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Abstract

Peer evaluation, as a new alternative to traditional performance

appraisal, has recently become very popular. This paper studies how

the structure of a social network shapes the aggregate outcome and af-

fects individuals�contributions while individuals�payo¤s depend on a

peer evaluation system. We design two allocation rules appropriate for

di¤erent purposes to weigh individuals�opinions: simple weighted al-

location rule (SWAR) and Myerson weighted allocation rule (MWAR),

and analyze the equilibrium outcomes under these rules. We �nd that

peer e¤ects operate in a heterogeneous manner.
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1 Introduction

Peer e¤ect is the in�uence of a social group on an individual. This sub-

ject can be found in many �elds, especially in a workplace environment.

An important character of peer e¤ect is that individuals voluntarily form a

group and decide whom they want to work with. Thus the peer members

of the group and the relationships among peers should be decided endoge-

nously. Many researches point out that an organization can be more e¢ cient

under the in�uence of peer e¤ect because peer pressure may eliminate the

"free-rider" problem, and make individuals collect information from multi-

ple sources of a variety of organizational level. Kandel and Lazear (1992)

modeled this feature into a theoretical analysis. In their model they showed

organizations with a signi�cant size could really su¤er a great loss, mainly

because of the free-rider problem, if lack of existence of evidence for peer

pressure. Many business study reports also showed that by introducing peer

monitoring, such as partnership arrangements, employers could actually en-

hance the achievement of employees in workplaces. Barron and Gjerde (1997)

constructed an agency model of peer policing, by the introduction of mutual

monitoring, and claimed an organization would easily get rid of the principal-

agent problems. More extensions and applications to peer e¤ect were widely

studied in business and management researches. For example, feedback of

colleagues could improve individuals�work skills. One type of feedback that

has become popular in recent years is known as 360-degree feedback. It is a
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process of using multiple sources among the organization to evaluate workers

(Greenberg and Baron, 2003). Peer rating system is another application of

peer e¤ect which often makes a positive result in an organization (Bernardin,

Hagan and Kane, 1995). Dominick, Reilly and Mcgourty (1997) illustrated

that peer e¤ect raises productivity. Falk and Ichino (2006) showed a similar

result; moreover, they found low-productivity workers were more sensitive

to the behavior of peers. Other empirical evidences like Sacerdote (2001)

showed that peer e¤ect has an impact on college students�grades and the

will to take part in the social group. Calvo-Armengol, Patacchini and Zenou

(2005) showed more empirical evidences of peer e¤ect through individuals�

relationship.1 However, In management view, there exists a tendency that

group members exert less e¤orts on task as the size of group increases. This

has been explained by social impact theory (Latane and Nida, 1980):

The larger the society, the less each member is in�uenced by the social force

acting on the society.

Among those applications of peer e¤ects, peer evaluation, as a new alter-

native to traditional performance appraisal, has recently become very popu-

lar. Peiperl (1999) concluded several factors and conditions correlated with

a successful peer evaluation. Peer evaluation is the concretization of peer

1The utility function in their model was

ui(y; g) = ayi �
1

2
cy2i + d

nX
j=1

gijyiyj :

where a, c, d > 0. The lastest term of untility fuction was the bene�t (or loss) of peer
e¤ect.
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e¤ect. It captures two main concepts, the �rst is that information is exposed

adequately; the second is the existence of rewards and punishments. This

two hidden concepts are the fundamental of peer e¤ect, and can not be aban-

doned for any issue related to it. Though the topics about peer e¤ect or peer

pressure were well documented in economics, psychology and management

literatures, it still hardly to �nd a discussion to explore how these e¤ects are

generated. Some have described peer evaluation�s growing use and its related

psychological mechanisms, or its potentially high validity. Those studies have

assumed the e¤ects were exogenously determined and focused on the in�u-

ence of the e¤ects. In this research project we will propose a study on peer

evaluation through a view of social networks. We aim to create a new model

which can well interpret the characters of peer evaluation. Furthermore, we

will study how a peer evaluation system is endogenously formed by the force

of social networks.

Consider a society where its aggregate outcome, f(e), depends on individ-

uals e¤orts. Let e be a vector of individuals�e¤orts. Since e¤orts exerted are

di¤erent among players, the story is how to fairly divide the outcome to each

individual. One may suggest dividing the outcome according to each indi-

vidual�s e¤ort. Indeed, this is the best method since it satis�es the condition

of e¢ ciency. However, it could be di¢ cult to achieve due to the asymmetric

information problem. An individual may have di¢ culty to observe others�ef-

forts when she is not socially connected to those people. A free-ride problem

would really damage the productivity of the society unless a monitoring sys-
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tem with extra cost is introduced. In our model a peer evaluation is treated

as the peer e¤ect for members of a social network. We study how a peer

evaluation system may improve the e¢ ciency. We develop two allocation

rules in which an agent�s evaluation is weighted by her position in the social

network. Our model is allowed to explain many �gures of equilibrium phe-

nomenon happened in an organization. For instance, why the peer e¤ect may

be non-monotonic as the number of participants or links increases? Does the

peer e¤ect in�uences symmetrically or asymmetrically when a new member

joins in or a new relationship is formed?

The main idea of position-weighted allocation rule comes from the spirit

of self-monitoring and self-management. It follows a basic principal that

an individual should be given more power when she is allowed to evaluate

more people. We use the word power to describe the scale of resources that

individuals have to allocate to others. Note that we give more �power�but

not more �payo¤�to an individual who evaluate many others. The purpose

to design such a platform is to solve the asymmetric information problem2.

This paper is organized as follows. In the next section, we present a peer

evaluation model with exogenous social networks, and in Section 3, we study

the Nash equilibrium and equilibrium outcomes. In Section 4, we consider

a network formation game by using the concept of pairwise stability, and in

Section 5 we give several extensions and discussions by changing the model�s

2Coleman (1988) had proposed this idea in his paper. It is the �rst discussion of the
role of social networks on free riders and altruism issues.
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speci�cations. Section 6 concludes.

2 The model

Let N = f1; : : : ; ng be a set of players and let i and j be two typical members

of this set. ei 2 [0; 1] denotes the player i0s level of e¤ort and e = (e1; : : : ; en)

denotes an e¤ort pro�le of all agents. Players are located in an arbitrary

social network, which we present as a graph g: An interpersonal relationship

between player i and player j exists if gij = 1, gij = 0 otherwise.3 We say

player j is player i�s neighbor if gij = 1. Suppose each player chooses her own

e¤ort and the aggregate output of the society is a function of players�e¤ort

pro�les f(e). Agent i0s indirect utility function ui is expressed as following,

ui(e; g) = f(e) � Si(e; g)� c(ei), (1)

where Si(e; g) is a share of aggregate output for player i, and c(ei) is the cost

of e¤ort exerted by agent i. To simplify our model, we assume that

f(e) =
nX
i=1

ei;

c(ei) =
1

2
e2i :

The interpretation of a player�s utility is quite intuitively. Every player

3gij and ij stand for the same thing in the rest of the paper.
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gets her reward from the society according to her share of the total output

and the amount of total output. A player also pays a cost to exert e¤ort.

We suppose that the marginal cost of e¤ort increases as the e¤ort continue

to be exerted.

2.1 Allocation rules

First, we de�ne player i0s share ratio Si(e; g): Si is a parameter to represent

the social evaluation for player i. A proper evaluation parameter should

consist of two sections: how is player i0s performance comparing to others,

and how important the evaluator�s opinion is placed. In our social network

model, we focus on the latter question and develop a system to allocate an

endowment power to each player. Let Yi denote the positional weight of

player i, and then share ratio can be expressed as

Si(e; g) =
X
j2Ni

0B@Yj(g) � eiP
k2Nj

ek

1CA ; (2)

where Yj presents a degree of power that player j is endowed, Ni denotes the

set of player i0s neighbors, Ni = fj j gij 2 g, j 2 Ng. Let
Pn

i=1 Yi(g) = 1

and
Pn

i=1 Si(g) = 1. Note the power a player endowed is irrelevant to her

e¤ort; it only depends on the player�s position. We assume the proportion

of player�s e¤ort can be observed by all of her neighbors. We use this share

ratio system as a mechanism of peer evaluation to allocate the resources.

The only question left is how we determine the endowment of power for
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Figure 1: Case N=5. Numbers report the weight of players under simple
weighted allocation rule.

players regarding to their social positions in the network. Next we provide

two di¤erent approaches to endow the power for players.

2.1.1 Simple Weighted Allocation Rule (SWAR)

A simple method to decide the endowment distribution is to count the inter-

personal links among players and claim that a player who has more connec-

tions should receive a larger endowment. There is a reason for justifying our

setting. We think the more persons a player has to evaluate, the more power

this player should be endowed. A simple way to catch our idea is to consider

the width of interpersonal relationship of an individual. More speci�cally, to

count how many neighbors an individual has. Express it as a ratio
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Y Si =
N#
i

nP
i=1

N#
i

; (3)

where Ni denote a set of neighbors that player i has, A# denotes the cardinal

of the set A. Therefore, the position weight of players in a network is simply

determined by how many players that they direct link to. See �gure 1 for an

example.

Substitute (2) into (1), then utility functions for each player is

ui(e; g) =

 
nX
i=1

ei

!
�
X
j2Ni

0B@Y Sj � eiP
k2Nj

ek

1CA� 1
2
e2i ; (4)

where Y Sj is the power of player j is endowed, Nj denotes the set of players

who are linked to player j, andNi denote the neighbors of player i. Moreover,

ui is a strictly concave function for ei > 0.

2.1.2 Myerson-Weighted Allocation Rule (MWAR)

The allocation rule in our model is rooted in Myerson (1976) and re�ned by

Aumann and Myerson (1988). Originally, the idea in their studies was to

compute the marginal contribution of a player who joined a network, under

this computation we could well de�ne each person�s value in the networks,

in other words, we could identify who among a group was more important

to form a network by this value called Myerson Value. Since Myerson

value stands for the bene�t of the members contributed to a network, we use
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Myerson value to be a description of weight of importance of the members

of a network.4 We will discuss this in detail in a later section.

De�nition 1 A path p(ij) between players i and j in a network g 2 G is a

sequence of players i1; :::; ik such that gikik+1 2 g for each k 2 f1; :::; K � 1g;

with i1 = i and ik = j.

A path p(ij) represents a possible social contact between player i and

player j such that i; j 2 g and i 6= j. For example, the total number of paths

in the network g = f12; 23g is three, and the set of paths is f12; 23; 123g. We

use this approach to sketch how much information �ow is contained in a given

network. This approach has another useful property, compare a network

g = f12; 23; 13g to g0 = f12; 23g, without any computation readers can

intuitively realize that the �rst network contain more information �ow than

the second one, further, player 2 is more important in the �rst network than

the second one, since without player 2 the second network cannot create any

information �ow. Now we are going to de�ne the importance in a network.

De�nition 2 A value function v(gjs) = P (gjs)# is the number of total paths

in network gjs, where s � N and P (gjs) is the set of paths in the network

gjs, P (gjs) = f p(ij)jp(ij) is a path of gjsg.

We set a special allocation rule that each player has some resources to

allocate to her neighbors. The resources, or the power, a player can have
4An alternative measurement was called Bonacich Centrality. By giving an exogenous

information discount rate Bonacich Centrality measures who is the key person in a social
network. For more discussions about this measurement, see Bonacich (1987); Ballester,
Calvo-Armengol and Zenou (2006).
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is determined by her importance in the social network. That is, the more

important the agent in the network, the more resources he has to give to the

others. We use Myerson value as an index of importance, recall that

yMV
i =

X
s�Nnfig

(v(gjs [ fig)� v(gjs))s
#!(n� s# � 1)!

n!
: (5)

The weight of each agents are

Y MV
i � yMV

i = total paths in g:

De�nition 3 An agent in a network is �important� if she has a large My-

erson value. That is, a network structure may lost many paths while the

important agent is removed from this network.

Note that in this rule, the most dedicative agent may not be the most

important guy. The allocation law is as follow: while agents receive some

resources, they review the e¤ort exerted by their neighbor and give the re-

sources to the one who is more hard-working. For instance, given a network

g = f12; 23g, one may expect agent 2 will contribute zero e¤ort, since he will

certainly receive the resources from agent 1 and 3. Note that a player�s pay-

o¤ depends on two sections: neighbors�evaluation and the aggregate output.

Next we can rewrite the payo¤ function as follows.
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Figure 2: Case N=10. This case show the di¤erent weight of each players
under two distinguishing rules.

ui(g; e) =
X
i

ei �
X
j2Ni

0B@Y MV
j � eiP

k2Nj
ek

1CA� 1
2
e2i ; (6)

where Y MV
j is the power endowed to player j who is a neighbor of i. In order

to easy our discussion, we call a model based on simple weighted allocation

rule SWAR, while call a model based on Myerson-weighted allocation rule

MWAR in the rest of paper.

Compare this two allocation rules, they all have a common property:

Players get more power if they direct link to more players. From a social

point of view, this property is reasonable. A society may not want to endow

too much power to an unsociable individual who has lesser information rel-

atively. On the other hand, the di¤erence between this two allocation rules
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need to more justify. Consider the case in �gure 2 �rst,5 each number denotes

the weight of players under SWAR; number in parenthesis denote the weight

of players under MWAR. In this case each player has three neighbors, hence

every players yield the same weight under the setting of SWAR. However,

under the setting of MWAR, player f1; 6g are relatively important than oth-

ers, player f2; 5; 7; 10g are at the secondary position, then player f3; 4; 8; 9g

are at an unimportant position relatively. The factor of causing this dif-

ference is that Myerson Value emphasizes not only the relationship among

players but what position players are at. Combine this two features we shall

know another property under the setting of MWAR: Players get more power

if they link to a powerful one. In �gure 2 player f1; 6g stand for a critical

point since this organization would loss most information �ow without the

linkage between player 1 and 6. The power endowments for player 2; 5; 7; 10

are larger than the endowments for player 3; 4; 8; 9 because player 2; 5; 7; 10

are linked to player 1 and 6 respectively. Sometimes this di¤erence can yield

the equilibrium results very dissimilarly.

It seems MWAR is more reasonable, however, a reasonable rule does not

necessarily lead to an e¢ cient equilibrium. Note that a player may dislike to

be endowed a large share of power because the more power a player has, the

lesser resources received from others possibly. Consider an individual who

is endowed the entire power to allocate the resources, she then collects zero

5Thanks for the progress of computer science, we develope a program to deal with
these annoying computation. For examples, the networks showing in �gure 2 contains 633
paths; a network g = (gc � ij) with N = 10 contains 4055236 paths!
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bene�t from her neighbors. Thus there always exists a negative force against

linkage.

3 Equilibrium e¤orts in peer evaluation net-

works

We analyze the characters of Nash Equilibria in a given network. We prove

that the equilibrium e¤ort pro�le is unique. Recall the payo¤ functions, each

player solves the optimal problem:

Max
ei

: ui(e; g) = f(e) � Si(e; g)� c(ei); (7)

and evaluate the marginal bene�t and marginal cost. An optimal pro�le e�

is a Nash Equilibrium if and only if e� satis�es (7) for all i.

Consider a case that a player i is a member in a certain organizational

structure, like a sport team or a project group. Player i can choose to be

a free rider, or to work hard to improve her performance. Our purpose is

to eliminate the incentive of idleness, and enforce members to contribute

more. Consider Si is any ratio irrelevant to g, say Si = 1
n
, and simply set

ui(e) =
1
N
�
P
ei� 1

2
e2i ; the optimal problem show players has no motivation to

exert at a higher level, moreover, the optimal e¤ort would goes toward zero

whileN is large. Or we could create a share ratio not necessarily equal among

players, for instance, S = eiP
ei
. The optimal problem shows that players
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have no incentive to contribute more. The point is that the punishment from

team members is very weak, members could not punish the lazy workers

through an o¢ cial law, and the free-rider problem still could occur even in

an organization introduced pro�t-sharing scheme.

Kandel and Lazear (1992) considered the peer pressure into the workers�

optimal problem, and yielded a result that equilibrium e¤ort was higher than

it would be without peer pressure. Our pattern would not go beyond their

studies, but we re�ned the past ideas into a computable platform, not just

an abstract concept.

3.1 Networks and e¤ort pro�les

In our design players not only participate in production scheme but also

participate in pro�t-sharing plan. The power of determining how much pro�t

a worker should receive is belong to everyone. Hence, the mechanism of

punishment is quite clear, once someone try to shirk, he would be punished

by their neighbors seriously. In other words, this kind of platform provides

an environment in which has strong force to encourage players to contribute

more.

Players consider their position in this game and take it as a variable of

utility. Since the payo¤ is relied on their e¤ort as well as the neighbors�

power, it is normal the e¤ects of peer are heterogeneous among players.

For example, player A is aside by a powerful player while player B is not,

obviously player A has more incentive to work harder than player B. In this
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Figure 3: Equilibrium in di¤erent structures. Each number denote the equi-
librium e¤ort under SWAR; numbers in parenthesis denote the equilibrium
e¤ort under MWAR.

part we analyze the relationship between graph and equilibrium e¤ort, under

the convex setting one graph can only determine one set of equilibrium e¤ort,

it�s convenient for our study.

Let�s start with several cases. Figure 3 demonstrate the examples of equi-

librium, in complete network SWAR and MWAR yield the same equilibrium

since the weights are indi¤erent under these two rules. However, in tree

and line structures the results are distinct when the allocation rule switched.

Switch the allocation rule means impose another set of weight on the players,

therefore players respond to this change and choose another set of e¤ort to

maximize their payo¤.

We found in star networks structures, a player in center position was tend

to exert more e¤ort relatively than the peripheral under MWAR, further, this

tendency was intense when the number of players increased.
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Proposition 1 Consider a star network g. Let S be the center player, E be

a peripheral player. Under MWAR, S�s equilibrium e¤ort increases as the

number of peripheral players increases, while E�s equilibrium e¤ort decreases

as the number of peripheral players increases.

Proof. Use the facts that in any star networks, Y MV
S and Y MV

E are decreased

as n increases. From (6), the �rst derivation of S�s payo¤ function with

respect to Y MV
S yield

es = (1� Y MV
S ). (8)

The above equation shows that agent S�s e¤ort increases as n increases.

Similarly, the �rst derivation of E 0s payo¤ function with respect to Y MV
S

yield

eE = eS � Y MV
S �

P
k2NSnfig

ek P
k2NS

ek

!2 + Y MV
S (9)

Take the general derivation to (9), then we can �nd deE
dYMV

S
> 0. Therefore,

E�s e¤ort would decreased as n increases.

Star network structures are common in everywhere, this proposition re-

�ects an important fact. Usually we do not wish to see an agent (worker,

unit, etc.) at a hinge has not to engage in honest work because of its exter-

nality. Although our model ignore the externality, once concern this e¤ect,

the property we show would be very useful.
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Figure 4: This example sketchs the property in star structures. Each number
denotes the equilibrium e¤ort under SWAR; number in parenthesis denote
the equilibrium e¤ort under MWAR.

Under SWAR the result was quite di¤erent, the center would exert 1
2

and the peripheral exerted a level higher than center. The aggregate output

under SWARmay be larger than the outcome under MWAR. Since we do not

count the e¤ect of externality in therefore this comparison is not absolute.

Sociologists and politicians may have an interest in if there is any possible

that a group of agents would dedicate all sel�essly, for any purpose. Complete

networks provide the best environment to examine this debate, since in which

contain the most information �ows so that any active would be observed by

everyone as well as the strongest punishment. Our model show that even in

complete networks agents still try to shirk, but this phenomenon would be

eliminated gradually as the size of network goes to in�nity.

Proposition 2 The equilibrium e¤ort pro�le in complete networks converges

to the maximum e¤ort pro�le while n!1.
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Proof. Given any complete network gc, agent i�s payo¤ can express as

ui =
X�

ej � Y MV
j � eiP

ek

�
+
X

Y Mv
j � ei �

1

2
e2i ;

since in a complete network Y MV
i = Y = 1

n
; the �rst order condition with

respect to e are

ei =
n2 � n� 1
n2 � n :

Hence, no one would exert to his extreme unless n goes to in�nity in a

complete network structure.

Peer pressure is generated from two components, one is the punishment

within the group, and the second is interpersonal position. Agents tend to

shirk when they aside by the unimportant agents, and on the contrary, agents

tend to work hard. An inter-linked star network has more productivity than

other structures is expected because every agent is arranged aside by an

important agent in a star network.

We suggest the force of punishment should be distinguished among play-

ers, and this force must be correlated with the position. For instance, Let us

consider a star network with �ve agents. If Yi = 1
5
for all player i regardless

to their positions, then the equilibrium output is 1. It is strictly smaller than

the outcome when SWAR or MWAR is imposed. By the di¤erentiation of

network positions the di¤erent in�uences was done for individuals. It is obvi-

ous that links to an agent with high power is bene�cial as well as means more
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Figure 5: Equilibrium in di¤erent structures. Each number denote the equi-
librium e¤ort under SWAR; numbers in parenthesis denote the equilibrium
e¤ort under MWAR.

competition, then the competition would enhance the productivity. On the

other side, a person stands aside by a low power one may lose some poten-

tial pro�t but faces a low level of competition. Thus there exists a trade-o¤

between whether players want to form a link to a powerful one or not, if we

lose the restriction of forming structures.

Divide a group into two components, one is competitive, another is not.

In Figure 5, graph (a) shows players f1; 2g in a less competitive component

exert less e¤ort than players f3; 4; 5g in a more competitive component, in

equilibrium. When the competition is enhanced in one of component, graph

(b) shows the e¤ect of this behavior done to players. As our discussion,

players who face more competition tend to be more productivity, whereas

the remainders shirk more.
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3.2 Decomposition of e¤ort

One of di¢ culties for studying peer e¤ect is how to identify it. Rewrite the

original model into

ui =
X
i

aijYj
ei

NP
k=1

ajk � ek
� f(e)� 1

2
e2i ;

if j is an unit of agent i�s neighbors, or j 2 Ni; if k is an unit of agent j�s

neighbors, or j 2 Nj, then aij = 1; ajk = 1. Otherwise, 0. Then the general

form of optimal solutions are

e�i =
X
j

aijYj +
X
j

26664aijYj �
 
f(e)�

X
k

ajk � ek

!
�

�P
k

ajk � ek
�
� ei�P

k

ajk � ek
�2

37775 :

That means the equilibrium e¤ort can be decomposed into two compo-

nents. The �rst item is irrelevant to e¤ort pro�le but only relevant to g: The

second item is the result after the interaction among the agents. Therefore,

only the second item in which agents compete with their peers is the peer

e¤ect. We may call the �rst item the direct e¤ect of peer evaluation, and call

the second item the feedback e¤ect generated from peer evaluation.

21



3.3 Existence and uniqueness of Nash equilibrium

Typically, the strategic set feg is a nonempty, convex, compact set, and v is

continuous in g, ui is a concave function for ei and is continuous in ei. There-

fore, by Kakutani�s Fixed Point Theorem, the game G = fN; e; huiig has a

Nash equilibrium. Rosen (1965) also forced another approach to prove that

an N-person game with strictly concave payo¤ functions has an equilibrium

point.

We also show the game G has a unique equilibrium point by Rosen�s

approach. In his notation, let 'i(e) be a payo¤ function of player i, where e

is the strategic pro�le, and let e0 denote an equilibrium that satis�es

'(e0) = max('(e)je 2 R): (10)

Suppose a nonnegative mixed function �(e; r) =
P
ri'i(e), and �(e; r)

is the gradients of �(e; r). By de�nition a function �(e; r) will be called

diagonally strictly concave for e 2 Rn and r = r > 0, if for every e0; e1 2 R

(e1 � e0)0�(e0; r) + (e0 � e1)0�(e1; r) > 0: (11)

Proposition 3 There exists a unique Nash equilibrium e0 in the peer eval-

uation game if �(e; r) is diagonally strictly concave and e0 satisfying (11).

Proof. let e0 be an equilibrium strategic vector, then

1. �(e0; r) = 0.
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2. If e1 is any other non-equilibrium strategic vector, since ui(e) is strictly

concave for e 2 Rn, then (e0 � e1)0�(e1; r) > 0 is true. because

�
4e01 4e02 ::: 4e0n

�
266666664

r1r1u1(e
1
1)

r2r2u2(e
1
2)

:::

rnrnun(e
1
n)

377777775
> 0: (12)

3. If e1 is another equilibrium strategic vector, then �(e1; r) = 0.

Combine 1. 2. and 3 then we know that inequation (11) can not be

satis�ed if e1 be another equilibrium point, e0 is a unique equilibrium

point in our model.

4 Network formation

This part is a discussion of network formation and stability. Following the

de�nition of pairwise stable networks, Jackson and Wolinsky (1996) proposed

that any network were called pairwise stable network if it satis�ed these two

features: (i) no any individual has an incentive to sever a link, and (ii) no

pair of agents have an incentive to form a new link. That is, given a set of

utility functions u, a network g is pairwise stable if

(i) for all i; j 2 g, ui(g) � ui(g � ij); and
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(ii) for all ij =2 g; if ui(g + ij) > ui(g) then uj(g + ij) < uj(g).

Indeed, pairwise stability is a de�nition of stable networks but not the

only one. In our model agents�consideration are limited so that they consider

whether to form a link or sever a link at a time. This assumption may not

be necessary.

4.1 Pairwise stability with costless links

Given a particular network agents can solve a set of e¤ort and a set of payo¤

from the model. The dynamic process of network change can be thought as

a series of comparative statistic. Once every agent could not improve their

payo¤ by adjusting their network structure, we say this network is stable.

The incentive of forming links with others is that it is a channel to re-

ceiving pro�t. For more speci�cally, it is a channel to exhibiting how hard a

player works and how much contribution she made. According to her con-

tribution, a player will be rewarded di¤erently. The drawback of forming

links is that agents could be too powerful to receive more pro�t. Another

drawback accompanies with its advantage, since the linkages play a role of in-

formation channel, therefore the cost of shirk is high and this pressure would

push agents to exert at a higher level, so the cost of e¤ort could be a heavy

burden.

If agents freely choose their interpersonal relationship, what kind of net-

work could be shaped? Let�s go through some examples. Figure 6 exhibits

a process of network formation from star network to complete one. Periph-
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eral agents have improved their pro�t if they raised a new relationship with

the others, in this case, they gain a 0.24 margin if they do so. Repeat this

consideration we see all agents would stick together and all agents share the

pro�t equally. In other words, no one would like to deviate from the complete

network. Observe the payo¤ change in �gure 6, there is no exist a pattern

that every agents can improve simultaneously. That means, once someone

bene�ted by the change of networks, someone must be loss at the same time,

regardless the total pro�t is increased or not. The sense tell us that peer

e¤ect improve the performance by competition, rather than by coordination.

Through the strategies thinking agents raise a new partnership or deviate

from current relationship, and by this reallocate the resources. Peer e¤ect

provides another way to competitions, creates a high pressure environment

and punish not only the people who shirk their duty but also person who iso-

late from the society. These phenomena are showed in every level of a social

group, from schools to workplaces, and it often cause numerous problems and

issues, since the allocation of resources are distorted twice, one is distorted

by the di¤erence of ability; and the second is distorted by the di¤erence of

relationship.

The property of complete networks is quite useful for improving the per-

formance and avoids the drawback mentioned above since it�s symmetric.

Another property which is further important is stability. That means there

is no any agent would like to break this structure, deviation is not a bene�cial

behavior, so that a group can maintain a well productivity and an acceptable
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Figure 6: The examples of network formation. Each numbers denote the
payo¤ under the MWAR.
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distribution. Next we show the stability of complete networks in our model,

which is under MWAR.6

Proposition 4 A complete network is pairwise stable if utility function sat-

isfy (6).

Proof. Consider a network g = (gc � ij). The bene�t of agent i collects

from j when ij = 1 is

ei � Y MV
j � eiP

ek
+ Y MV

j � ei +
1

n
+

1

n(n� 1)

since ei ! 1 while n!1.

On the other hand, the bene�t collects from J =2 fi; jg are

�X
eJ � Y MV

J � eiP
ek
+ ei �

X
Y MV
J

�
g

7
�X

eJ � Y MV
J � eiP

ek
+ ei �

X
Y MV
J

�
gc
:

When n is large enough, the right hand side of the inequation can be

expressed as n�2
n�1 . Then assume Y

MV
J = 1

n�1 and
�

eiP
ek

�
g
!
�

eiP
ek

�
gc
= 1

n�1
7,

the left hand side can be expressed as n
2�n�2
n(n�1) . Under these assumptions, the

value of LHS is strictly greater than the value of RHS. That is

n2 � n� 2
n(n� 1) � n� 2

n� 1 =
n� 2
n(n� 1) <

1

n
<
1

n
+

1

n(n� 1) :

6The proof under Rule I is same as Rule II, so we skip it.
7Actually,

�
eiP
ek

�
g
is slightly smaller than

�
eiP
ek

�
gc
:
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In the inequation above we see even under these strict assumptions agent

i�s bene�t actually loss while he disconnects to j. Therefore, we show that

complete network is a pairwise stable structure for all N .

Please note that complete network may not be the only stable one. Agents

consider the trade-o¤ of linkage, wider relationship may bring more accesses

to receive rewards, but the competitive pressure also rises immediately. In

a real world, not every person can take stress well. Some may decide to

avoid the excess works and would rather to earn a lower pay. Heterogeneity

of individuals�personality has not been measured in our model, but we can

assume that individuals may have di¤erent maintain costs on their social

links. An unsociable person should encounter a higher maintain cost, while

a sociable will encounter a lower cost.

4.2 Stability in Peer Evaluation Networks (with cost

of linkage)

In a lot of places or situations participators construct a relationship are not

free, environment in�uence is a valuable issue to study. Any environment

exist the barriers among the participators, some places are friendly to in-

teract with others but some places are not. For example, enterprise culture

that encourages cooperation, team work and knowledge sharing may provide

a nice environment for interaction, whereas enterprise culture that empha-

sizes discipline and law may damp employee�s zest to cooperate with others.
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Besides, di¤erent organizational are designed to suit di¤erent purposes. A

�at hierarchy tends to encourage individuals to work with peers, and a tall

hierarchy may tend to emphasize personal performances.

In order to show this story, rewriting the cost function to

c(ei; k) =
1

2
ei + k �N#

i

where k denote the cost of a link. Thus, k is an important parameter for a

planner to adjust the network structures. Since k is irrelevant to e, once the

network is given, parameter k would not change agents�optimal decisions.

In the consideration of forming or severing a link at a time, agents should

compare the marginal bene�t from forming or severing a link to marginal

cost of a link, k. For instance, agent i�s payo¤ in current network g with

m neighbors is ui(g) � k � m, now he has an opportunity to build a new

relationship with j; if he does it, the new payo¤ that he faces is ui(g + ij)�

k � (m + 1), hence, unless ui(g + ij) � ui(g) � k > 0; he would not build up

this relationship. We de�ne the a network with cost of linkage if

(i) for all i; j 2 g, ui(g)� ui(g � ij) � k; and

(ii) for all ij =2 g; if ui(g + ij)� ui(g) > k then uj(g + ij)� uj(g) < k.

Once we impose the cost of linkage to the model, the stable state would

be changed according to the cost. Figure 7 demonstrates the stable area in

complete networks. Low bound means the marginal bene�t of an additional
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Figure 7: Stable area in complete network.

Figure 8: Stable area in Star network.
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link to be a complete network, hence the cost of linkage higher than this

margin would not sustain a complete network. But there is a possible sit-

uation that a network structure could not be stable no matter the cost of

linkage. As Figure 8 shows, star network is an obvious example. Additional

link between a pair of peripheral agents bring much bene�t, but higher cost

of linkage would damp their will to build up this relationship. If the cost of

linkage higher than the bene�t that generate from link, they would rather to

stay in the current state. On the other hand, peripheral agents and center

agent could not sustain their relationship if the cost of linkage is too high.

Since peripheral agents face zero pro�t once they sever their link with center,

the lower bound cost could not higher than their net pro�t at the current

state. Therefore, there does not exist any cost of linkage that can sustain

star network structure.

However, inter-linked star networks are sustained with some cost of link-

age. Additional link between peripheral agents can enlarge much power for

them, and yield more pro�t share. They could be viewed as a secondary

center probably. But in inter-linked star networks there are already have too

many center agents, bene�ts from additional link are more smaller then it

would be in single star networks. That would damp the incentive to form

an additional link. Figure 9 exhibits the stable area of inter-linked star net-

works with two cores. Another interesting result found in �gure 9 is that,

the multiple equilibria are possible. In the gray area complete networks and

inter-linked star networks are both equilibrium structures. This property
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Figure 9: Stable area of multiple structures. Gray area stands for the stable
areas of complete networks and inter-linked star networks that are overlaped.
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very enriches our explanation of real world, many di¤erent structures exist

in practice may due to their cost of linkage.

In addition, group size also is a natural binding of networks formation.

In some cases, a graph is stable with cost of linkage within certain group

size. Multiple stars structure are the good examples. In �gure 10, we show

a multiple stars structure with 2 cores is stable within N = 10 with cost

ranged between 0.16 and 0.24, and unstable if group size goes beyond 10

agents. The same arguments show in 3 and 4 cores structures, their limits of

size are 10 and 11 agents, respectively.

5 Discussion

5.1 Alternative allocation rule

Many arguments are about human�s recognition about the knowing of the en-

tire world. A usual discussion is that we human�s perceptivity is very limited

so that our knowing about the world is very partially. In the practical level,

evaluation system faces the same problem, too. Evaluate all group members

may not be a wise method. The relative problem is �who can evaluate whose

performance?�Should it be someone who is socially connected to the object,

or someone who is just a member of the society? Our model takes a local

evaluative system in which agents can only evaluate their neighbors�perfor-

mance. Oppositely, agents can evaluate all members�performance in a group

no matter the relationship is called global evaluative system. Now we still
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Figure 10: Stability in multiple stars networks with core= 2; 3;and 4.
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follow the local evaluative system but release agents�knowing to the whole

organization.

ui(g; e) =
X
i

ei �
X
j2Ni

0@Yj � eiP
i

ei

1A� 1
2
e2i ; (13)

all symbols are same as before. In addition, assume all agents�e¤ort can

be revealed for everyone. In this setting agents consider their neighbors�

contribution to the total output then agents�optimal decisions are

ei =
X
j2Ni

Yj;

just equal to the sum value of their neighbors�power, and the net pro�t are

ui =
1

2
�
 X
j2Ni

Yj

!
:

These values are smaller than the before values that were solved from

ordinary model.8 This result implies agents in this evaluative system would

compete with all members, and reduce their motivation to exert e¤ort. What

is the intuition of this mathematical result? The reason is that force of pun-

ishment of shirk becomes weaker. Agents punish the slacker through share

8Since

ei =
X
j

aijYj+
X
j

26664aijYj �
 
f(e)�

X
k

ajk � ek

!
�

�P
k

ajk � ek
�
� ei�P

k

ajk � ek
�2

37775 >X
j

aijYj ; i 6= j:
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ratio, by giving a lower share ratio to add the shirk cost they prevent neigh-

bors from dawdle. Once the system switches its platform to (13), the stan-

dard of evaluation transfers to the contribution to the total output instead

of the contribution to the local output, therefore, the in�uential strength of

share ratio is diminished so that agents would more tend to shirk.

Under the assumption of perfect information the model show that know-

ing too much to be good, that�s why we prefer a local evaluative system.

Practically, local systems are more executable and maintainable without per-

fect information since it�s hard to believe that everyone�s performance can

be well revealed to everyone.

5.2 Logrolling

Peer evaluation is an evaluation system designed to improve performance

that is di¤erent from traditional up-to-down evaluation system. However,

logrolling can be a potential problem accompanying with this evaluation.

Colleagues may make some agreements prior, giving favors among each oth-

ers. In our model we prevent this problem through the share ratio. Since

payment is according to appraising rate which is a proportion, a diligent

worker could hardly make this agreement because his payo¤ will be shared

by his colleagues who are more lazy than him.

Another similar problem is coalition. A part of workers may stick together

to crowd out certain colleagues, by giving the imbalance rating. This is

a typical issue reminded in many social studies. However, the power of
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pro�t distribution is belong to workers themselves in our design, any unfair

behavior may generate revenge so that this problem isn�t so serious probably.

Of cause we cannot prevent coalition completely, since the power of checks

and balances is relative to agents�position weight, obviously agents at the

outlying location will lack ability against unfair behavior. Although it exists

some kind of misgiving, the defence mechanism against logrolling in this

model is still superior than usual peer evaluation system.

6 Conclusion

Empirical evidence shows that the peer e¤ect has a strong impact on the

society.9 Crime, epidemic, discrimination, etc., are often associated with the

peer e¤ect. A key question for these complex interactions is: who is the most

in�uential person? Our model allows us to de�ne and explain the meaning

of a powerful man.

We propose a peer evaluating platform based on the interpersonal rela-

tionship, in which agents are given the appraisal right as well as the alloca-

tion right. In traditional evaluating system agents are told to appraisal but

actually the right of pro�t distribution is not belong to agents who really

participant in job plan. Therefore we redesign it, in our model agents are

told not only to appraisal but to determine pro�t distribution at the same

time. The results show that peer e¤ect is stronger and function well so that

9See Calvo-Armengol and Zenou (2004); Evans, Oates and Schwab (1996); Calvo-
Armengol, Patacchini, and Zenou (2005).
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the complete networks are stable. In addition, in�uence of peer e¤ect is het-

erogeneous among agents with the di¤erent network structures, the outcomes

that social group a¤ects individuals can be described more precise.

More future works allow to extend. Because of the maneuverability of

our model, we should con�rm its practicability by doing experiments. Fur-

ther, many settings in the model can be challenged. Heterogeneous agents

analysis is worth further study, since networks approaches are very useful to

investigate these problems, this paper could probably be a extendable tool

for someone who investigate these topics.
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A Appendix: Case N=5.

Graph Equilibrium E¤ort Payo¤

{0.60,0.49,0.49,0.49,0.49} {1.36,0.14,0.14,0.14,0.14}

{0.87,0.75,0.75,0.43,0.43} {1.13,0.38,0.38,0.10,0.10}

{0.46,0.46,0.46,0.46,0.46} {0.7,0.7,0.7,0.7,0.7}

{0.90,0.67,0.67,0.90,0.69} {0.68,0.33,0.33,0.68,0.31}

{0.41,0.53,0.89,0.73,0.73} {0.12,0.45,0.79,0.39,0.39}

{0.98,0.70,0.91,0.70,0.36} {0.95,0.29,0.59,0.29,0.08}

{1.00,1.00,0.65,0.65,0.65} {0.80,0.80,0.23,0.23,0.23}
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