
( )3KN

Nln1KσlnSICC 2

−−
⋅+

+= ~
~

ˆ

kβ̂  is the estimate of  in the model with the minimum IC 

value.  If does not appear in that model, . 
kβ

kX 0βk =ˆ

NOTE:   is the maximum likelihood estimate of the 
variance of the error term; 

2σ̂
K~  is the number of coefficients 

in the model excluding the intercept; and N is the number of 
observations. 

General-to-Specific Modelling: 

13)  BWStepwise(5%)
kβ̂  is the estimate of  in the regression model selected through the following iterative 

process:  
kβ

Step One:  Estimate the full model with all variables.  Step Two:  Exclude the 
variable with smallest t-statistic.  Step Three:  Continue the process until all variables have a 
t-statistic greater than or equal to the 5% critical value (two-tailed test). 

(14)  Autometrics(1%) kβ̂  is the estimate of  in the model chosen by the “Autometrics” program in PCGive 12 

(1% criterion).  If does not appear in that model, . 
kβ

kX 0βk =ˆ

Portfolio Models: 

6) AIC < 2 

7) AICC < 2 

8) SIC < 2 

9) SICC < 2 

kβ̂  is the average value of  estimates from the portfolio of models that lie within a distance kβ

2=ℜ  of the respective minimum IC model, where ( )⎥⎦
⎤

⎢⎣
⎡ −−=ℜ mminm ICIC

2
1exp , ICmin  is the 

minimum IC value  among all 2L models, and ICm is the value of the respective IC in model 
m, m=1,2,…,2L.  If does not appear in any of the portfolio models, . kX 0βk =ˆ
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Portfolio Models (continued): 

10) AIC < 10  

11) AICC < 10  

12) SIC < 10  

13) SICC < 10  

Same as above, except 10=ℜ . 

Bayesian Model Averaging: 

14)  LL_Weighted

kβ̂  is the weighted average value of  estimates over all 2kβ
L models, where model weights 

are determined according to 

∑
=

= L2

1m
m

m
mω

l

l
, m=1,2,…,2L, and  is the maximized value of the 

log likelihood function for model m.  For the 2

l

L-1  models where does not appear in any of 

the portfolio models, . 
kX

0βk =ˆ

15) LL_Weighted( ) 0βk ≠ˆ

kβ̂  is the weighted average value of  estimates over the 2kβ
L-1 models where  is included 

in the regression equation.  Model weights are determined according to 
kX

{ }
∑

∈

=

kX variable the contain that modelsm
m

m
mω

l

l
. 
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TABLE 2 
Comparison of MSC Performance 

 
MSE MADMSC Mean  Minimum Maximum Mean Minimum Maximum

AIC 7.22      2.60 13.67 7.13 2.60 13.07

AIC < 2 8.68      4.97 11.35 8.67 4.90 11.30

AIC < 10  9.10      4.97 12.93 9.07 4.90 12.80

AICC 6.81      2.60 13.00 6.84 2.40 13.87

AICC < 2 8.71      4.97 11.30 8.67 4.90 11.30

AICC < 10  9.10      4.97 12.93 9.07 4.90 12.80

GETS 6.44      2.50 13.60 6.44 2.40 13.73

LL_Weighted 6.53      1.47 9.40 6.86 1.87 10.00

LL_Weighted( ) 0βk ≠ˆ 9.70      3.00 15.00 9.48 3.20 15.00

SIC 6.24      2.00 14.20 6.27 2.00 14.10

SIC < 2 8.70      4.97 11.30 8.68 4.90 11.30

SIC < 10  9.10      4.97 12.93 9.07 4.90 12.80

SICC 5.91      1.00 15.00 6.01 1.00 15.00

SICC < 2 8.67      4.97 11.50 8.65 4.90 11.30

SICC < 10  9.10      4.97 12.93 9.07 4.90 12.80
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TABLE 3 
Experimental Results for the Case R2 = 70%, L = 5 

 

 AIC AICC GETS LL_Weighted SIC SICC 

K=2:       
1 5 4 3 7 2 1 
2 5 4 3 7 2 1 
3 5 4 3 6 2 1 
4 5 4 3 6 2 1 
5 5 4 3 6 2 1 

Average(Irrelevant) 5.0 4.0 3.0 6.0 2.0 1.0 
Average(Relevant) 5.0 4.0 3.0 7.0 2.0 1.0 
Average(Overall) 5.0 4.0 3.0 6.4 2.0 1.0 

K=3:       
1 2 1 5 4 7 6 
2 4 5 3 7 2 1 
3 5 4 3 7 2 1 
4 5 4 3 6 2 1 
5 5 4 3 6 2 1 

Average(Irrelevant) 5.0 4.0 3.0 6.0 2.0 1.0 
Average(Relevant) 3.7 3.3 3.7 6.0 3.7 2.7 
Average(Overall) 4.2 3.6 3.4 6.0 3.0 2.0 

K=4:       
1 3 2 4 6 5 7 
2 1 3 6 4 5 7 
3 1 2 6 4 5 7 
4 3 2 6 4 5 7 
5 5 4 3 6 2 1 

Average(Irrelevant) 5.0 4.0 3.0 6.0 2.0 1.0 
Average(Relevant) 2.0 2.3 5.5 4.5 5.0 7.0 
Average(Overall) 2.6 2.6 5.0 4.8 4.4 5.8 

K=5:       
1 2 3 13 4 14 15 
2 2 3 5 4 6 15 
3 2 3 5 4 6 7 
4 2 3 5 4 6 15 
5 9 10 12 13 14 15 

Average(Overall) 3.4 4.4 8.0 5.8 9.2 13.4 
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TABLE 4 
MSC Performance as a Function of R2, K/L, and K 

 
 Coefficient t-Stat p-value 

Dep. Variable = AIC, R-squared = 0.429
Constant 8.202 16.91 0.000 

K/L 3.480 6.06 0.000 
R2 -0.047 -6.30 0.000 

Dep. Variable = AICC, R-squared = 0.517
Constant 7.362 13.40 0.000 

K/L 5.219 7.83 0.000 
R2 -0.056 -6.69 0.000 

Dep. Variable = GETS, R-squared = 0.522
Constant 6.283 8.98 0.000 

K/L 7.090 9.02 0.000 
R2 -0.061 -5.61 0.000 

Dep. Variable = LL_Weighted, R-squared = 0.205
Constant 4.444 10.77 0.000 

K/L 0.031 0.07 0.947 
R2 0.034 5.01 0.000 

Dep. Variable = SIC, R-squared = 0.496
Constant 4.888 6.22 0.000 

K/L 8.287 9.16 0.000 
R2 -0.052 -4.23 0.000 

Dep. Variable = SICC, R-squared = 0.481
Constant 3.531 3.89 0.000 

K/L 10.004 9.45 0.000 
R2 -0.051 -3.41 0.001 

 
 NOTE:  All equations are estimated using OLS.  Each regression uses 120 

observations, with each observation corresponding to a single experiment.    
 The dependent variable is the average rank of the respective MSC in a given 

experiment.  Standard errors are robust to heteroscedasticity. 
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TABLE 5 
Comparison of AIC Portfolio Models as a Function of K and R2

 
 R2 = 90% R2 = 35%

 AIC AIC < 2 AIC < 10  AIC AIC < 2 AIC < 10  

K=1   
1 13 7.5 7.5 13 4.5 4.5 
2 5 9 13.5 5 10.5 10.5 
3 5 11 13.5 5 11.5 11.5 
4 5 9 13.5 5 10.5 10.5 
5 5 11 13.5 5 11.5 11.5 

Average 6.6 9.5 12.3 6.6 9.7 9.7 

K=2       
1 5 15 9.5 10 4.5 4.5 
2 5 10 13.5 11 4.5 4.5 
3 5 8 13.5 5 11.5 11.5 
4 5 8 13.5 5 10.5 10.5 
5 5 11 8.5 5 10.5 10.5 

Average 5 10.4 11.7 7.2 8.3 8.3 

K=3       
1 4 8 13.5 11 5.5 5.5 
2 4 8 13.5 11 5.5 5.5 
3 5 8 13.5 11 5.5 5.5 
4 5 8 13.5 5 10.5 10.5 
5 5 12 8.5 5 10.5 10.5 

Average 4.6 8.8 12.5 8.6 7.5 7.5 

K=4       
1 2 8 13.5 11 5.5 5.5 
2 4 15 10.5 11 4.5 4.5 
3 4 8 13.5 11 6.5 6.5 
4 5 11 13.5 11 4.5 4.5 
5 5 12 8.5 5 10.5 10.5 

Average 4 10.8 11.9 9.8 6.3 6.3 

K=5       
1 3 8 12.5 11 4.5 4.5 
2 3 8 13.5 11 5.5 5.5 
3 3 8 13.5 11 6.5 6.5 
4 4 8 13.5 11 4.5 4.5 
5 11 8 3 11 4.5 4.5 

Average 4.8 8 11.2 11 5.1 5.1 
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TABLE 6 
Performance of Portfolio Models 

 
 

 

Over All Experiments 
Over All Experiments Where 

(i) R2 = 35% Or 50% and 
(ii) K/L > 0.50 

AIC Portfolio Models Better 
Than AIC Models 37/120 = 30.8% 25/32 

AICC Portfolio Models 
Better Than AICC Models 39/120 = 32.5% 25/32 = 78.1% 

SIC Portfolio Models  
Better Than SIC Models 41/120 = 34.2% 26/32 = 81.2% 

SICC Portfolio Models 
Better Than SICC Models 38/120 = 31.7% 23/32 = 71.9% 

A Portfolio Model 
Dominates All Other Models 21/120 = 17.5% 15/32 = 46.9% 
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TABLE 7 
Comparison of Alternative Log-Likelihood Weighted Models 

 
 

A.  An Illustrative Example:  The Case of L = 10, R2 = 50%, and K = 4 
 

 
LL_Weighted(All) LL_Weighted( ) 0>β̂

1 10  1
2 10  9
3 2  1
4 10  9
5 6  15
6 6  15
7 5  15
8 6  15
9 6  7
10 6  15

Average 6.7  10.2
 
 
B.  Percentage of Individual Experiments where LL_Weighted( ) Dominates LL_Weighted(All) for the Included Variables 0≠β̂

 
 R2=90%     R2=70% R2=50% R2=35% Sum

L = 5 %.39315
14 =  %.010015

15 =  %.010015
15 =  %.010015

15 =  %.39860
59 =  

L = 10 %.29855
54 =  %.010055

55 =  %.86155
34 =  %.8155

1 =  %.565220
144 =  

L = 15 %.0100120
120 =  %.0100120

120 =  %.095120
114 =  %.33120

4 =  %.674480
358 =  

Sum %.998190
188 =  %.0100190

190 =  %.885190
163 =  %.510190

20 =  %.473760
561 =  
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FIGURE 1 
MSC Performance as a Function of K, R2 and L 
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FIGURE 1 (continued) 
MSC Performance as a Function of K, R2 and L  
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