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1 Introduction

This article focuses on using the �copula approach�in the speci�cation of sample selection models
as applied to the labour market discrimination by gender and ethnicity in the labour force in
New Zealand. Simple descriptive statistics indicate that there are signi�cant wage gaps between
males and females, and between Pakeha and people from other ethnic groups such as Maori
and Paci�c Islanders. The human capital models of Mincer and Polachek [21] and Polachek
[25] provide an economic explanation for such wage gaps. They are explained as a result of
di¤erent levels of acquired skills that lead to di¤erences in productivity and hence in wages.
The statistical discrimination literature deals with whether these gaps are fully accounted for by
human capital variables such as age, experience and educational attainment. The usual approach
is to estimate an earnings function by extending the standard form developed by Mincer [20] by
including gender and ethnicity dummy variables. A typical problem in estimating these models
is that no market wage is observed for individuals who do not work. Including only those
individuals who work to form the sample on which the estimation is based could cause sample
selection bias, since the decision to work may be systematically correlated to potential wages.
Statistical techniques were developed to estimate these models following the work of Heckman
[12]. One potential drawback of these techniques is the assumption of multivariate normality of
the unobservable error terms.

The modelling technique used here derives from a representation theorem due to Sklar, see
[28] and [29], in which the joint distribution of random variables can be expressed as a function
of its univariate margins: that function being the copula. The copula represents the dependence
structure between random variables, it captures entirely their joint behaviour. Whilst there
exists an extensive statistical literature on copulas, they have received relatively less attention
in econometrics. Applications include Dardanoni and Lambert [5] in economics, and Miller and
Liu [19] and Smith [31] and [32] in econometrics. Surveys discussing the usefulness of copulas in
the �elds of econometrics and �nance are respectively Trivedi and Zimmer [33] and Cherubini et
al [3]. In regard to statistical modelling, Joe [14, Chapter 11] gives �ve studies in which copula
functions are used to model various multivariate and longitudinal data sets. The speci�cation
method suggested by Lee [15] for modelling self-selection provides an example of the copula
approach, as will be shown below.

The econometric context in which our wage gap problem is set is one of needing to apply
binary models designed to account for data selectivity, should it be present. The last thirty
to forty years have seen numerous contributions to the literature on the use of these binary
models; see, for example, Vella [34] for a recent survey. However, the vast majority of analyses
have depended on the statistical assumption of multivariate normality (Heckman [11]). Although
ubiquitous throughout all facets of econometric modelling, the adequacy of inference based on the
assumption of multivariate normality has often been questioned, and often found to be wanting
in the context of sample selection models. Unfortunately, relaxing multivariate normality by
replacing it with an alternative multivariate distribution has received relatively little attention.
In the main, this was because of the additional computational burdens that were expected to
arise. Instead, the literature developed by focusing on semi-parametric and non-parametric
versions of these models, where modelling improvements might be brought about by the use of
�exible functions of parameters and the covariates of the random variables; see, for example, the
articles in the special edition by Härdle and Manski [10]. The aim of this article is to return to
the issue of replacing multivariate normality with an alternative multivariate distribution (or,
more precisely, a class of multivariate distributions). The adverse computational consequences
are, if anything, mitigated under the proposed method of model speci�cation: the so-called
copula approach.

The copula approach is a modelling strategy whereby a joint distribution is induced by
specifying marginal distributions, and a function that binds them together: the copula. The
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copula parameterises the dependence structure of the random variables, thereby capturing all of
the joint behaviour. This then frees the location and scale structures to be parameterised through
the margins, one at a time. Most importantly, the copula approach permits speci�cations other
than multivariate normality, although it does retain that distribution as a special case.

As all multivariate distributions have a copula representation (Sklar�s Theorem; see Section
2), it might seem that the copula approach is nothing more than the reworking of an old theme.
The advantage derived by the copula approach might simply be that econometricians are better
practiced at modelling univariate distributions than they are multivariate ones. The ideal, of
course, is to choose the right statistical model a priori, and hence the right copula. However,
when working with empirical data it is rare to have such insight. The speci�cation problem is
further compounded in most sample selection models due to latency of the underlying utilitarian
variables, and the presence of covariates. When faced with such di¢ culties, it is advantageous
to have to hand a range of potential candidate models from which a preferred �t can emerge.
Under a copula approach, families of models can be constructed according to classes of copula
functions.

2 Copula Functions

2.1 Theory

The study of the copula function was initiated in the 1940s by Hoe¤ding [13], and further
developed in the post-war period by Fréchet [8]. Particularly important was the work of Sklar,
especially his representation theorem from which the copula approach to modelling is derived;
see [28] and [29]. For histories of the development of copula theory see Dall�Aglio [4], Schweizer
[26], Fisher [7] and Nelsen [24]; also of interest is Sklar [30]. Joe [14], Frees and Valdez [9] and
Nelsen [24] present comprehensive surveys of the theory of copula functions.

The simplest case will be set down here to illustrate the theory: the bivariate case. Consider
a two-place function C : II2 ! II; where II denotes the closed interval [0; 1] of IR; the latter
denoting the real line, while IR = IR [ f�1;1g will later be used to denote the extended real
line. C is a copula function if it is 2-increasing with margins C(1; y) = y and C(x; 1) = x; and
grounded such that C(0; y) = C(x; 0) = C(0; 0) = 0; where the pair (x; y) 2 II2: By 2-increasing
it is meant

C(x2; y2)� C(x2; y1)� C(x1; y2) + C(x1; y1) � 0

for every x1; x2; y1; y2 in II such that x1 � x2 and y1 � y2:
Sklar�s main result is that there exists a copula function which acts to represent the joint

cumulative distribution function (cdf hereafter) of random variables in terms of its underlying
one-dimensional margins. For example, let F1(z1) and F2(z2) denote, respectively, the cdf of
the random variables Z1 and Z2; that is, Fi(zi) = Pr(Zi � zi); where zi 2 IR (i = 1; 2); and let
F (z1; z2) = Pr(Z1 � z1; Z2 � z2) denote the joint cdf. Sklar�s result is that the joint cdf can be
represented according to

F (z1; z2) = C(F1(z1); F2(z2)): (1)

The copula representation is a re-formulation of the joint cdf such that it separates the margins
F1 and F2 from their interaction. So while the copula function takes as arguments the margins F1
and F2 in (1), the function itself is independent of those margins. The copula serves to capture
the dependence between the random variables Z1 and Z2: When F1 and F2 are continuous
functions, then (1) provides a unique representation of the cdf for any (z1; z2) 2 IR

2
: Nelsen

[24, Section 2.3] provides a proof of (1) that follows the method given in Schweizer and Sklar
[27, Chapter 6] where a multivariate version of the theorem is proved. For alternate proofs
(multivariate version) see Moore and Spruill [22, Lemma 3.2] and Carley and Taylor [2].
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The copula density c : II2 ! [0;1] of a copula C is de�ned as

c(x; y) =
@2

@x@y
C(x; y):

It cannot be negative-valued as C is 2-increasing. The copula density occurs in the expression for
the joint probability density function (pdf hereafter) of continuous random variables. Assuming
that F1 and F2 are continuous functions, then, from (1), the joint pdf of Z1 and Z2 is given by

@2

@z1@z2
F (z1; z2) = f1(z1)f2(z2)c(F1(z1); F2(z2))

where fi(zi) = @
@zi
Fi(zi) denotes the pdf of Zi; i = 1; 2: Fang et al [6] term c(F1(z1); F2(z2)) the

�density weighting function�.

2.2 Examples

Consider the Product copula:
� = xy

where here, and in the following examples, (x; y) 2 II2: In light of (1), under � the joint cdf of Z1
and Z2 must be given by F (z1; z2) = F1(z1)F2(z2); implying that Z1 and Z2 are independent.
Thus, the Product copula represents (bivariate) independence. The copula density of � is
obviously equal to unity.

Two further examples are the (bivariate) Fréchet lower bound

W =
x+ y � 1 + jx+ y � 1j

2
= max(x+ y � 1; 0)

and the (bivariate) Fréchet upper bound

M =
x+ y � jx� yj

2
= min(x; y):

These copulas are important in that the closed interval [W;M ] has the property of containing
all bivariate copulas; namely, W � C(x; y) �M:

For the purposes of statistical modelling it is essential to parameterise the copula function so
that data can be used to shed light on the extent of dependence between the random variables
of interest. Let

C�(x; y)

denote a family of copulas, where the members are indexed according to values assigned to �
(possibly vector valued). Provided that the margins F1 and F2 do not depend on �; Sklar�s
representation (1) holds for all members of a given family.

There are numerous examples of families of bivariate copulas C�(x; y) given in Joe [14] and
Nelsen [24], see also Table 1. For example, the family of Bivariate Normal copulas is given by

�2(�
�1(x);��1(y); �) (2)

where �1 � � � 1; setting � = 0 yields �: Here, �(�) denotes the cdf of a standard Normal
variable, and �2(�; �; �) the cdf of a bivariate standard Normal variable with Pearson�s product
moment correlation coe¢ cient �: Note that setting x = �(z1) and y = �(z2) in (2) recovers the
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bivariate standard Normal cdf, �2(z1; z2; �): The copula density of the Bivariate Normal family
is given by

�2
�
��1(x);��1(y); �

�
� (��1(x))� (��1(y))

where �(�) denotes the pdf of a standard Normal variable, and �2(�; �; �) the pdf of a bivariate
standard Normal variable with Pearson�s product moment correlation coe¢ cient �: Replacing x
and y with, for example, the cdfs F1(z1) and F2(z2); respectively, as per (1), yields the bivariate
Meta-Gaussian distribution. The family of bivariate Normal copulas nests the Product copula
� as the special case corresponding to � = 0:

A further example is the Plackett family of copulas:8<: 1
2(��1)

�
s�

p
s2 � 4xy�(� � 1)

� where � > 0; � 6= 1 and
s = 1 + (x+ y)(� � 1);

� when � = 1:
(3)

The copula density of the Plackett family is given by

� (s� 2xy(� � 1)) t�3

where t =
p
s2 � 4xy�(� � 1):

Both of the aforementioned families are examples of comprehensive copulas, in that they
include W; � and M as special cases: for the bivariate Normal this trio is obtained respectively
by setting � = �1; 0;+1; while for the Plackett family the trio is found corresponding to the
limits � ! 0+; 1;1; respectively.

2.3 Measures of Association

The ability of a given family of (bivariate) copulas to represent di¤ering degrees of dependence
between random variables can be examined in terms of the extent to which it covers, for every
(x; y) 2 II2; the interval between the lower and upper Fréchet bounds for copulas, [W;M ]: This is
generally determined at the extremes of the parameter space. For example, the Bivariate Normal
family (2) has full coverage as �2(��1(x);��1(y);�1) = W and �2(��1(x);��1(y); 1) = M:
Furthermore, this family is comprehensive because it also includes � = �2(��1(x);��1(y); 0):
Comprehensive families of copulas contain the full range of dependence structures. However,
despite the existence of such families it may nevertheless be counterproductive in modelling
contexts to con�ne attention to comprehensive families because there are typically many other
features of data that are of interest.

Many copula families are not comprehensive, one example being the Farlie-Gumbel-Morgenstern
family of copulas (FGM hereafter)

xy(1 + �(1� x)(1� y)) where � 1 � � � 1 (4)

it includes �; when � = 0; but it fails to contain either W or M: For such families it is desirable
to assess coverage in terms of measures of association. In this respect, most familiar is Pearson�s
product moment correlation coe¢ cient. However, this measure su¤ers from a lack of invariance
with respect to the margins. In which case it is advisable to seek alternatives to Pearson�s
measure that satisfy invariance.

Two measures of association that are invariant are Kendall�s � and Spearman�s S�: Both are
measures of probabilistic concordance and are bound to [�1; 1]: if the dependence structure is
given by W both measures are equal to �1; if the structure is M both take value +1; while for
� both are equal to 0: Moreover, both measures are functions only of the copula of the joint
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distribution. For independent pairs (Z1i; Z2i); i = 1; 2; 3; that are copies of (Z1; Z2); � and S�
are de�ned as:

� = Pr((Z11 � Z12)(Z21 � Z22) > 0)� Pr((Z11 � Z12)(Z21 � Z22) < 0)

and
S� = 3 (Pr((Z11 � Z12)(Z21 � Z23) > 0)� Pr((Z11 � Z12)(Z21 � Z23) < 0))

Should (Z1; Z2) be a pair of continuous random variables, with the copula of the joint distribution
given by C; then � and S� may be simpli�ed (see Nelsen [23]):

� = 4

Z Z
II2
C(x; y)dC(x; y)� 1

= 4E[C(X;Y )]� 1

and

S� = 12

Z Z
II2
xydC(x; y)� 3

= 12E[XY ]� 3

Here, X and Y denote standard uniform random variables with joint cdf C: For the FGM family
of copulas � = 2�=9 and S� = �=3; with coverage in terms of these measures: �2=9 � � � 2=9
and �1=3 � S� � 1=3:

2.4 The Copula Approach to Model Construction

For the purposes of statistical modelling, it is the converse of the copula representation of the
joint cdf given by Sklar�s theorem that is relevant. In other words, given models for the margins
and a copula function that binds them together, this then has the e¤ect of constructing a
statistical model for the random variables of interest, as a joint cdf is speci�ed. Consider, for
example, a bivariate setting in which Z1 and Z2 denote the variables of interest. Required is
a statistical model for the true, but unknown joint distribution of Z1 and Z2; naturally, this
distribution may depend on parameters and covariates. Under a copula approach, models for
the margins F1(z1) and F2(z2) are proposed, as well as a selection of a copula family C�: Then,
by (1), these selections have the e¤ect of specifying the joint cdf of Z1 and Z2: Intuitively, the
copula approach determines each component of the overall model, then engineers them together
using a copula function.

An added boon for modelling that results by adopting a copula approach concerns the
freedom to specify each margin; for example, identicality in distribution of the margins need not
be imposed. Indeed, because the copula representation is unique on the domain of support of the
random variables in question, multivariate models can be constructed using a copula approach
whose margins can be either continuous or discrete, or mixtures of both.

3 The Self-Selection Model

3.1 Model and Likelihood

Sample strati�cation, or sample selection, is commonplace amongst microeconometric data,
whereby underlying individual choices can themselves in�uence the observations collected on
the random variables of interest. Models of increasing complexity have been constructed to
account for strati�cation in its various guises, should it be present, and a number of these
are discussed in texts such as Amemiya [1, Secs.10.6-10.10], Maddala [17] and [18, Part III],
and Lee [16, Sec.5.6]. In this section, attention focuses on the self-selection model based on a
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binary indicator S that governs whether or not an observation is generated on a second random
variable Y: In economics, one often-studied example of this type of self-selectivity is labour force
participation, where data generated on labour supply from non-participants is unable to re�ect
their true market wage.

Typically, the self-selection model is embedded within an utilitarian framework according to
a pair of underlying latent random variables Y �1 and Y

�
2 ; selectivity arises if these unobservables

are mutually dependent. Here it is assumed that the cdf of Y �i (i = 1; 2); denoted by Fi(y
�
i ) =

Pr(Y �i � y�i ); where y�i 2 IR; depends on the linear function x0i�i and a scaling factor �i; where
Xi = xi (ki � 1) is a vector of covariates of Y �i ; and �i (ki � 1) and scalar �i are unknown
parameters. The joint cdf of (Y �1 ; Y

�
2 ) is denoted by F (y

�
1; y

�
2) = Pr(Y

�
1 � y�1; Y �2 � y�2); and it

depends on all covariates and parameters.
The purpose of Y �1 is to represent participation. In the classic self-selection models of micro-

econometrics, Y �1 is assumed to be a continuous random variable, however, this can be relaxed
without loss of generality. In the self-selection model, Y �2 is observed for participants. In this
section, it is assumed that Y �2 is a continuous random variable with pdf f2(y) = @

@yF2(y); for all
real y in the support of Y �2 :

The self-selection model arises when observations on a pair of random variables (S; Y ) are
generated according to the following observation rules:

S = 1fY �1 > 0g and Y = 1fY �1 > 0gY �2

where 1fAg denotes the indicator function, taking value 1 if event A holds, and 0 otherwise. In
e¤ect, Y �2 can be observed only when Y

�
1 > 0: The participation mechanism is represented by

the Bernoulli variable S; and it derives its properties from those of Y �1 : Note that when S = 0;
Y �2 cannot be observed, and Y is assigned a dummy value of 0:

Let s1; :::; sn denote n observations generated on S (sj 2 f0; 1g; j = 1; :::; n); and y1; :::; yn
the corresponding n observations generated on Y (yj 2 IR; j = 1; :::; n): For a random sample
of n observations, the likelihood function for the self-selection model is given by (c.f. Amemiya
[1, eq.(10.7.3)])

L =
Y
0

Pr(Y �1j � 0)
Y
1

f2j1(yj
��Y �1j > 0)Pr(Y �1j > 0) (5)

where
Q
0 indicates the product over those observations for which sj = 0; and

Q
1 the product

over those observations for which sj = 1: The function f2j1 denotes the pdf of Y �2 ; given event
Y �1 > 0: Its functional form can be derived as follows:

f2j1(y jY �1 > 0) =
1

1� F1(0)
@

@y
(F2(y)� F (0; y))

=
1

1� F1(0)

�
f2(y)�

@

@y
F (0; y)

�
where F1(0) = Pr(Y �1 � 0) = Pr(S = 0): Substitution into (5) yields

L =
Y
0

F1(0)
Y
1

�
f2(y)�

@

@y
F (0; y)

�
=

Y
0

F1
Y
1

�
f2 �

@

@y
F (0; y)

�
(6)

where, for convenience, the index j has been dropped in the �rst line. Additional simpli�ed
notation appears in the second line of (6): F1 will be used from now on to denote F1(0) =
Pr(Y �1j � 0) = Pr(Sj = 0); as too, from now on F2 denotes F2(yj) = Pr(Y �2j � yj); and f2
denotes f2(yj):
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The component of (6) that presents the most di¢ culties to evaluate is @
@yF (0; y): However,

should Y �1 and Y
�
2 be independent, for example, then

@
@yF (0; y) = F1f2; and L can be separated

as per (
Q
0 F1

Q
1 (1� F1))� (

Q
1 f2) : The likelihood (6) is the general form for the self-selection

model. Particular likelihood functions arise from speci�cations assumed for F etc, a number of
which are examined below.

4 Data Set and Empirical Results

4.1 The Data Set

The data set we use in this study is Statistics New Zealand�s CURF (Con�dentialised Unit
Record File) for 2003. The CURF contains unit record level data from the June 2003 quarter
Household Labour Force Survey (HLFS) and its supplement the New Zealand Income Survey
(IS). It contains 28,982 observations. The information in the CURF has been con�dentialised
to protect the identity of respondents. In the �rst place, all household linkages have been
removed, although there is the potential still for some household level analysis since variables
have been added which identify household types, including variables representing numbers of
children, numbers of adults, and weekly household (as well as individual) income. It is, however,
impossible to identify, for example, married couples, so that joint estimation of household labour
supply is not possible.

Other methods used to ensure the con�dentiality of the data include the collapsing of cate-
gories for some variables into a smaller number of categories (for example, country of birth has
been collapsed to a simple indicator as to whether an individual was born in New Zealand or
not), the top-coding of some variables (for example, income has been top-coded to mask outliers
amongst high income earners) and some minor degree of data swapping in the case of �unique�
individuals whose combination of responses could potentially identify them.

There are many variables provided in the CURF for each individual, including actual and
total earnings from the primary and any other wage and salary jobs, income from other sources
broken down by source, indicators of receipt of various transfer payments, age, country of birth
(and years in New Zealand), ethnicity, employment and labour force status, occupation and
industry group (for the employed), local government region, marital status, quali�cations, sex,
household type, and numbers of dependent children in various age groups. Our analysis is
limited to individuals who are in the labour force and who are aged between 15 and 64 years.
The resulting sample data set contains 14,360 observations.

Following a similar classi�cation used by Statistics NZ, we categorize the individuals into
�ve ethnic groups: Pakeha/European, Maori, Mixed Maori, Paci�c Islanders, and Other. The
Mixed Maori represent the survey respondents who ticked both Maori and at least one other
ethnic group, which is an option o¤ered in the survey. Thus, Maori represent the individu-
als who identify themselves solely as Maori. The Paci�c Islanders are made up of Samoan,
Cook Islanders, Tongan, Niuean, Tokelauan, and Fijians. The ethnic group Other refers to all
those not identifying themselves as European, Maori or Paci�c Islander. This classi�cation is
dominated by Asian people.

The sample means of the variables used in our analysis are given in Table 2. The mean wage
of female full-time employees is 89% of the mean wage of male full-time employees. Full-time
Maori employees earn 15% less than the full-time Pakeha employees. The di¤erence in mean
wages is 25% in comparing the Paci�c Islanders with the Pakeha.

4.2 Empirical Speci�cation and Results

We estimate a self-selection model where Y �2 is the logarithm of wages earned by the employed
individuals. Our econometric speci�cation is as follows.
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Margins: (i) Normal. Of the entire sample of 14360; a total of 922 individuals reported
themselves to be unemployed, while 13438 reported undertaking paid employment. Letting Y �1
denote the propensity of undertaking paid employment, we assume normality for this random
variable: Y �1 � N(x01�1; 1); thus:

F1 = 1� �(x01�1):

(ii) Shifted-Gamma. Our speci�cation for Y �2 ; the log-hourly wage earnings of those in paid
employment (the self-selected sub-population), follows a Shifted-Gamma distribution. The pdf
of Y �2 = y > 
 is given by

f2 =
1

�(�)

� �
�

���
exp

�
��
�
(y � 
)

�
(y � 
)��1

where � > 0; � = exp(x02�2) and here the shift parameter 
 is known, assigned the value log 6:39
as the legal minimum hourly wage in New Zealand in 2003 was NZ$6.40. For y > 
; the cdf is
given by

F2 = 1�
�
�
�; �� (y � 
)

�
� (�)

where �(a; b) denotes the incomplete gamma function,
R1
b exp (�t) ta�1dt: Treating � as a con-

stant for the moment, �ts to log-hourly wage amongst the 13438 individuals reported undertaking
paid employment appear in Figure 1. Black represents the data. Blue the �t of a Normal distri-
bution, and Green the �t of the Shifted-Gamma. It is clearly evident that the Shifted-Gamma
provides the superior �t.

Table 3 lists maximum likelihood estimates for the preferred modelling outcome, correspond-
ing to use of the Plackett family of copulas (3). The Plackett model (maximised log-likelihood
�6711:34) strongly rejects the nested Independence (Product copula) model (maximised log-
likelihood �6779:57) via the single restriction � = 1; the LR statistic being 136:5: Non-nested
comparisons on the basis of AIC (cf. Joe [14, Sec.10.3]) with a number of other copula families
lead to the same preferred outcome, namely, the Plackett model.

The point estimate of the dependence parameter � of the Plackett family is 0:089; with asso-
ciated standard error 0:011: The Wald test of the hypothesis � = 1; representing independence
between participation and wage earnings, is strongly rejected, t = �82: Re-parameterising to
Kendall�s � yields the point estimate �0:498; and for the alternate measure Spearman�s S� the
estimate is �0:678: The strong negative relationship between the job participation and wage
earnings variables is consistent with standard reservation wage theory: those individuals not in
paid employment have not received a wage o¤er substantial enough to exceed their reservation
wage (the lower is Y �1 the greater must be Y

�
2 ):

The results suggest that age, number of children (both pre-school and school-age), marital
status, education, and ethnicity are important factors in the job participation decision. Existence
of children lowers the probability of employment, while married people are more likely to be
employed. Any level of education has a positive e¤ect on the probability of being employed.
Although gender does not seem to e¤ect the probability of employment, Maori and Mixed Maori
are less likely to be employed compared with Pakeha. The coe¢ cients of Paci and Other are
not statistically signi�cant. Migrants are also less likely to be employed in comparison with
individuals born in New Zealand.

The age variable enters the log wage regressions in a quadratic form that permits calculation
of a turning point, representing the age at which the e¤ect of an extra year becomes negative.
The turning point can be computed as the negative of the coe¢ cient on age divided by twice
the coe¢ cient on age-squared. The results suggest that the turning point is approximately 47
years of age.

Any form of quali�cation is found to have a signi�cant positive e¤ect on the wages earned.
Even the lowest form of quali�cation in the form of school level quali�cation is found to increase
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the wages earned by 12.4%, with this e¤ect being as high as 41.7% for university level quali�ca-
tion. The e¤ect of quali�cation is found to be lower for Maori, but the coe¢ cients of the other
ethnicity-quali�cation interaction terms are not statistically signi�cant.

The immigration status does not seem to have an e¤ect on the wages earned, apart from
individuals who have been in New Zealand between 5 and 9 years. These individuals are found
to earn 8.2% more then people born in New Zealand. However, if these people belong to other
ethnic groups (non- Maori and non-Paci�c Islander), they earn 3.6% less compared to people
born in New Zealand. Immigrants from Paci�c Islands who have been in New Zealand for 10-14
years are also found to earn less.

The coe¢ cients of the ethnicity dummy variables in the log wage equation are statistically
signi�cant for the Paci�c Islanders and the others only. The Paci�c Islanders earn about 11%
less than Pakeha, and individuals from the Other group (mostly Asians) earn 5% less. The
�nding that the di¤erence in the wages of Maori people (sole or Mixed ) is not statistically
signi�cant is consistent with previous empirical studies in New Zealand.

The results suggest that the wage gaps between males and females are signi�cant both statis-
tically and economically. Females are found to earn 12.1% less than males. It is interesting that
gender does have such a signi�cant e¤ect on wages even though its coe¢ cient in the participation
equation is not statistically signi�cant.

Table 3 also lists the maximum likelihood estimation results of the standard Heckman sample
selection model. Comparison of the maximised log-likelihood of the two methods indicates that
the Plackett model outperforms the Heckman model. (�6711 for Plackett versus �7347 for
Heckman.) The di¤erences between the two sets of results are considerable. If we focus on the
coe¢ cients of the ethnicity and gender dummy variables, we see that the statistical signi�cance
of them is almost completely reversed. The coe¢ cient of gender in the participation equation is
now statistically signi�cant, implying that females are less likely to be employed. Likewise, the
Heckman model also suggests that Paci�c Islanders and individuals from other ethnic groups
are also less likely to be employed, in addition to Maori and Mixed Maori. On the other
hand, none of the immigration status coe¢ cient estimates in the participation equation are
statistically signi�cant in the Heckman model, whereas they all are in the Plackett model.
More importantly, the coe¢ cients of Maori and Mixed Maori in the log wage equation are
negative and statistically signi�cant in the Heckman model. (But the coe¢ cient of Other is
not.) Thus, one could conclude that the Maori were discriminated against if a Heckman model
were estimated, whereas the results obtained by using the Plackett Copula suggest otherwise.
These are important di¤erences in terms of policy implications or understanding the dynamics
of the New Zealand labour market.

5 Conclusions

The distributional assumptions are important in applied sample selection models. This arti-
cle focuses on using the copula approach in the speci�cation of the sample selection models.
Although vast majority of the applied microeconometric analyses are based on the statistical
assumption of multivariate normality, the copula approach permits speci�cations of alternative
multivariate distributions. We estimate various speci�cations to analyse the data from New
Zealand labour market by using di¤erent copulas and distributional assumptions. We �nd the
Plackett copula performs the best, and report the results. Our results indicate the wage gaps
between male and female workers are quite substantial, and cannot be explained by di¤erences
in quali�cation or individual demographics. We also �nd that ethnicity does not matter for
Maori, the indigenous people of New Zealand. However, we �nd that Paci�c Islanders and
people from other ethnic groups (most of whom are Asians) earn signi�cantly less than Pakeha
even after controlling for quali�cation and individual demographics.

The results from the standard Heckman model give di¤erent conclusions in terms of the e¤ects
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of immigration status and ethnicity. This demonstrates the importance of the distributional
assumptions in applied work. The advantage of taking an approach as suggested here is the
ability to compare di¤erent models, one of which is the standard Heckman model.
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Figure 1: Kernel Smooth Distribution of Log Wages (black), with Normal (blue) and Shifted
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Table 1: Examples of Bivariate Copula Families

AMH (a)

Copula C�
xy

1��(1�x)(1�y)

Density c� [1 + � (xy + x+ y � 2 + � (1� x) (1� y))] [1� � (1� x) (1� y)]�3

Parameter � �1 � � � 1

Spearman�s S� (b)
12(1+�)

�2
dilog(1� �)� 24(1��)

�2
log(1� �)� 3(�+12)

�

FGM (a)

Copula C� xy(1 + �(1� x)(1� y))

Density c� 1 + �(1� 2x)(1� 2y)

Parameter � �1 � � � 1

Spearman�s S� �
3

Frank

Copula C� ���1 log
�
1 + (e��x�1)(e��y�1)

e���1

�
Density c� �

�
1� e��

�
e��(x+y)

�
1� e�� � (e��x � 1)(e��y � 1)

��2
Parameter � �1 < � <1

Spearman�s S� (c) 1� 12
� (D1(�)�D2(�))

Plackett

Copula C� (d) 1
2(��1) (s� t)

Density c� � (s� 2xy(� � 1)) t�3

Parameter � � > 0

Spearman�s S� �+1
��1 �

2�
(��1)2 log �

Normal

Copula C� �2(�
�1(x);��1(y); �)

Density c�
�2(�

�1(x);��1(y);�)
�(��1(x)) �(��1(y))

Parameter � �1 � � � 1

Spearman�s S� 6
� arcsin

�
�
2

�
Notes: (a) AMH denotes Ali-Mikhail-Haq. FGM denotes Farlie-Gumbel-Morgenstern.

(b) dilog(z) =
R z
1 log(t) (1� t)

�1 dt is the dilogarithm function.

(c) the Debye function Dk(z) = kz�k
R z
0 t

k
�
et � 1

��1
dt; for k any positive integer.

(d) s = 1 + (� � 1)(x+ y) and t =
p
s2 � 4xy�(� � 1):
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Table 2: Sample Means of the Variables
Employed (n=13438) Unemployed

(n=922)
Total

Full time
(n= 10374)

Part time
(n= 3064)

Variables Mean Mean Mean Mean
Wage (overall) 18.10 13.84 16.02
Wage (pakeha) 18.74 14.26 16.85
Wage (maori) 15.99 11.54 13.21
Wage (mixd) 16.29 13.29 13.54
Wage (paci) 13.95 11.97 12.49
Wage (other eth) 18.15 12.88 15.04
Wage (male) 18.99 13.55 17.27
Wage (female) 16.88 13.91 14.80
Age 38.98 36.11 33.32 38
% female 42.21 78.72 50.98 50.56
% married 66.13 53.07 37.96 61.53
% separated 8.60 10.41 11.50 9.17
% with uni degree 15.39 9.40 9.00 13.70
% with post-school quali�cation 44.58 31.92 34.27 41.21
% with school quali�cation 21.92 34.40 24.95 24.78
% immigrant 0-4 years 4.08 3.62 10.20 4.37
% immigrant 5-9 years 2.79 2.81 4.66 2.91
% immigrant 10-14 years 2.11 2.02 3.15 2.16
No. of school-age children 0.40 0.52 0.41 0.43
No. of children under 5 years 0.58 0.71 0.61 0.61
% in top two occupatioal groups 0.38 0.25
% in middle �ve occupatioal groups 0.58 0.64
% maori 9.24 8.09 18.43 9.59
% mixed maori 3.42 3.52 7.70 3.72
% paci�c islander 5.55 2.90 6.94 5.08
% other ethnic groups 6.84 7.77 12.15 7.38
% main city resident 48.26 43.31 43.71 46.91
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Table 3: Maximum Likelihood Estimates: Plackett Copula
Participation Wage Earnings

Plackett Heckman Plackett Heckman
Constant 0:273 �394�� �1:616�� 1:501��

Individual Demographics
Age (years) 0:051�� 0:079�� 0:060�� 0:048��

Age-squared (years/100) �0:062�� �0:086�� �0:064�� �0:052��
Gender (female=1) 0:009 �0:225�� �0:130�� �0:126��
No. school-age children �0:105�� �0:019
No. children under 5 years �0:077� �0:056�
Married or cohabit 0:527� 0:110��

Divorced, widowed or separated 0:034 0:048
Main city resident 0:053 0:200�� 0:088�� 0:089��

In top two occupational groups 0:312�� 0:221��

In middle �ve occupational groups 0:098�� 0:059��

Employed part-time �0:199�� �0:121��
Education (ref: no quali�cation)
University degree 0:347�� 0:869�� 0:349�� 0:400��

Post-school quali�cation 0:202�� 0:365�� 0:187�� 0:175��

School leaving quali�cation 0:274�� 0:337�� 0:117�� 0:123��

Ethnicity (ref: Pakeha/European)
Maori �0:414�� �0:300�� 0:042 �0:058��
Mixed Maori �0:463�� �0:317�� 0:002 �0:071��
Paci�c �0:081 �0:303�� �0:118�� �0:133��
Other �0:052 �0:055�� �0:053� �0:045
Immigrant status
0-4 years in NZ �0:377�� �0:096 �0:031 �0:080��
5-9 years in NZ �0:353� �0:003 0:079� 0:074��

10-14 years in NZ �0:524�� �0:231 0:063 0:013
Ethnicity-Education Interactions
Maori - University degree �0:114� �0:134��
Maori - Post-school quali�cation �0:086�� �0:044�
Maori - School leaving quali�cation �0:086�� �0:027
Mixed - University degree 0:062 0:163�

Mixed - Post-school quali�cation �0:013 �0:127
Mixed - School leaving quali�cation �0:011 0:003
Paci�c - University degree 0:015 �0:043
Paci�c - Post-school quali�cation �0:052 �0:036
Paci�c - School leaving quali�cation 0:012 0:009
Other - University degree �0:004 �:056
Other - Post-school quali�cation 0:063� 0:035
Other - School leaving quali�cation �0:035 �0:017
Ethnic-Immigrant Interactions
Paci�c �0-4 years in NZ �0:497� �0:643�� 0:007 �0:095
Paci�c �5-9 years in NZ �0:149 �0:281 �0:110 �0:128�
Paci�c �10-14 years in NZ 0:057 �0:194 �0:121� �0:120�
Other �0-4 years in NZ �0:472�� �0:717�� �0:042 �0:120��
Other �5-9 years in NZ �0:269 �0:556�� �0:116� �0:198��
Other �10-14 years in NZ 0:572� 0:078 �0:123� �0:058
Note: Amongst the covariates �� and � indicate signi�cance at 1% and 5% levels respectively
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Table 3 (Continued)
Other estimates and statistics

Plackett Heckman
Gamma shape � 5:98��

Normal std deviation 0:363��

Dependence � 0:089�� 0:962��

Spearman�s rho �0:678��
Kendall�s � �0:498�� �0:824��
Maximised log-likelihood �6711:34 �6923:31
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