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Abstract

This paper examines some existing forecasting techniques that can be used

when the forecasting model has possibly undergone structural changes at un-

known points in time. We also propose two new forecast methods that are de-

signed to account for structural changes. The proposed combination forecasts

are evaluated using Monte-carlo techniques, and they outperform forecasts

based on other methods that try to account for structural change, including

average forecasts weighted by the past forecasting performance and techniques

that first estimate a break point and then forecast using the post break data.

An empirical application based on a NAIRU Phillips curve model for the

United States indicates that it is possible to outperform the random walk

forecasting models when we employ the forecasting methods to account for

break uncertainty.
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1 Introduction

The forecasting of economic variables is often complicated by the possibility that the pa-

rameters in the underlying data generating process (DGP) might have changed at various

points in time during the pre-forecast sampling period. In this paper, we define structural

breaks as permanent shifts in parameters of a DGP, and we focus on the problem that

structural breaks often affect the forecasts that rely on model estimation. The failure to

identify in-sample breaks that change the data generating process produces biased param-

eter estimates and thus contaminates the model’s out-of-sample forecasting performance.

Ideally, if information on breaks, such as breakpoints and break sizes, is known, we can

decide the estimation window size according to the trade off between the bias and fore-

cast error variance to improve the out-of-sample means squared forecasting errors (see

Pesaran and Timmermann, 2007). However, forecasters are commonly in the absence of

the knowledge on structural breaks.

The main motivation for this paper is to determine how to choose the forecasts based

on different estimation windows under break uncertainty. There are two main contribu-

tions of this paper. First, we propose a new weighting scheme that utilizes the recursively

ordered Cusum squared (ROC) test results to average the forecasts based on different es-

timation windows. We also propose a second forecasting weighting technique that simply

places more weights on the forecasts based on more recent samples. Second, we evalu-

ate the forecasting ability of the NAIRU Phillips curve on the U.S. 12-month inflation

changes using this method and the other existing approaches to deal with structural break

uncertainty, and have showed improved forecasting performance.

The idea of combining forecasts across various estimation samples reflects the theoret-

ical point in Pesaran and Timmermann (2007) that forecasting performance can be better

off with including pre-break data. The reason to implement the ROC test proposed by

Pesaran and Timmermann (2002) is to obtain some knowledge of the most recent break-

point under the break uncertainty. We treat each in-sample time as a possible most-recent

break and generate forecasts using data after those time. The averaging weights are built

on the probability of each in-sample time being the last break, which we use the ROC test

statistics and a prior function that indicates the location of each time point to approxi-

mate. We also examined a set of other methods producing either a single forecast or an

averaging forecast to incorporate break uncertainty problem.

To investigate the forecasting performance of these techniques that account for struc-

tural breaks in practice, we employ the unemployment-based NAIRU Phillips curve model

to forecast the U.S. 12-month inflation changes. Although Stock and Watson (1999) find
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statistically significant shifts of the coefficients in the NAIRU model, they claim that the

existing methods that facilitate parameter instability such as rolling regression do not

produce better forecasts than expanding window forecasts and thus ignore the breaks. It

seems that the other authors follow the same reason and only focus on a full sample esti-

mation (see Atkeson and Ohanian, 2001; Fisher et al., 2002). An important contribution of

this paper is to show the usefulness of dealing with structural breaks in inflation forecasts.

Our out-of-sample forecasting results show that the average forecast weighted by ROC-

statistics and the prior function the breakpoint location achieves a reduction of MSFEs

comparing with expanding window forecasts. In particular, the location based weighting

scheme that places more weight on the more recent information shows a powerful fore-

casting ability. In addition, the other break-dealing methods such as the cross-validation

method, 2-stage ROC method, the Bai-Perron method, simple average forecasts and the

MSFE-weighted forecasts can all improve the forecasting ability of the unemployment-

based NAIRU Phillips curve model and defeat the random walk forecasts of zero inflation

changes.

The outline of the paper is as the follows. The next section explains the details of

the forecasting methods that account for structural break uncertainty, including the new

combination weighting scheme that implies the probability of each time point to the most

recent break. These methods are firstly examined by the Monte Carlo simulations in

section 3. We then turn in the section 4 to employ these approaches to conduct an out-of-

sample forecasting exercise of the U.S. 12-month inflation changes based on the NAIRU

Phillips curve model.

2 Forecasting Methods

Assume that the following linear model is subject to m structural breaks (T1, T2, ..., Tm):

yt = X
′
t−1βj + ut, j = 1, 2, ..., m + 1 and Tj−1 + 1 ≤ t ≤ Tj (1)

Here yt is the dependent variable at time t and Xt−1 is a p× 1 vector of regressors at time

t−1. The 1×p vector of βj denotes the values of coefficients of regressors in each segment j.

This setup, often named as the pure structural break model, implies that when a structure

break occurs, all of p coefficients will shift permanently until the next breakpoint. Since

we are not considering the model’s misspecification problem caused by structural breaks,

we let the vector of regressors X keep the same across all of the segments.
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2.1 Single Forecast

Under breakpoint uncertainty, forecasters usually use structural break tests to identify

break dates and obtain a better forecast, by working with a forecasting model that only

uses data subsequent to the identified most recent break. Considering the likelihood of

the occurrence of multiple breaks, we adopt a two-stage reversed ordered Cusum method

and the Bai-Perron method to detect and estimate the most recent breakpoint.

An alternative approach to determine an appropriate estimation window and produce

an associated single forecast is the cross-validation method. On the contrast to the ap-

proaches that explicitly identify breakpoints, the cross-validation method firstly calculates

a set of forecasts based on various estimation windows and then search for the “best” one

that produces an optimal criterion (e.g. MSFE) over a “testing” sample prior to the

forecasting period.

2.1.1 Bai-Perron Method

The Bai-Perron Method (see Bai and Perron, 2003) estimates the number of multiple

breaks and identifies the break locations. It requires assumptions on the maximum num-

ber of breaks and the minimum distance between every two breaks. Suppose that the

maximum number of breaks is M and h denotes the minimum break distance. For every

option of the number of breaks m = 1, 2, ..., M , the estimated locations of breaks {T̂j} are

derived by minimizing the global sum of squared residuals, such that:

(T̂1, .., T̂m) = argmin(T1,...,Tm)

m+1∑

j=1

Tj∑

t=Tj−1+1

(yt −X
′
t−1β̂j)2 (2)

where Tj − Tj−1 ≥ h and the least squares estimates of coefficients {β̂j} are associated

with the m estimated breakpoints {T̂j}.
Bai and Perron (2003) introduce some approaches to determine the number of breaks

from {m : |1 ≤ m ≤ M}. In this paper, we use the Schwartz information criterion

(BIC) to select the number of breaks after the optimal locations of breakpoints have been

determined for each value of m.

The Bai-Perron method can consistently estimate the number of breaks and the break-

points in the presence of multiple parameter changes. However, the estimation results are

subject to the assumptions on the maximum number of breaks M and the minimum dis-

tance between breaks h. Further, estimation of breakpoints can be imprecise when some

breaks are small and a forecast that relies on imprecisely estimated breakpoints is unlikely
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to be reliable.

2.1.2 Two-Stage ROC Method

Two-stage reversed ordered Cusum (ROC) method is proposed by Pesaran and Timmer-

mann (2002) for dealing with parameter instability problem in forecasting the U.S. stock

returns. Based on a Cusum squared test that is often applied for testing a single structural

break, they conduct a backward looking Cusum squared test to directly estimate the most

recent break as the first step.

Suppose the observation matrices yT :τ and XT :τ are in a reversed time order given by:

y
′
T :τ = [yT , yT−1, ..., yτ+1, yτ ], X

′
T :τ = [XT , XT−1, ..., Xτ+1, Xτ ].

With the minimum estimation window size w̄ = T − T̃ , we derive the least squared

estimates of β as:

β̂τ = (X
′
T :τXT :τ )−1X

′
T :τyT :τ , τ = T̃ , T̃ − 1, ..., 2, 1. (3)

The ROC test statistics sτ are constructed based on the squares of standardized one-step-

ahead recursive residuals vτ from the reversed ordered regression:

sτ =

∑τ
j=T̃

v2
j∑1

j=T̃
v2
j

, τ = T̃ , T̃ − 1, ..., 2, 1, (4)

where vτ is computed as:

vτ =
yτ − β̂

′
τ+1Xτ√

1 + X ′
τ (X

′
T :τ+1XT :τ+1)Xτ

. (5)

To estimate the most recent break, we choose the first time that the ROC test statistics

sequence sτ crosses one of the lines of critical values (T̃ − τ + 1)/(T̃ )± c0 in which c0 can

be simulated based on Brown et al. (1975) 1.

Conditional on the detection of parameter shifts, in the second step of the two-stage

ROC method, we trim all the data prior to the estimated most-recent breakpoint and

only use the post-break sample to estimate forecasting models. If no break is identified

by ROC test, a full-sample estimation will be implemented. Therefore, a possible failure

1This ROC procedure does not produce consistent estimate of breaks since there is always α
probability of falsely rejecting the null hypothesis of parameter constancy, where α is the test level.
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for the ROC test to detect a mall in-sample parameter shift may result in a poor forecast

from using the full sample to estimate forecasting models.

2.1.3 Cross-validation

The cross-validation method provides us with a way to choose the “best” estimation

window for forecasting models without estimating breakpoints. Given a test sample [T −
w̃+1 : T ] including w̃ observations, the optimal estimation window is chosen to start from

time t∗0 if it minimizes some criterion such as the MSFE over the test sample:

t∗0(T, w̄, w̃) = argmint0=1,..,T−w̄−w̃{w̃−1
T−1∑

τ=T−w̃

(yτ+1 −X
′
τ β̂t0:τ )2}. (6)

This method can be less reliable if a break occurs during the predetermined test period.

In other words, to apply this approach effectively, we need some pre-knowledge of the

location of the most recent break, which is unlikely to happen in practice. After studying

the evidence shown in many empirical papers, Timmermann (2005) concludes that a single

forecast with the best tracked record often performs badly in out-of-sample experiments.

2.2 Forecasting Combination

A single forecast with one estimation window determined by the identification of the most-

recent breakpoint may not be optimal. Apart from the problems of each method addressed

above, even if one can estimate the locations of breaks accurately, due to the trade-

off between the bias and forecast error variance, the forecasting performance measured

by MSFE can be improved when pre-break data is included to estimate parameters of

forecasting models, especially if the break is not large or the most-recent breakpoint is

very close to the end of the sample.

Averaging forecasts based on different estimation windows is one approach that can

be used to include more data other than post-break information. Then the question is

how to weight forecasts that are based on different estimation windows. In this paper, we

examine the forecasting performance of the equal weighting scheme and relative perfor-

mance weighting scheme. We also propose a new combination method that incorporates

the results of the reversed ordered Cusum squared test.
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2.2.1 Equally Weighted Forecasts

A simple but powerful combination method that deals with break uncertainty is to equally

average forecasts based on different estimation windows. Under the assumption that the

last break τ can only occur in [τ0 : T − w̄] that is subject to the minimum estimation

window size w̄, we compute the equally weighted forecast as:

ŷT+1 =
1

T − w̄ − τ0 + 1

T−w̄∑
τ=τ0

(X
′
T β̂τ+1:T ). (7)

The value of τ0 depends on forecasters’ prior knowledge of structural breaks. Without

any prior belief on the likelihood of break occurrence in the history, we can also consider

the case of no structural break and thus set τ0 = 0. By doing so, essentially we put equal

weights on the forecasts when breaks present in the past and the forecasts when no break

occurs.

Despite its simplicity, many researchers find that the equal-weighting scheme often

performs superior to the other more elaborated methods (see Stock and Watson, 1999;

Pesaran and Timmermann, 2007; Clark and McCracken, 2006).

2.2.2 Average Forecasts Weighted by the Relative Performance

One forecast combination method is to base the weights on the relative forecasting per-

formance. For example, under the squared error loss function, the weight for a forecast

using data [t0 : T ] is proportional to the inverse of its associated test sample MSFEw̃,t0 =

w̃−1
∑T−1

τ=T−w̃(yτ+1−X
′
τ β̂t0:τ )2, which is computed over the window of w̃ periods previous

to time T . Then we consider the whole range of the values of t0 ∈ 1, 2, ..., T − w̄ − w̃, as-

suming the minimum estimation window w̄, and compute the forecasts ŷT+1,t0 = X
′
T β̂t0:T

for each value of t0. The weighted average forecast thus is given by:

ŷT+1 =

∑T−w̃−w̄
t0=1 ŷT+1,t0(

1
MSFEw̃,t0

)
∑T−w̃−w̄

t0=1 ( 1
MSFEw̃,t0

)
(8)

Since this method does not require any break test or identification of break points,

it avoids the imprecise break estimation problem. However, to obtain a reliable measure

of the historical forecasting performance, a test sample containing a moderate number

of data is necessary. Otherwise the combination weights based on MSFE over a small

period can be very misleading. In practice, when only limited number of data is available,

after taking some for an out-of-sample experiment, making a sensible size for test samples
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becomes difficult. Moreover, similar with the cross-validation method, this weighting

scheme requires an implicit assumption that no break occurs during the test period, which

might not be realistic.

2.2.3 Average Forecasts Weighted by the ROC Statistics

We propose an alternative combination method that combines forecasts derived from dif-

ferent post-break estimation windows, treating each past time as a possible most-recent

breakpoint. The weights are based on the probability of the break occurrence at each

time point. Under structural break uncertainty, the break tests provide us an approach

to evaluate the likelihood for each time location to be most-recent breakpoint. In this pa-

per, we adopt the ROC and construct the weights wwτ on each choice of the most-recent

breakpoint τ by the ROC statistics sτ given as the following equation (4)2 :

wwτ =
|sτ − (T−w̄−τ−1

T−w̄ )|πτ∑T−w̄
τ=1 |sτ − (T−w̄−τ−1

T−w̄ )|πτ

. (9)

With a small number of observations w̄ for the minimum estimation window, we con-

sider all past dates τ ∈ [1 : T − w̄] as a sequence of choices for the last breakpoint and

approximate the associated probabilities as the absolute values of the distance between the

calculated ROC statistics sτ and the mid-points of two critical values given by T−w̄−τ+1
T−w̄ .

The intuition is that the farther the ROC statistic is away from the mid-point of two

critical values, the more likely it goes across the critical value lines, implying a higher

probability of parameters shifts at the associated time point. This combination method

provides an averaged forecast

ŷT+1 =
T−w̄∑

τ=1

wwτ (X
′
T β̂τ+1:T ). (10)

The value of πτ functions as a prior weight that indicates a prior belief on the probabil-

ity of time τ to be the most recent break. The specification of πτ depends on forecasters’

knowledge of structural breaks. For instance, for a shorter period T when the presence of

a single break is possible, we can define πτ = 1 for any value of τ , which makes the weight

wwτ entirely depend on the magnitude of the ROC statistics. In the paper, we refer the

average forecasts from this weighting method as the ROC-weighted forecasts. However,

if we have longer historical data and believe that multiple structural breaks may present

2The use of the reciprocals of p-values from break tests provides an alternative approach for
building the weights.
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in the past, this specification becomes less sensible. The reason lies in the following. If

the ROC statistics are observed to be far from the mid-point of the critical-value lines at

some early time points, with πτ = 1, the average forecasts will heavily rely on the forecasts

generated based on the information subsequent to the early breakpoints indicated by the

ROC statistics. To incorporate the idea that the identification of the most-recent break

is more helpful in the forecasting context, we can also define the prior weight πτ to be a

function of the location of time τ in the full sample [1 : T ], such that

πτ =
τ

T
. (11)

This function suggests that heavier weights are placed on the forecasts based on more

recent sample because the most-recent break is more likely to happen at the end. After

setting πτ = τ
T , we reduce the weights on the forecasts using information from the begin-

ning of the sample even if the ROC statistics suggest the presence of structural breaks at

the some early time points. In order to distinguish from the ROC weights that we have

discussed, we name this weighting scheme adjusted-ROC, and the associated forecasts are

called adjusted-ROC-weighted forecasts.

3 Monte Carlo Experiments

To evaluate each forecasting method that deals with different levels of break uncertainty,

we consider the following bivariate data generating process and operate Monte-Carlo sim-

ulations:

(
yt

xt

)
=

(
µyt

µxt

)
+ At

(
yt−1

xt−1

)
+

(
εyt

εxt

)
. (12)

where the variance covariance matrix of errors is set to be
(
1 0
0 1

)
across the whole sample.

In a two-breaks case where the first and the second break occur at p1 × T and p2 × T ,

respectively, parameters in the matrix At shift permanently after these two breakpoints:
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At =






a11 a12

0 a22


 t ≤ p1× T


a11 + d11 a12 + d12

0 a22 + d22


 p1× T + 1 ≤ t ≤ p2× T


a11 + d11 + d∗11 a12 + d12 + d∗12

0 a22 + d22 + d∗22


 t ≥ p2× T + 1

(13)

This DGP follows the simulation setup in Clark and McCracken (2005), where they use

it for evaluating the small sample properties of various in-sample predictive ability tests in

the presence of structural breaks. Pesaran and Timmermann (2007) also adopt this DGP

for comparing different methods on the choice of estimation windows when structural

break occurs. This specification allows all of the coefficients as well as only parts or one of

the coefficients to change when breaks occur. The constants in both equations will adjust

according to the shifts of coefficients of regressors to keep the whole DGP stationary.

Suppose the full sample contains T = 100 observations and we are interested in the

forecast of y101. The loss function is squares of the forecasting errors. After repeating the

simulation 5000 times, we evaluate various forecasting methods that have been discussed

in the last section by comparing their MSFEs with the benchmark forecasts based on full

sample estimations when structural breaks are ignored. Tables 1 records the ratios of the

MSFEs relative to the benchmark forecasts. In the first three columns, we consider single

forecasts that deal with structural breaks, where estimation windows are determined by

the cross-validation method, the two-stage ROC method, and the Bai-Perron method.

The columns headed Equal-W, MSFE-W ROC-W1, and ROC-W2 relate to combination

forecasts with the equal weights, the weights measured by historical MSFE s, the ROC

weights, as well as the adjusted-ROC weights. We set the minimum size of estimation

windows w̄ to be 0.1×T through the whole exercise, thus the minimum distance between

two breaks in the Bai-Perron method is also 0.1×T . Bai and Perron (2003) suggest that a

maximum of 5 breaks is sufficient in most empirical work, so we consider the possibilities up

to 5 breaks when we estimate the breakpoints using the Bai-Perron method. As required

in conducting MSFE -weighted forecasts and cross-validation forecasts, a test sample prior

to time T is set to contain w̃ = 0.25× T observations.

In the simulations reported in table 1, both yt and xt are persistent, with their au-

toregressive parameters a11 = 0.9 and a22 = 0.9. The marginal effect of xt−1 on yt is

initially one unit. Here we consider various scenarios where the changes of coefficients,
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denoted as dij and d∗ij for i, j = 1, 2, have different sizes and signs. We assume two true

breaks happen at the one fourth and three fourths of the full sample (i.e p1 = 0.25 and

p2 = 0.75).

[TABLE 1 ABOUT HERE]

For the first row, the persistency of yt drops by a large proportion at both breaks. The

effects of single forecasts on average are almost as good as combination forecasts except

for the two-stage ROC method. The average forecast weighted by the adjusted-ROC is

the most accurate with over 50% gain compared with the forecasts that ignore the breaks.

The single forecast when breakpoints are identified by the Bai-Perron method produces

nearly the same result. With the same final value of the autoregressive coefficient of

yt−1, the second and the third row only differs with respect to the size of each break.

When the second break is bigger than the first break, the Bai-Perron method successfully

identifies the breakpoints and generates the best forecasts among all the methods. The

relative MSFE under ROC-W2 is the second lowest, which continuously beats the equally

weighted forecasts. In the next row where the second break is smaller than the first, the

overall forecasting performance is better than the reversed scenario, but forecasts from

the Bai-Perron method become one of the worst.

The next two rows report the results for the scenario that the autoregressive coefficient

a11 decreases at the first breakpoint and then increases at the second one. When half of

the drop is recovered after the second break, the combination forecasts dominate the

single forecasts, with the best performance from the simple equal-weights. When a11

totally recovers after the second break, the single forecast using the Bai-Perron method

to estimate breakpoints and the adjusted-ROC-weighted forecast deliver the smallest two

MSFEs.

The seventh and the eighth rows report the benefits of using these forecasting methods

for structural break uncertainty when the marginal coefficient of xt−1 changes at each

break. With a large upwards shift, the gains from considering breaks are considerable.

Among all of the weighted forecasts, MSFE under ROC-W2 is the lowest whereas the single

forecast using the Bai-Perron method is the most accurate. However, the performance of

the Bai-Perron method depends on the size and the direction of the shifts on a12. For

the seventh row where a12 declines by a smaller amount each time, weighted forecasts

dominate the single forecasts.

The forecasting results when no breaks present in the past are shown in the last row.

The two-stage ROC method achieves the MSFE closest to 1. This result is expected
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since we apply the full sample to estimate forecasting models if no break can be detected

by the ROC test. Without the presence of breaks, the sequence of the ROC statistics

could display as a rather flat line, resulting in similar distance between each of the ROC

statistics and the mid point of two critical lines and thus similar weights for the forecasts

using different estimation windows. This could explain the reason that we observe similar

MSFEs produced by ROC-W1 and the equal weighting scheme. Although no break has

occurred, the Bai-Perron method detects one break with a high frequency of 88.3%, leading

the worst forecasting result produced by the Bai-Perron method.

Overall, the results in table 1 suggest the follows. The forecast weighted by the

adjusted-ROC performs well and on average beats the equally weighted forecast. Be-

tween the two methods that both require a test sample, the cross-validation method that

produces a single forecast generally performs better than a MSFE-weighted forecast. The

largest MSFEs of the single forecast based on the two-stage ROC method result from

the use of full sample estimations if we fail to reject the null hypothesis of parameter

constancy. The single forecast using the Bai-Perron method to determine the estima-

tion window performs worse than the combined forecasts when small breaks or no breaks

have occurred. The reasons might lie in the follows. Firstly, small breaks are difficult

to detect and estimated accurately by the Bai-Perron method. Secondly, as suggested in

Pesaran and Timmermann (2007), when breaks are small, it is not optimal to use only

the post-most-recent break data to estimate forecasting models under a squared-error loss

function.

Notice that the adjusted-ROC that considers a a differential prior belief on each time to

be the most-recent breakpoint constantly produces better forecasts than the ROC-weight

that is only determined by the ROC statistics. Thus we conjecture that the gain results

from weighting more on the forecasts based on more recent information. To check it, we

consider the forecasting combination weights to be proportional to the location of time

τ in the whole sample [1 : T ], i.e τ/T . The associated average forecasts, named as the

location-weighted forecasts, are given by

ŷT+1 =
T−w̄∑

τ=1

τ/T∑T−w̄
τ=1 τ/T

(
X
′
T β̂τ+1:T

)
. (14)

We evaluate this weighting scheme using the same simulation setup and record the relative

MSFEs in table 2. By comparing table 1 and table 2, we find that in the presence of

structural breaks, the location-based weight outperforms all the other weighting schemes

including the “superior” simple average and the weights based on the ROC structural break
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test. Moreover, the location-weighted forecast is more accurate than single forecasts in

most cases. The only comparable forecasting method is the Bai-Perron method that seems

to perform slightly better than the location-weighting method when the second break is

bigger than the first.

4 Forecasting Inflation

4.1 NAIRU Phillips Curve Models

Inflation forecasts have important implications for monetary policy makers. Among var-

ious models for inflation, a Phillips curve which connects the top two domestic economic

burdens, unemployment and inflation, attracts the most attention. The early version of

the Phillips curve implies a durable tradeoff between unemployment and inflation, but

nowadays more and more economists advocate a “natural rate” of inflation that guides

the economy back to equilibrium (Tobin, 1972). For instance, a specification of the Phillips

curve called NAIRU ( non-accelerating inflation rate of unemployment ) presents the idea

that inflation will increase if unemployment stays below its natural rate. A textbook

version of the NAIRU model for 12-month ahead inflation changes is,

Et(πt+12 − πt) = β × (ut − ū) = −βū + βut (15)

where πt and ut denotes the inflation and unemployment rate, respectively. The NAIRU

here is time invariant ū that merges to the intercept. This model not only provides

researchers a method to estimate the baseline unemployment rate, i.e. NAIRU, but also

becomes a popular inflation forecasting model because of its simplicity and backward-

looking specification.

The usefulness of the NAIRU Phillips curve for inflation forecasts has been discussed

in several papers. Under a simulated out-of-sample framework, Stock and Watson (1999)

compare the forecasts of the U.S. inflation rates at the 12-month horizon from 1970 to

1996 based on a variety of the NAIRU Phillips curve-based models. The basic 12-month

ahead forecasting models used in their paper can be generalized as

π12
t+12 − πt = φ + β(L)xt + γ(L)∆πt + et+12 (16)

where π12
t is 12-month inflation at time t whereas πt is monthly inflation at an annual

rate; xt is defined as the unemployment rate, another macroeconomic variable, or a diffuse
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index measuring aggregate real activity at time t. They find that the conventional model

with an unemployment rate gap produces no better forecasts than models based on the

measures of real aggregate activities.

Atkeson and Ohanian (2001) provide evidence that the 12 month-ahead U.S. inflation

forecasts from 1985 to 2001 based on the NAIRU Phillips curve models cannot be better

than “flipping a coin”. The benchmark forecasting model, which subsequent literature

often calls Atkeson and Ohanian model, indicates no change in 12 month ahead inflation

and is set to be,

Et

(
π12

t+12

)
= π12

t (17)

In order to make the NAIRU Phillips-curve-based inflation forecasts comparable with the

benchmark directly, they revise Stock and Watson’s model to

π12
t+12 − π12

t = α + β(L)xt + γ(L)∆πt + εt+12. (18)

Triggered by the debate on the usefulness of the NAIRU Phillips curve, Fisher et al.

(2002) examined the U.S. inflation forecasts generated from equation (18) within three

distinct sample periods during which the inflation changes present different volatilities.

Their results confirm those from Atkeson and Ohanian (2001) only within the low volatility

periods that the Phillips curve models perform poorly, However, once they change the

measurements of inflation or revise the models for a 24-month-ahead forecast horizon, the

NAIRU Phillips curve models become favorable.

4.2 Instability of NAIRU Phillips Curve

The discussion of the validity of using NAIRU Phillips curve to forecast inflation focuses on

model stability. Based on the well-known specification of autoregressive distributed lagged

models for the NAIRU Phillips curves, the analysis of parameter stability in previous study

includes the statistical relationship between inflation changes and unemployment rates (or

other variables revealing real activity), the persistence of inflation changes, and the NAIRU

level that is closely related to the intercept of the model3.

Atkeson and Ohanian (2001) argue that the relationship between the current un-

employment rates and the future inflation should vary when the economic environment

changes because individuals often adjust their expectation on economic variables according

3Note that as we use the means of squared forecasting errors to evaluate forecasts, any variance
change should also results in model instability. However, this type of structural breaks is beyond
the scope of this paper.
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to policy changes. By simply plotting changes in inflation against current unemployment

rates from 1960 to 1999, they observe a flatter negative slope after mid 80’s, meaning a

weaker relationship between inflation changes and unemployment rates. However, in the

paper by Stock and Watson (1999), a series of structural break tests for the presence of a

single break show strong evidence of instability on the coefficients of lagged inflation rates,

but not on the unemployment rate coefficients.

Although autoregressive coefficients of Stock and Watson’s models present instability,

Stock and Watson (1999) find the shifts are quantitatively small and thus they ignore

coefficients instability in their forecasts. In 2006, Stock and Watson revisit the U.S.

inflation forecasts by scrutinizing a univariate inflation process. They suggest that the

failure to vary the autoregressive coefficients may lead to the breakdown of a recursive

autoregressive distributed lagged inflation forecasts. The study of the univariate inflation

process help them to revise the Phillips curve model subject to a restriction between the

autoregressive coefficients and activity variable coefficients.

The question of whether the NAIRU itself has changed overtime has also attracted

policymaker and academics’ attention. Staiger et al. (1997) model the U.S. NAIRU using

a cubic spline and find statistical evidence of a declining shift from 1980’s to 1990’s. To

estimate the movement of the NAIRU, Gordon (1997) treats the NAIRU as a time-varying

variable that follows a stochastic process. His results confirm a lower NAIRU in the end

of 1990’s. However, Staiger et al. (1997) also report that their NAIRU estimates are very

imprecise, which produce little difference between forecasts based on different values of

the NAIRU.

The previous literature on the instability of the NAIRU Phillips curve illustrates the

nature of break uncertainty in the parameters of this model. We thus implement dif-

ferent forecasting methods that account for break uncertainty to reexamine the inflation

forecasting ability of the unemployment-based NAIRU Phillips curve model.

4.3 The NAIRU Forecasts of the U.S. Inflation

4.3.1 Empirical Model and Data

The main forecasting model (shown in equation (19)) in this paper are specified based on

equation (18) since we would like to directly show the potential benefits of dealing with

structural breaks from comparing with a benchmark forecast.

π12
t+12 − π12

t = α + β(L)xt + γ(L)∆π12
t + et+12 (19)
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We measure the annual U.S. inflation at time t by computing the 12-month changes

of the U.S. core CPI (CPI less food and energy), given by π12
t = 100× (lnPt − ln Pt−12).

The activity variable xt in this paper is mainly the unemployment rates, denoted as ut,

or the changes of unemployment rates, denoted as ∆ut.

All the data from 1959:01 to 2007:06 in a monthly frequency are retrieved from DATA-

STREAM. We aim to conduct the out-of-sample forecasts of the 12-month ahead inflation

changes in the past 10 years (from 1997:07 to 2007:06). Thus the initial estimation starts

by employing the information from 1959:01 to 1997:06 for forecasting the inflation change

in 1997:07. We then recursively estimate the forecasting models once new information is

included.

Setting the annual inflation changes rather than inflation itself as the dependent vari-

able means we treat the inflation as an non-stationary or I(1) variable. This assumption

is consistent with our empirical observation4 across the whole sample.

Most literature includes the level of unemployment rates in the NAIRU Phillips curve5.

However, if the lags of ut are not stationary while the dependent variable π12
t+12 − π12

t is

stationary, the imbalanced model may lack of explanatory power, which ruins the associ-

ated forecasting performance. Therefore, we also consider the models with lagged changes

of unemployment rates as one of the regressors. Note that since ∆ut = ut − ut−12, we

rewrite equation (19) as,

π12
t+12 − π12

t = α + β(L)ut + β(L)ut−12 + γ(L)∆π12
t + et+12 (20)

where longer historic information of unemployment rates is included and the estimation

is subject to the restriction that coefficients of lagged ut and lagged ut−12 are the same

for the same lag order. In the next section, we report out-of-sample forecasting results

generated from both forecasting models.

One minor difference of equation (19) from equation (18) is the second regressor that

implies the own dynamics of the inflation changes. Following Stock and Watson’s model,

Atkeson and Ohanian (2001) define the monthly inflation at annual rates as πt = 1200×
(lnPt−ln Pt−1) and use the lags of ∆πt to predict the 12-month changes of annual inflation

∆π12
t+12. After examining the movements of both dependent variable and explanatory

variables overtime, we find that the monthly changes of 1-month inflation at annual rates

are extremely noisy, whereas the 12-month changes of annual inflation moves along a

4The conclusion is based on recursive ADF tests and Correlograms of π12
t .

5See Stock and Watson (1999), Staiger et al. (1997), Atkeson and Ohanian (2001) and Fisher
et al. (2002).
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relatively smooth path. Therefore, we replace the noisy regressor in equation (18) with

the lagged dependent variable (see equation (19)), resulting in a standard autoregressive

distributed lagged model (ADL).

The lag structures of ut and ∆π12
t are time-variant and selected by both Akaike in-

formation criterion (AIC) and Schwartz information criterion (BIC) for every forecast.

Generally speaking, BIC penalizes more for a long lag structure than AIC. Thus the mod-

els selected by BIC may avoid estimation errors of coefficients caused by the loss of degrees

of freedom. However, when we have a relatively long historical data set or set the mini-

mum estimation window size to be a function of the number of estimated coefficients, the

advantage of BIC becomes rather inconclusive. Therefore, in this empirical forecasting

exercise, we use AIC to allow for a long lag structural and let the number of lags to vary

from 1 to 12 for both regressors.

To obtain preliminary knowledge about structural breaks in the evolution of the U.S.

12-month changes of annual inflation, we show the time series plot of ∆π12
t+12 from 1959:01

to 2007:06. Figure 1 clearly displays a dramatic volatility change around 1984. However,

to know the parameter stability in the NAIRU Phillips curve, as the main focus of this

paper, we need further structural break tests. Although the year 1984 could be a candidate

breakpoint, we are still unsure about the number of breaks and whether December 1983

could be the last structural break. Therefore, we are facing a break uncertainty problem

when forecasting the U.S. inflation changes based on the NAIRU Phillips curve models.

[FIGURE 1 ABOUT HERE]

4.3.2 Results

Tables 3 to 6 summarizes the out-of-sample forecasting results through July 1997 to June

2007 when the possible presence of structural breaks is considered. We report the means

of squared forecast errors (MSFE) relative to the benchmark forecasts generated from

equation (17). MSFEs that are smaller than one imply that there is an advantage of

using the NAIRU Phillips curve model over the random walk model for inflation forecasts.

Each table contains two panels. Panel A presents single forecasting results that are based

on expanding-window estimations when possible breaks are totally ignored as well as

a variety of break-dealing methods that choose only one estimation window and thus

generate a single forecast. Under break uncertainty, we can treat each date as a possible

last-breakpoint and obtain a series of post-possible-last-break forecasts. We apply five

different weighting schemes to combine those forecasts and report the averaged forecasting

results in panel B.
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Table 3 gives the results based on the model (19) with lags of ut. The lag length is

chosen using AIC, BIC or simply set to 1, and we examine all given historical information

for forecasting the annual inflation changes. If we totally ignore the possibility of break

occurrence in the history, we use the expanding windows to estimate forecasting models.

The MSFEs are around two times larger than a forecast of zero changes of annual inflation,

which is consistent with the finding of poor forecasting ability from the unemployment-

based NAIRU model in the other literature. The second row shows the results from

rolling window estimations that researchers commonly use in forecasting financial series

under the uncertainty of structural breaks. This method has a “moderate adaptivity”

with “small coefficient revolution” (see Stock and Watson, 1996) since each time when

we update the forecasting model, we include the most current data into the estimation

window and remove the oldest. We obtained similar evidence as in Stock and Watson

(1996) that rolling regression performs worse than expanding window when forecasting

inflation6. However, the sizes of MSFEs drop dramatically after we employ the three

methods to choose the “optimal” estimation window and produce single forecasts. In

particular, with the lag structure selected by AIC and BIC for every estimation, the

NAIRU model that incorporates break uncertainty beats the random walk model.

[TABLE 3 ABOUT HERE]

The difference of forecasting results between three methods lies in different recursive

estimates of the last break or the “optimal” estimation window. Figure 2 shows the

sequence of the recursive estimates of the last break from the Bai-Perron method and

the 2-stage ROC. Assuming that there can be 5 breaks at maximum through the full

sample, the Bai-Perron method constantly chooses 5 breaks and recursively estimates the

last breakpoint at October 1983, regardless of the lag specifications. In contrast to the

Bai-Perron estimates, the two-stage ROC recursively estimates the last breakpoint in a

near monotonically increasing trend as we move towards the last forecasting point, and it

picks much later time points as the most-recent breakpoints compared with the Bai-Perron

estimates.

[FIGURE 2 ABOUT HERE]

Moreover, as shown in table 3 panel B, the combination methods that average forecasts

across different estimation windows also reduce the MSFEs compared with the expanding

6Due to this evidence , Stock and Watson (1999) believe little gain can be achieved from
incorporating model instability and thus ignore structural breaks when they forecast inflation
changes using the NAIRU Phillips curve.
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window forecasts. The MSFE-weighted forecasts and the location-weighted forecasts are

the best two among the five averaged forecasts. The ROC weights (with the heading ROC-

W1) reduce MSFE close to one and the adjust-ROC weights (with the heading ROC-W2)

achieve a MSFE less than one when the lag structure is chosen using information criteria.

One can argue that it is not appropriate to assume structural break uncertainty when

forecasting the U.S. inflation since at least we can observe less-volatile inflation changes

after 19847. Therefore, knowing a possible break in 1984, we can short the estimation

sample to only include post-1984 data. Thus facing unknown knowledge of breaks after

January 1984, we forecast the U.S. inflation changes through July 1997 to June 2007. Table

4 shows that ignoring break possibility after January 1984 does not damage the forecasting

ability of the NAIRU Phillips curve very much any more. Especially the MSFE from the

model selected by AIC is about 18% smaller than the random walk forecast. The results

that the the end of year 1983 is one of structural breaks that shift the parameters in the

NAIRU Phillips curve model. Recall that in Figure 2 the Bai-Perron method persistently

estimates October 1983 as the last breakpoint, which is the reason that we observe similar

MSFEs between applying the Bai-Perron method in table 3 and the expanding window

estimations in table 4.

[TABLE 4 ABOUT HERE]

Despite the fact that the forecasting performance has been improved after we use post-

1984 data to estimate forecasting models, dealing with possible structural breaks after 1984

can still improve the forecasting performance of the NAIRU Phillips curve model to some

extent. The most attractive result, that the MSFE becomes about 40% smaller than 1,

comes from the single forecasts based on the ADL(1,1) models when the most recent break

is estimated by the Bai-Perron method. Figure 3 plots these recursive estimates of the

most recent break assume there are maximum 3 breaks in the past8. It shows that until

the mid of year 2002, the last break is estimated around the end of 1992. Following the

last break identified at late 1996 for about 2 years, march 2004 is chosen until the end of

the forecasting time. Among the averaged forecasts, the location-weighted forecasts is the

best. The simple average as well as our proposed ROC and adjust-ROC weighting schemes

achieve the similar forecasting results. The average forecasts based on historical MSFE

cannot perform better than the forecasts when possible in-sample breaks are ignored.

7Many literature refers this change in the mid of 1980’s as a result of monetary policy shift.
For instance, Clarida et al. (2000) show that the U.S. macroeconomy is more stabilized after the
appointment of Paul Volker as the Fed chairman in 1979.

8We set a smaller maximum number of breaks since we have a shorter in-sample period.
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[FIGURE 3 ABOUT HERE]

We redo the forecasting exercise, replacing the level of unemployment rates with the

12-month changes of unemployment rates. In table 5, the results from the BIC spec-

ification and ADL(1,1) are the same, which indicates that BIC constantly favors the

ADL(1,1) model. Moreover, models with short lag structure now generate better fore-

casts than models with long lag structure, regardless of forecasting methods. It seems

that when we include the lagged ut−12 in the model and thus can use more past informa-

tion for forecasts, a model with a shorter lag length is preferred. Further, with a short

lag structure, the NARIU Phillips curve outperforms the random walk model when pos-

sible breaks are ignored. When models are specified using AIC, the forecasting methods

that account for structural breaks have reduced the MSFEs successfully, except for the

rolling regression method. The 2-stage ROC method generates the best single forecast

and the location-weight that make the average forecast heavily rely on the more current

information performs the best among the five weighting schemes.

[TABLE 5 ABOUT HERE]

Table 6 records MSFEs of the forecasts based on equation (20) that is estimated

employing post-1984 data. Even if the possibility of the presence of the post-1984 breaks

is ignored, all of the relative MSFEs from the NAIRU Phillips curve are below 1 regardless

of the lag structure. Under AIC, considering break uncertainty can hardly increase the

forecasting ability, except for taking simple average of forecasts from different estimation

windows or weight them according to the location of the beginning observation in each

estimation window. However, with a shorter lag structure, accounting for the post-1984

break possibility can make the NAIRU Phillips curve model outperform the random walk

model much more than when such a possibility is ignored. For example, with a BIC

specification, the combination forecasting methods increase the forecasting accuracy of the

NAIRU Phillips curve by at least 20% comparing with the expanding window forecasts.

In particular, the location-weighted forecasts achieve almost 40% reduction of MSFE.

[TABLE 6 ABOUT HERE]

We conclude the followings from the empirical findings. First, unlike the small effect

from incorporating model instability that Stock and Watson (1999) claim in forecasting

inflation changes, we find that accounting for break occurrence in the past can improve

the forecasting ability of the unemployment-based NAIRU Phillips curve model. Second,

it appears that the coefficients instability is one of the reasons for the random walk model
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to outperform the unemployment-based NAIRU Phillips curve model. After we solve

for the in-sample structural break problem, the NAIRU forecasts have achieved smaller

MSFEs than the random walk forecasts. Moreover, the ROC and adjusted-ROC weighting

schemes are able to reduce the MSFEs and their associated forecasts are comparable with

the MSFE-weighted forecasts and the “superior” equally weighted forecasts. The adjust-

ROC averaged forecasts are constantly more accurate than the ROC-weighted forecasts

since it benefits from the prior belief that more current information is more useful for

forecasts. The power of this prior belief has also been shown from the fact that location-

based weighting scheme beats all the other sophisticated weights determined by historical

forecasting performance or the ROC structural break tests.

5 Conclusion

Financial and macroeconomic time series are often found to be subject to parameter in-

stability reflecting policy changes or regime switches. Ignoring the presence of breaks may

produce biased forecasts that are generated based on parameter estimations. However, the

information of parameter shifts in the past sample is unlikely to be known to forecasters.

Although a large number of papers provide techniques for testing for structural breaks,

far less discusses the use of test results in the context of forecasting. If a break test rejects

the parameter constancy, forecasters may simply estimate the forecasting model using

the data subsequent to the estimated last break; otherwise, they conduct a full sample

estimation. Instead of following the traditional approach, this paper has proposed a new

forecasting combination method that utilizes break test statistics. Under structural break

uncertainty, we consider each in-sample time as the possible most-recent breakpoint and

estimate forecasting models excluding data prior to each time point. The weights depend

on the probability of each time point being the most-recent break date and its proxy is

determined by the reversed ordered Cusum squared statistics with a prior probability of

the break location.

The other weighting scheme proposed in this paper simply assumes that the proba-

bility for each time point being the most-recent break is proportional to the location of

the time point in the full sample period. Under this weighting scheme, we essentially

places more weights on the forecasts using more recent information. Through the Monte

Carlo simulations, we have examined the forecasting performance of two new combina-

tion methods, as well as a range of alternative forecasting techniques that account for

break uncertainty. It includes the two-stage ROC, the cross-validation and the Bai-Perron
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method that produce single forecasts as well as the forecasts averaged by equal weights

and historical accuracy-based weights. Our results support the new weighting schemes

base on the ROC statistics, particularly the adjusted-ROC that puts heavier weights on

the forecasts using the samples that ROC statistics indicate to be subsequent to the most-

recent break and include more recent information. The forecasting performance of the

location-weighted forecasts is also shown to be outstanding.

We provide empirical evidence of the benefits obtained from using the proposed com-

bination methods as well as the other alternative methods to reexamine the U.S. inflation

forecasting ability of the NAIRU Phillips curve. The inflation forecasts after taking in-

sample structural break into account are shown to be more accurate than the random walk

forecasts that Atkeson and Ohanian (2001) prefer. Our results also indicate the necessity

of considering the presence of structural breaks when we forecast the U.S. inflation changes

using the NAIRU Phillips curve.

It is interesting to see that both our Monte Carlo and empirical experiments show a

powerful forecasting ability of the location-based combination method that imposes more

weights on the forecasts using more recent sample periods. This weighting scheme not

only beats the other more sophasticated weighting methods that utilize information from

the structural break test or the past forecasting performance, but also outperforms the

simple average method that has been commonly used and found hard to beat. A detailed

investigation on this location-based weighting technique can be expected in the future

research.
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Figure 1: 12-month changes of U.S. annual core CPI inflation
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Figure 2: The recursively estimated last breakpoints by the Bai-Perron method and
the 2-Stage ROC
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Figure 3: The recursively estimated last breakpoints by the Bai-Perron method
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Table 2: MSFE values of the location-weighted forecasts
under multiple structural breaksa

Forecast Combination

d11 d12 d22 d∗11 d∗12 d∗22 Location-Weighted

-0.4 0 0 -0.4 0 0 0.4530

-0.2 0 0 -0.4 0 0 0.5072

-0.4 0 0 -0.2 0 0 0.4898

-0.4 0 0 0.2 0 0 0.7608

-0.4 0 0 0.4 0 0 0.7527

0 1 0 0 1 0 0.2818

0 -0.4 0 0 -0.4 0 0.6871

0 0 0 0 0 0 1.0747

a The basic setup is the same as in table 1.
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Table 3: MSFEs of Phillips-curve based inflation
forecasts using full sample dataa

Panel A: Single Forecasts

Forecasting methods The Choice of Lag Structure

AIC BIC 1 Lag

Expanding Window 1.7855 1.8698 2.3060

Rolling Window 1.9539 2.0957 2.5374

Cross-validationb 0.7656 0.8098 0.9453

2-stage ROC 0.7640 0.7728 1.0008

Bai-Perron Methodc 0.8883 0.9128 1.0139

Panel B: Combined Forecasts

Forecasting methods The Choice of Lag Structure

AIC BIC 1 Lag

Simple average 1.0876 1.1683 1.4168

MSFE-weightedb 0.8735 0.9409 1.0439

ROC-W1 1.0032 1.0992 1.3736

ROC-W2 0.9183 0.9798 1.1357

Location-weighted 0.8806 0.9068 1.0199

a All of the MSFEs are relative to the benchmark
forecasts where the expected changes of 12-month
inflations are zero. Information from 1959:01 to
1997:06 are used for the initial forecasting model
estimation. We use the level of unemployment rates as
one of the regressors in forecasting models, following
Stock and Watson (1999), Atkeson and Ohanian
(2001) and Fisher et al. (2002). The minimum
estimation window is twice as the number of estimated
coefficients.

b We include 50 observations in the test sample.
c When applying Bai-Perron Method, we assume 5

maximum breaks during the estimation sample.
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Table 4: MSFEs of Phillips-curve based inflation
forecasts using subsample data after 1984a

Panel A: Single Forecasts

Forecasting methods The Choice of Lag Structure

AIC BIC 1 Lag

Expanding Window 0.8279 0.9203 1.0237

Rolling Window 1.0232 1.0191 1.0963

Cross-validationb 0.7429 0.8049 0.9375

2-stage ROC 0.7805 0.9294 0.9247

Bai-Perron Methodc 0.9116 0.8423 0.5838

Panel B: Combined Forecasts

Forecasting methods The Choice of Lag Structure

AIC BIC 1 Lag

Simple average 0.7636 0.8177 0.8517

MSFE-weightedb 0.8596 0.9058 0.9998

ROC-W1 0.7785 0.8392 0.8934

ROC-W2 0.7591 0.8304 0.8841

Location-weighted 0.7348 0.7893 0.7705

a All of the MSFEs are relative to the benchmark
forecasts where the expected changes of 12-month
inflations are zero. Information from 1984:01 to
1997:06 are used for the initial forecasting model
estimation. We use the level of unemployment rates as
one of the regressors in forecasting models, following
Stock and Watson (1999), Atkeson and Ohanian
(2001) and Fisher et al. (2002). The minimum
estimation window is twice as the number of estimated
coefficients.

b We include 50 observations in the test sample.
c When applying Bai-Perron Method, we assume 3

maximum breaks during the estimation sample.
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Table 5: MSFEs of Phillips-curve based inflation
forecasts using full sample dataa

Panel A: Single Forecasts

Forecasting methods The Choice of Lag Structure

AIC BIC 1 Lag

Expanding Window 1.2803 0.8104 0.8104

Rolling Window 1.4112 0.9253 0.9253

Cross-validationb 0.8451 0.6790 0.6790

2-stage ROC 0.7049 0.6797 0.6797

Bai-Perron Methodc 1.0054 0.9528 0.9528

Panel B: Combined Forecasts

Forecasting methods The Choice of Lag Structure

AIC BIC 1 Lag

Simple average 0.8672 0.7133 0.7133

MSFE-weightedb 0.8770 0.7314 0.7314

ROC-W1 0.9295 0.8139 0.8139

ROC-W2 0.8980 0.8110 0.8110

Location-weighted 0.7638 0.6952 0.6952

a All of the MSFEs are relative to the benchmark
forecasts where the expected changes of 12-month
inflations are zero. Information from 1959:01 to
1997:06 are used for the initial forecasting model
estimation. We use the monthly changes of
unemployment rates as one of the regressors in
forecasting models. The minimum estimation window
is twice as the number of estimated coefficients.

b We include 50 observations in the test sample.
c When applying Bai-Perron Method, we assume 5

maximum breaks during the estimation sample.
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Table 6: MSFEs of Phillips-curve based inflation
forecasts using subsample data after 1984a

Panel A: Single Forecasts

Forecasting methods The Choice of Lag Structure

AIC BIC 1 Lag

Expanding Window 0.8576 0.9415 0.9424

Rolling Window 0.9642 0.8524 0.8694

Cross-validationb 0.8971 0.6297 0.6550

2-stage ROC 1.1371 0.8017 0.8448

Bai-Perron Method c 0.7688 0.5288 0.6187

Panel B: Combined Forecasts

Forecasting methods The Choice of Lag Structure

AIC BIC 1 Lag

Simple average 0.7953 0.6245 0.6813

MSFE-weighted b 0.8934 0.7131 0.7649

ROC-W1 0.8994 0.7211 0.7799

ROC-W2 0.8748 0.6924 0.7498

Location-weighted 0.7684 0.5620 0.6160

a All of the MSFEs are relative to the benchmark
forecasts where the expected changes of 12-month
inflations are zero. Information from 1984:01 to
1997:06 are used for the initial forecasting model
estimation. We use the changes of unemployment rates
as one of the regressors in forecasting models. The
minimum estimation window is twice as the number of
estimated coefficients.

b We include 50 observations in the test sample.
c When applying Bai-Perron Method, we assume 3

maximum breaks during the estimation sample.
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