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Abstract 
 
A learning model is presented which resolves the ambiguity in the efficient markets 
concept because it is consistent with rational expectations.  Heterogeneous least squares 
learning alone is sufficient to construct a price which contains all information.  Contrary 
to intuition, there is no need for costly fundamental analysis; instead price is the product 
of interlocking expectations, and the continual revision of expectations causes price to 
gravitate to the efficient point. Price bubbles are not an aberration but an intrinsic part of 
a two phase process (normal / bubble) driven by the proportion of investors who consider 
price in their decisions.  This behaviour can be understood in terms of a hidden substrate 
in which price is an information storing object, analogous to a set of genes in biology.   
 
Keywords:  rational expectations, least squares learning, rational learning, efficient 
markets hypothesis, objective model 
JEL classification:  G14 
 
 
1. How do financial markets work – the efficient markets hypothesis 
 
The Grossman Stiglitz (1980) paradox can be expressed more simply by moving it from a 
microeconomic framework to the language of rational expectations.   How can the 
positive profit expectations of investors be reconciled with outcomes which have a net 
realization across buyers and sellers of zero?   This question is particularly challenging in 
a single period model where the zero sum nature of the game is starkly apparent.  There is 
no positive risk-free return nor any equity risk premium to be shared amongst the 
participants.   This paper purports to construct an answer which applies even in this case.  
In short the answer is: the use of price as a variable in estimating return is costly most of 
the time because of the imprecise nature of price compared with other variables.  
Nonetheless at least some investors will continue to use price as a variable, and subsidize 
other investors in normal times, because it is profitable to use price in bubble/crash 
situations.  Bubble/crashes are not an aberration but an intrinsic part of the two-phase 
cyclical process (stable / bubble) which governs financial markets.  
 
1.2.  The microeconomic examination of the efficient markets hypothesis 
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The Grossman Stiglitz (1980) study used the following specific elements which have 
characterized microeconomic studies of financial markets ever since: 

• There are two classes of trader, fundamental analysts and price watchers.  The 
fundamental analysts value the stock using non-price information, which is 
represented by a scalar variable in the model. 

• Fundamental analysis incurs cost, whereas price watching does not. 
• Price watchers learn from price according to the standard rational expectations 

assumption that they have full knowledge of the return distribution conditioned on 
price. 

• There is ‘strategy switching’, which means that traders can move between 
fundamental analysis and price watching according to relative profitability of 
either strategy. 

• trader demand derives from explicit risk preference functions in a universe which 
contains a risk free security. 

 
Grossman Stiglitz found that in a non stochastic environment price is perfectly revealing 
of the information of the fundamental analysts and no equilibrium can exist.  If anyone is 
paying for information then everybody gets it, but if no one is paying for information 
then everyone wants it.  They conclude (1980, pg 405), “because information is costly, 
prices cannot perfectly reflect the information which is available, since if it did, those 
who spent resources to obtain it would receive no compensation”.   Grossman Stiglitz 
employ a further element in their model: 
 

• An exogenous source of noise which prevents price being fully revealing.  Noise 
can be inserted in various ways to much the same effect; the particular device 
employed by Grossman Stiglitz is variable security supply.   

 
The Grossman Stiglitz model is formulated in terms of conditional probability 
distributions.   This version of the rational expectations hypothesis has been criticized for 
requiring actors to have information which is implausibly good.   Investors cannot 
directly observe this information, nor can we observe that investors have it.  Where actors 
are heterogeneous –have different information - there is the logical problem of assuming 
that each actor has expectations which are determined in part by their knowledge of the 
expectations of other actors using different information.   Therefore Bray (1982) made an 
important contribution when she looked at price watchers using least squares learning to 
determine the relationship between price and return instead of rational expectations 
omniscience.   Least squares learning refers to the econometric process by which agents 
regress observed return on price using ordinary least squares regression (OLS).  They 
then use the estimated regression coefficients to derive predicted return for subsequent 
periods, and this predicted return is an argument of their demand function.  Bray finds 
that the system will still converge to the rational expectations equilibrium with minimal 
conditions. Routledge (1999) extended this by specifying a model in which price 
watchers use least squares learning to learn the relationship between price and return, and 
all agents use adaptive learning to discern the best strategy.  Adaptive learning is a 
different type of learning to least squares learning; instead of observing market data the 



 3

agent observes the strategies and outcomes of other agents.  It is assumed that agents 
move over time to the most successful strategies.   Again the system still converges to the 
rational expectations equilibrium providing ‘experimentation noise’ in the strategy 
selection is low relative to exogenous noise. 
 
The role of the noise trader in financial market economics is ambiguous.  Noise traders 
have expectations which do not reflect market fundamentals: the precise implementation 
of the concept varies from paper to paper.  Noise traders are normally regarded as 
violating the rational expectations paradigm because as argued in Friedman (1953) their 
behaviour will be unprofitable.  For Friedman, noise traders cannot exist except in a 
transitory and inconsequential way.  Black (1986) agrees that noise traders trade 
unprofitably, but argues that notwithstanding it is an observable fact that they do exist 
and have an important economic role.   Their losses subsidize other market participants 
and underwrite the viability of fundamental analysis.  Some take the argument even 
further and claim that noise trading can be profitable.  Long Schleifer Summers and 
Waldmann (1990) construct a model in which noise traders can make money in the long 
term by taking on a large amount of risk.   Rational investors do not arbitrage the noise 
traders to the true value as per the Friedman argument because it is too risky to do so; 
they fear the unpredictability of the noise trader’s behaviour and its attendant effect on 
price.  Interestingly, Chiarella Gallegati Leombruni and Palestrini (2003) get a similar 
result using a model with fundamental traders and price watchers.  Although the 
mathematical implementation differs substantially to the LSSW study, the conclusion that 
price watchers can make money by exploiting the price dynamics is the same.   This is 
quite different to the Grossman Stiglitz notion that price watchers make money by 
tagging along after the fundamental analysts.    
 
These last two studies are only two from the class of dynamic models.  As Chiarella and 
He (2002) state, the development of mathematically sophisticated dynamic models has 
challenged the efficient market hypothesis from a different direction by demonstrating the 
potentially wide variety of price behaviour which markets might generate endogenously 
as different types of investor interact.  Such behaviour can be construed as demonstrating 
that prices do not reflect fundamentals only.  The influential paper Brock and Hommes 
(1997) generalizes the way in which cost is applied within the microeconomic model.  
Within the Brock Hommes model, simple estimators such as adaptive expectations are 
free, and rational expectations estimators are costly.  It is assumed that if everyone uses 
the simple estimators, the equilibrium will be unstable.  The price in the model oscillates 
as the effective estimators only pay for themselves when the price is somewhat 
inaccurate.  The paper established an attractive system for chaotic modeling – in the 
words of Chiarella and He (2001 pg 501), “The resulting dynamical system is capable of 
generating the entire ‘zoo’ of complex behaviour from local stability to high order cycles 
and chaos as various key parameters of the model change.”  Brock Hommes (1998) deals 
more explicitly with fundamental analysts and price chasers as well as agents using 
rational expectations.  Further extensions have come from Chiarella and He (2001, 2002, 
2003), and Branch and Evans (2006).  In this last it is not cost differentials which 
motivate choice of estimator, but uncertainty as to the correct econometric specification.  
This class of financial model works with stylized properties of estimators rather than the 
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estimators themselves, and stylized properties of different investor types.  The nature of 
the dynamics can depend critically on parameter values.   Nonetheless the models are 
suggestive of economic processes more complex and perhaps more interesting than those 
of the efficient markets hypothesis.  Where strategy switching mechanisms are in place, 
they show that most of the time the different types of market player can all exist in a 
dynamic equilibrium. 
 
It does not automatically follow that endogenous price movements are contrary to market 
efficiency if efficiency is interpreted in probabilistic terms: the expected value of price is 
correct and the variations are not great.  Goldbaum in a series of papers (2005, 2006, 
2007) finds that a non-stationary dividend process together with simultaneous least 
squares learning and strategy selection processes will generate endogenous noise.  He 
regards endogenous noise as an intrinsic part of the economic process which serves to 
maintain the viability of fundamental analysis.  The current paper develops this 
perspective by taking a heterogeneous least squares learning approach to fundamental 
analysis.  We find that fundamental analysis will itself generate endogenous noise 
without the need for particular assumptions as to the dividend process or even strategy 
selection.  
 
1.3.   The point of departure of the objective model 
 
It is argued here that a fuller understanding of price and investor price analysis is the key 
to a consistent and realistic model of financial markets.  Security return is considered in 
multivariate generality rather than as the sum of one or two components.  We take a 
heterogeneous least squares learning approach to fundamental analysis: every agent uses 
least squares learning and different agents use different data sets.  It might be said that: 
 

• all agents are fundamental analysts, because they may (or may not) look at more 
data than price alone.   

• no agents are fundamental analysts, because all of them use least squares learning 
rather than additive approaches to determine the value of the security.   ‘Additive’ 
here means a method which purports to arrive at a value for a security using all 
available information processed according to accounting first principles. 

 
Essentially then, the model reinterprets the concepts of fundamental analysis and the 
dichotomy of fundamental/price analysis which have been the mainstay of the 
microeconomic literature on financial markets.   
 
If cost differentials were eliminated in traditional analyst/price taker models then those 
models would favour analysts and resolve the paradox.  This is not a natural thing to do 
because those models rely on cost for economic context and would become trite in its 
absence. Within this model a multivariate treatment of return and heterogeneous 
information is the primary source of economic context.  Cost determines the position of 
the equilibrium but cannot affect the nature of the equilibrium.  This is consistent with 
some of the more recent literature (Goldbaum (2005), Branch and Evans (2006)) which 
also deemphasizes cost.  Strategy switching works with cost to determine the position of 
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equilibrium, but strategy switching is not emphasized here because the focus of the 
objective model is on short term processes.    Risk and portfolio considerations are 
likewise kept in the background.  The demand and supply equations derive from a mean-
variance framework.   
 
The contribution of the paper is as follows.  A model is developed which explores 
multivariate heterogeneous least squares learning within the context of rational learning, 
a learning version of rational expectations.  The model is set in discrete time.  It is an 
analytic model using constructive mathematical proofs as distinct from proofs of 
existence.   Simulations are used at some points to illustrate the points being made and 
validate results which depend on first order approximations.  Section 2 presents the 
objective model.  Price is shown to be a linear function of market data, and this allows 
data to be eliminated from the model in order to reveal the underlying structure.  Section 
3 develops the price change equation, which states that price changes are not in the 
direction of the change of estimates new minus old as might be expected, but in the 
direction of new estimates. This is because both price and data coefficients are estimated, 
and the old components cancel out.  Price changes push price in the direction of the 
unknown return parameters so the market is efficient.  Section 4 undertakes the technical 
task of demonstrating that that the price regression coefficient is negative in a model 
where it is derived from regression rather than prior expectation.  A negative value of the 
price coefficient is required for the market to make a price.  Section 5 investigates the 
economics of the model.  Contrary to the Grossman Stiglitz paradox, investors are 
rewarded according to the value of their information although this appears to imply a two 
phase process in which markets cycle between normal and bubble behaviour.  Section 6 
reviews major themes.  The flip side of the requirements for market efficiency are the 
reasons for market bubbles and this is discussed.  The genetic analogy is not incidental 
but relevant to the paper’s central conclusion – that price is not an immediate function of 
other variables but a store of information with an independent existence, like a gene.  It 
can be regarded as an object in the sense that term is used in computing - an independent 
entity with well defined properties and methods.  For this reason the model is referred to 
as the objective model, i.e. objective in the sense of ‘referring to objects’, not in the sense 
of ‘independently verifiable as opposed to subjective’. 
 
2. Definition of the objective model 
 
2.1. Premises of the objective model 
 
PREMISE 1: RATIONAL LEARNING.     Rational expectations is not interpreted in the 
‘omniscient’ way whereby actors have perfect knowledge of underlying probability 
distributions conditioned by the information they possess.  Rather we recognize that 
forming expectations under heterogeneity is complex and actors must use an adaptive 
stepwise technique.  Expectations formed through the learning process must be realized 
to some degree or that kind of learning will not be sustained – actors ‘learn about 
learning’.  It is this which distinguishes rational learning from the naïve adaptive 
expectations concept which rational expectations replaced.  It is of course possible that 
the actors in the model will step to the wrong place - a local optimum rather than a global 
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one - but that would seem to be as much a feature of the real world as the modeling 
technique, and one of the objects of investigation is to determine whether such an 
outcome is possible. 
 
PREMISE 2: BASIC FRAMEWORK.  There is a security.   Payments at the rate of  y per unit 
are made to security holders at fixed points of time spaced out at equal intervals, for 
instance every midday.  The payment may be negative: for instance the security may be 
insurance policies.  At the start of each period, investors indicate their interest by bidding 
for the stock.  There is zero net supply, investors can long or short the stock and the 
Walrasian auctioneer sets the market clearing price. 
 
The period between one payment and the next is referred to as the ‘observation’ period. 
In the one period model, the security is extinguished once the payment is made so the 
payment must include any return of capital.  Another security of identical characteristics 
comes into being after the payment is made.  In the multiperiod model, the payment is a 
dividend and the security continues on. 
 
The market for the security consists of  J investors each of whom derive their own model  
of security return by carrying out OLS regression on observed security returns using 
market price and variables of their own choosing.  Each investor uses the regression 
coefficients which he or she has estimated to predict future returns. 
 
The sequence of observation periods is divided up into longer segments, each T 
observation periods long, which are referred to as ‘estimation’ periods.  The estimation 
periods are the same for every investor.  At the end of each estimation period, a small 
proportion of investors re-estimate their model using the T observations made in the 
period.   They replace their old coefficient estimates with the fresh estimates and use 
them henceforth.  The other investors keep using the coefficient estimates they already 
have.   The only time coefficient estimates are updated is at the end of each estimation 
period; for all observation periods within a particular estimation period the coefficient 
estimates are kept the same.   
 
PREMISE 3: DATA SET.  Investors use different data, but the data set *

original
T N origX  (covering T 

observation periods for a set of originalN  variables) is a compilation which lists every 
variable used by every investor, probably with repetition.  Also available is the set of 
absolute returns for the security *1Ty  which is the same for every investor.     Each item of 
data is available at the start of the observation period and the corresponding return is 
measured at the end of the observation period.   
 
The initial data set originalX  has a basis X containing N vectors, N T≤ .  It is supposed that 
the basis is chosen so that the variance of the basis variables is normalized orthogonal:  
 [ ] *N NE ′X X = I   (1) 
and it is also supposed with some degree of approximation that the basis is the same in 
every period and displays exact orthogonality:  
 1 0=X X   (2) 
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 *N N′X X = I   (3) 
 
PREMISE 4: INVESTOR STRATEGIES. The specific information which an investor uses is 
referred to as their strategy.  Each investor j is assumed to employ jK different variables 
in their attempt to explain y. 
 0 jK N≤ ≤   (4) 
Given the data transformation specified above, the  variables are not confined to the exact 
variables in X but may include linear functions of these variables.  Each variable jkX  
which investor j uses is derived from the data set using an N *1 strategy vector jka  via: 
 

*1 * *1
 jk jk

T T N N
= ⋅X X a   (5) 

These strategy vectors are fixed.  The jka vectors can be assembled into one strategy 

matrix 1j j jK⎡ ⎤= ⎣ ⎦a a a   so that the full data set jX  used by the investor j is given by: 

 *
* *

j T N j
T jK N jK

=   ⋅  X X a   (6) 

We assume that each investor uses independent variables in their regressions, so that the 
strategy matrix ja is of full rank: 

 ( )jrank jK N= ≤a   (7) 

Putting together the ja matrices for every investor to give one matrix a gives: 

 * ( )
original

N sum jKXa = X       where of course  ( ) origsum jK N=   (8) 

Given that ( ) ( )originalrank rank N= =X X  it follows that: 
 ( )rank N=a   (9) 

or in other words, the set of strategy vectors }{ jka span the space N . 

An investor may use all the available data but not price (a fundamentalist) or use price 
only (a price watcher) or use some data together with or without price.  In this model the 
fundamentalist / price watcher categories represent the two ends of a continuum of 
investor behaviour. 
 
PREMISE 5:  PARTICULAR PROPERTIES OF PRICE.   In addition to the data in data set X, at 
least one investor includes the price of the security p T*1  as a variable in their data set 

jX .  Price is not included as part of another variable jkX but only in its own right.   
 
PREMISE 6: GENERATION OF RETURNS.  It is assumed that the return per period per unit 
(one share, not one dollar’s worth) of the security is generated according to: 
 
 =y Xμ + u   where *N N′X X = I ,  E( ) 0=u ,   [ ] 2

*E T Tσ′ =uu I  (10) 
 
The total variance [ ] 2 2

1* * *1E N N N N Nσ σ′ ′= ⋅ =u u ι I ι  is denoted 2
totσ . 
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The assumption that the mean is zero is not restrictive as OLS will automatically generate 
this result when an intercept is included (although it has not been assumed that the 
constant vector ι  occurs in X) .  This relation is an empirical regularity for the particular 
data set X which does not purport to be causative; if investors had a different data set 
available to them then a different relation would apply.   Nonetheless we suppose that the 
return vector μ  has the character of a parameter in that it is stable over time. 
 
Although the variance of the dividend process is finite this does not rule out an infinite 
variance for security return (which includes price fluctuations) in the multiperiod model. 
 
PREMISE 7: INDEPENDENT RE-ESTIMATION.  As stated, at the end of a particular estimation 
period a small minority of investors take the opportunity to upgrade their estimates using 
X.  These investors are referred to as ‘new investors’, although it is the estimates which 
are new and not the investors themselves.  The majority of investors (‘old investors’) 
continue to use the estimates they already have.   The proportion of this minority to the 
whole is drawn randomly from the ranks of the investors.  Thus some investors may re-
estimate immediately, others may not re-estimate for a long time.  The point of this 
independence assumption is that the average coefficient estimates of the old investors 
remains the same into the next estimation period.  The process can also be interpreted as 
an geometric adaptive expectations process.  
 
PREMISE 8: DEMAND PROPORTIONAL TO EXPECTED RETURN.  The standard risk-theoretic 
development (given in Grossman 1976  pp 574-576) results in demand functions which 
are linear in expected return.  In my notation:  
 ˆj j jq B r=   (11) 
where qj  is the amount of shares (units) in the security demanded by investor j, ĵr   is the 
net return which the investor predicts they will receive on each share of the security, and 
Bj  is the amount of stock demanded by investor j per unit of net return: the “weight of 
money” brought to bear by investor j.   It is always positive.    It is helpful to define bj , 
the relative weight of money for investor j, by 

 j
j

j
j

B
b

B
=

∑
  (12) 

We see immediately that: 
 0jb >    given 0jB >  for all investors. (13) 

 1j
j

b =∑   (14) 

Because there is no constant, a non zero quantity jq  requires that expectation ĵr  be non-
zero, so any active investor must analyze at least one data series to generate a non-zero 
expectation. 
 
Investors will find that return expectations are not exactly realized so it is a question as to 
whether demand equation (11) is consistent with rational learning. This question is 
revisited in Section 5. 
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2.2.   Price theorem   
 
RESULT 1.   The weighted predicted return is zero.       
 ˆ 0j j

j

b r =∑   (15) 

PROOF: 0 j
j

q= ∑           by Premise 2  (16) 

ˆj j
j

B r= ∑  by (11)  (17) 

ˆj j
j

b r= ∑  multiplying by 1

j
j

B∑
 which is positive # (18) 

Strictly speaking, this should be developed through a formal assumption that some of the 
information in the data set X is relevant (i.e. 0≠μ ), and consequently it is possible for 
some investor to form a non-zero expectation of return and cause price to be non-zero.   
This development is omitted for brevity. 
 
The regression coefficients for investor j are denoted: 

 
ˆ

ˆ
ˆ
jX

j
jρ

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

β
β    (19) 

where ˆ
jXβ  denotes the vector of data regression coefficients and ˆ jρ  denotes the price 

regression coefficient.   ˆ jr  denotes the T*1 expected return vector of investor j for the 
estimation period.  So 

 
ˆ

ˆ
ˆ
jX

j j
jρ

⎡ ⎤
⎡ ⎤= ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

β
r X p   (20) 

In the case of both (19) and (20) any particular investor j may use data only, price only, 
or both.  They must use at least one series to generate a non-zero expectation. 
 
RESULT 2:  PRICE THEOREM.   Price can be expressed as a function π  of X , i.e. 
 

*1 * *1T T N N
=p X π   (21) 

where 

ˆ

 =
j j jX

j

b

ρ
−

∑ a β
π   is referred to as the price equation, (22) 

and  ˆj j
j

bρ ρ= ∑  is referred to as the price coefficient. (23) 

(Note the distinction between price coefficient ρ and price regression coefficient ˆ jρ .) 

PROOF: ˆˆ ˆj j jX jρ= +r Xa β p  expanding (20) and using j j=X Xa  (24) 
 
 ( )ˆ ˆ 0j j jX j

j

b ρ+ =∑ Xa β p  substituting into (15) (25) 



 10

 

ˆ

ˆ

j j jX
j

j j
j

b

b ρ

⋅
= −

∑
∑

X a β
p  making  the subjectp  #  (26) 

As trivial as this result appears it is of fundamental importance.  If investors form 
expectations using a certain data set then price must be an exact linear function of that 
data set.  There is no error term in equation (21).  Because price has a stable relationship 
to the data then data does not matter in a sense and the problem can be abstracted to the 
coefficients of data. 
 
This functional form is constant as long as the estimations in use are unchanged, i.e. 
throughout the estimation period. The result may suggest that if an investor has access to 
all the information X, they could estimate the price coefficient π  perfectly.  However 
there is no reason for an investor to do this; explaining current price is not the same thing 
as predicting return which depends on dividends and future price.   
 
Expressions for expected and realized return: Realized return *1Tr , the net absolute (not 
percentage) return, is given by the gross return less price paid.     
 0 0 0 0+ −r = X μ u p   by (10) (27) 
 0 0 0= X μ - X π + u   applying (21) (28) 
Define an augmented form of the strategy matrix aj which includes price, denoted 0ja .   

 0 0j j⎡ ⎤= ⎣ ⎦a a π   (29) 

If investor j does not use price then  j ja = a  and if investor j does not use non-price data 

then  ja = π .   The number of columns in ja is denoted augjK .  If price is not included, 
augjK jK= ;  if price is included 1augjK jK= + .  We take it that if the investor includes 

π  in the strategy matrix, it is linearly independent of the other variables which they 
include. 
 ( ) aug

jrank jK=a   (30) 

The expression (20) for expected return ˆ jr can be restated in the following useful forms: 

 0

ˆ
ˆ

ˆ
jX

j j
jρ

⎡ ⎤
⎡ ⎤= ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

β
r Xa Xπ   applying (6),(21) to (20) (31) 

 0

ˆ

ˆ
jX

j
jρ

⎡ ⎤
⎡ ⎤= ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

β
X a π   factorizing (32) 

 0
ˆ

j j= Xa β   by (29), (19) (33) 
 
3.   The single period objective model 
 
3.1.    New coefficients 
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RESULT 3: ESTIMATION.    The estimates of the new investors obtained from data set 0X  
for estimation period 0 are given by:  

 ( ) ( )
1

0 0 0 0 0
ˆ = j new j j j

−
′ ′β a a a μ - π + e    where (34) 

 ( ) 1

*1 0 0 0 0 0 0N

−
′ ′ ′= =e X u X X X u ,   [ ]E =e 0 ,   [ ] 2

*E N Nσ′ =ee I  (35) 

PROOF:   Assuming that investor j uses both X and p in their regressors, we get: 

 
1

0 0 0 0 0 0 0

ˆ
j new

j j j
j newρ

−⎡ ⎤ ⎛ ⎞′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦

β
= X p X p X p r     standard OLS formula (36) 

 ( )
1

0 0 0 0 0 0 0 0 0 0j j j

−
⎛ ⎞′ ′′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

= a π X X a π a π X X μ - X π + u   by(6),(28) (37) 

 ( ) ( )
1

0 0 0 0 0= j j j

−
′ ′a a a μ - π + e   by (3), (29), (35) (38) 

Similarly if the investor omits X or p from their regressors. 

Observe 0 0 0
′=e X u ,  so   2

0 0 0 0 0 0 *N NE E σ⎡ ⎤ ⎡ ⎤′ ′ ′= =
⎣ ⎦ ⎣ ⎦
e e X u u X I  # (39) 

 
We see the interesting result that regression of return against data is equivalent to 
regression of the underlying parameters μ - π  against 0ja , the coefficients used by 
investor i  to derive their variables.  The investor’s problem in a sense does not involve 
data but rather is a test of how well the investor’s variable coefficients capture the return 
coefficients  μ - π .   We have abstracted the problem from ‘data space’ T  to ‘coefficient 
space’ N ; this is a substantial gain in simplicity.   
 
3.2.  Updating coefficients 
 
We establish some obvious results about the relative weight of money jb .   Notation: 

• w is the proportion of investors who reestimate in each period.  By Premise 7, it is 
the same for every investor type j. 

• t
jb  is the relative weight of money of those investors who last reestimated in 

period t.    
• Period subscript denotes the value of the variable in that period.  So 1

t
jb  denotes 

the value of t
jb in period 1: 

 1
1

t
j j

t

b b
−∞

=

= ∑   (40) 

 ( )1 01t t
j jb w b= −  by Premise 7 (41) 

 
0

1
0

ˆ
ˆ

t t
j j

t
j

j

b

b

−∞

=−=
∑ β

β   (42) 
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0

1
0

ˆ
ˆ

t t
j j

t
j

j

b

b

ρ
ρ

−∞

=−=
∑

  (43) 

 
0 0

1
0

ˆ ˆ
ˆ

t t
j j j j

j incl j incl t

j j
j incl j incl

b b

b b

ρ ρ
ρ

−∞

=−= =
∑ ∑ ∑
∑ ∑

  (44)  

 where j incl refers only to those investor types j who include price. 
• It is convenient to use new to denote investors who reestimated in period 0: 

 0
1j new jb b=   (45) 

 
RESULT 4: PROPORTION OF NEW INVESTORS. 
 j new jb wb=   (46) 

PROOF: 1
1

t
j new j j

t

b b b
−∞

=−

= − ∑   by (40) (47) 

 ( ) 0
1

1 t
j j

t

b w b
−∞

=−

= − −∑      by (41) (48) 

 ( ) ( )0
1

1 1t
j j j j j

t

b w b b w b wb
−∞

=−

= − − = − − =∑  # (49) 

For the purposes of the next two results we introduce: 
 0ˆ ˆ

j new j=β β   (50) 

 

0 0 0
1

0
1

ˆ ˆ
ˆ

j j j j
j incl j incl

new
j j

j incl j incl

b b

b b

ρ ρ
ρ = =

∑ ∑
∑ ∑

  by (46) (51) 

RESULT 5: UPDATE LEMMA FOR REGRESSION COEFFICIENT. 
 ( )1 0

ˆ ˆ ˆ1j j new jw w= + −β β β   (52) 

PROOF: 

0 0
1 1

1
1

ˆ ˆ
ˆ

t t
j j j j

t
j

j

b b

b

−∞

=−

+
=

∑β β
β  applying (42) to period 1 (53) 

 
( )0

0
1

ˆ ˆ1 t t
j j j j

t

j

wb w b

b

−∞

=−

+ −
=

∑β β
 by (46),(41).  Apply (50),(42) for result.# (54) 

In the case of the price coefficient there are many different investor types estimating the 
one coefficient.   In this case the proof must be elaborated as per: 
 
RESULT 6: UPDATE LEMMA FOR PRICE REGRESSION COEFFICIENT. 
 ( )1 0ˆ ˆ ˆ1neww wρ ρ ρ= + −   (55) 
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PROOF: 

0 0
1 1

1
1

ˆ ˆ
ˆ

t t
j j j j

j incl j incl t

j
j incl

b b

b

ρ ρ
ρ

−∞

=−

+
=

∑ ∑ ∑
∑

 applying (44) to period 1 (56) 

 
( )0

0
1

ˆ ˆ1 t t
j j j j

j incl j incl t

j
j incl

w b w b

b

ρ ρ
−∞

=−

+ −
=

∑ ∑ ∑
∑

 by (46),(41). Apply (51),(44) for result.# (57) 

The sum of the relative weight of money of all investors using price is denoted: 
 price j

j incl

b b= ∑   (58) 

RESULT 7: UPDATE LEMMA FOR PRICE COEFFICIENT. 
 ( )1 0ˆ ˆ1price price newb w b wρ ρ ρ= − + ⋅     (59) 

PROOF: 1 1ˆj j
j incl

bρ ρ= ∑  by definition (23) (60) 

 1 1ˆ ˆj price
j incl

b bρ ρ= =∑   by (44),(58).  Apply (55) for result. # (61) 

The price coefficient ρ is smaller than the price regression coefficient ρ̂ because in 
general 1priceb < . 
 
3.3.  Price change theorem 
 
We determine how the new return estimates derived in estimation period 0 affects the 
price in estimation period 1.  We are now dealing with data set 1X .   The change in price 
dp  is not measured relative to the prices 0p  in estimation period 0 obtained with data 

0X , but relative to the price which would obtain with current data set 1X if there were no 
new estimates.   Data set 1X is therefore taken as constant for purposes of differentiation. 
 
RESULT 8: PRICE CHANGE THEOREM. 

 ( )0 0 0
0

dw
ρ

−dπ = H μ - π + e    (62) 

where ( ) 1

* 0 0 0 0N N j j j j j
j

b
−

′ ′= ∑H a a a a    (63) 

 is referred to as the “estimation matrix” and  
 0 ˆj old j old

j old

bρ ρ= ∑    (64) 

where subscript 0 refers to estimation period 0. 
PROOF: *1 ˆT j j

j

b= ∑0 r     by (15) (65) 

 ( )1 1 1
0

ˆ ˆt t t
j j j j

j t

b ρ
−∞

=

= +∑∑ X β p   by (24) (66) 
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 ( ) ( )1 1 1 1 1
1

ˆ ˆˆ ˆt t t
j new j j new j new j j j j

j j t

b bρ ρ
−∞

=−

= + + +∑ ∑∑X β p X β p  split up (67) 

 ( ) ( ) ( )1 1 0 1 1
1

ˆ ˆˆ ˆ1 t t t
j j j new j new j j j j

j j t

w b w bρ ρ
−∞

=−

= + + − +∑ ∑∑X β p X β p  by (46),(41) (68) 

 ( ) ( ) ( )1 1 1 0 1 0
ˆ ˆˆ ˆ1j j j new j new j j j j

j j

w b w bρ ρ= + + − +∑ ∑X β p X β p   by (42),(43) (69) 

Differentiate with respect to variables w,p: 

 

1 1 0

1 1 0

0

ˆ ˆ

ˆ ˆ     

ˆ ˆ     (1 )

j j j new j j j
j j

j j new j j
j j

j j new j j
j j

dw b dw b

dw b dw b

w b w b

ρ ρ

ρ ρ⋅ ⋅ −

∑ ∑

∑ ∑

∑ ∑

0 = X β - X β

+ p - p

+ dp + dp

  (70) 

This can be evaluated at the point 0w =  (new investors are incremental); at this point  
 1 1 0p = X π           (71) 

and 1 0 1 0 *1
ˆ ˆj j j j j T

j j

b b ρ =∑ ∑X β + p 0   by (69) (72) 

Making these substitutions into (70) yields: 
 1 1 0

ˆ ˆj j j new j j new
j j

dw b dw b ρ ρ+ + ⋅∑ ∑0 = X β p dp  using (60) (73) 

 1 1 0 0

ˆ

ˆ
j new

j j
j j new

dw b ρ
ρ

⎡ ⎤
⎡ ⎤= + ⋅⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦
∑

β
X a X π dp  by (71) (74) 

 1 0 0

ˆ

ˆ
j new

j j
j j new

dw b ρ
ρ

⎡ ⎤
= + ⋅⎢ ⎥

⎢ ⎥⎣ ⎦
∑

β
X a dp               by (29) (75) 

 ( ) ( )
1

1 0 0 0 0 0 0 1 0j j j j j
j

dw b ρ
−

′ ′ + ⋅∑= X a a a a μ - π + e X dπ     by (63) (76) 

 noting 1 1 0 0 1= − =dp X π X π X dπ  given (2) (77) 
Now this statement is true for all observations 1*Nx  which form the rows of dataset X, 
and therefore is true of the coefficients alone: 

 ( ) ( )
1

0 0 0 0 0 0 0j j j j j
j

dw b ρ
−

′ ′ + ⋅∑0 = a a a a μ - π + e dπ   (78) 

 ( )0 0 0dw ρ⋅ + ⋅= H μ - π + e dπ   # (79) 
This theorem may appear to be a trivial technical result, but it is contended here that it 
underlies the efficiency of financial markets.  Note what it does not say – the price 
change is given by the change in expectation, i.e. 

 ( )0
0

ˆ ˆ
j j j new j old

dw b
ρ

= − −∑dπ a β β   (80) 

but rather the theorem says: 
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 0
0

ˆ
j j j new

dw b
ρ

= − ∑dπ a β   rearranging (78) (81) 

so the change in price is determined by the new estimates alone, and price is pushed in 
the direction of the underlying return parameter μ . 
 
3.4.   Properties of the estimation matrix 
 
It is useful to introduce an orthogonalized and normalized version, jα , of the augmented 
strategy matrix ja .    

RESULT 9:  NORMALIZED STRATEGY MATRIX.   The matrix ( ) 1

0 0 0 0j j j j

−
′ ′a a a a   can be 

expressed as 0 0j j′α α  where 0jα  is an * augN jK  matrix of orthogonalized and normalized 
strategy vectors. 

PROOF: The matrix ( ) 1

0 0 0 0j j j j

−
′ ′a a a a  is real symmetric so can be represented as a a a

′Λ λ Λ  

where aλ is a diagonal matrix and aΛ consists of real orthogonal eigenvectors.  It is 
idempotent so all the eigenvalues must be 0 or 1.  Multiplying by 0ja  on either side of the 

matrix gives 0 0j j
′a a  which has rank augjK  so the matrix must have rank augjK not less.   

It therefore has augjK  unity eigenvalues.   Without loss of generality, place the unity 
eigenvalues and corresponding eigenvectors first in the matrix. So 

 ( ) [ ]
1

1*
0 0 0 0 1 2

2

jKaug jKaug
j j j j

− ⎡ ⎤′⎡ ⎤′ ′ ⎢ ⎥⎢ ⎥ ′⎢ ⎥⎣ ⎦ ⎣ ⎦

ΛI 0
a a a a = Λ Λ

0 0 Λ
 (82) 

 1 1
′= Λ Λ  Take 0 1jα = Λ . # (83) 

Observe that: 
 0 0 1 1 *j j jKaug jKaug

′ ′α α = Λ Λ = I   (84) 
as required.   The estimation matrix H can be expressed as: 
 0 0 0j j j

j

b ′= ∑H α α   (85) 

It is also useful to partition jα into columns: 

 1 2j j j⎡ ⎤⎣ ⎦α = o o   (86) 

RESULT 10.    The estimation matrix 0H  is (i) can be expressed as 0 0 0
′Λ λ Λ where 0Λ is 

an N*N matrix of orthogonal eigenvectors and 0λ  is an N*N matrix of positive 
eigenvalues  (ii)  is positive definite. 
PROOF:  By (9), }{ jka spans the space N .  So for all non-zero N*1 vectors x, there exists 

an N*1 vector Jka  such that: 
 0Jk′ ≠x a   (87) 
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and corresponding normalized strategy matrix 0Jα which uses Jka  such that: 
 *1 0 *1 *1N J JK Nx = α β + ε ,     (88) 
where *1JK≠β 0   (89) 

and 1* * 1*N N jKaug jKaug
′ε α = 0   (90) 

Now 0 0 0j j j
j

b
⎛ ⎞′′ ′⎜ ⎟
⎝ ⎠
∑x H x = x α α x   (91) 

 0 0J new J Jb ′′≥ x α α x    0 0j j
′α α  is non-negative definite (92) 

 ( ) ( )0 0 0 0J new J J J Jb ′ ′′ ′= β α + ε α α α β+ ε    by  (88) (93) 

 ( ) ( )0 0 0 0
1* *1

J new J J J J
JK JK

b
′′ ′= α α β α α β  by  (90) (94) 

 > 0   as 0 0J J
′α α  is full rank so multiplying by ≠β 0 gives non-zero product. (95) 

Further 0H  is real symmetric so can be represented as 0 0 0
′Λ λ Λ where 0λ  is a diagonal 

matrix and 0Λ consists of real orthogonal eigenvectors.  Since 0H  is positive definite, 0λ  
must be positive diagonal.    # 
RESULT 11.    The eigenvalues 0λ  of the estimation matrix 0H  are such that 
 00 1< ≤λ   (96) 
PROOF:  Let v be the eigenvector of 0H  corresponding to eigenvalue λ. 

 2
0 0    λ ′′ ′=v v v H H v  from definition of eigenvector (97) 

 ˆ ˆi j i j
i j

b b ′= ∑∑ v v          given 0 0 0j j j
j

b ′= ∑H v α α v  (98) 

  ˆj j
j

b= ∑ v   (99) 

       i j
i j

b b ′≤ ∑∑ v v  ˆ ˆ ˆ ˆgiven cosi j i j θ′ = ⋅ ⋅v v v v  (100) 

  ˆ   since j≤ ⋅ ≤v v v v  (101) 

 ′= v v  noting 1i j
i j

b b =∑∑  (102) 

Hence 2 1λ ≤  dividing both sides by 1′ =v v  # (103) 
 
3.5.   The Efficient Market Theorem 
 
The estimation matrix 0H  is a function of the augmented strategy matrix 0ja  which is a 
function of the price vector 0π .  Since price varies, it is useful to develop an 
approximation for ( )0 0H μ - π . 

LEMMA 12.   A first order approximation of ( )0 0H μ - π is ( )0μH μ - π , where μH  denotes 

0H  evaluated at 0π = μ . 
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PROOF: j j j
j new

b ′= ∑H α α    by (85) (104) 

 
1

1 2 2

j

j j j j
j

b

⎡ ⎤′
⎢ ⎥

′⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

∑
o

o o o   by (86) (105) 

 j jk jk
j k

b ′= ∑ ∑o o   (106) 

Differentiate H(μ - π)  with respect to π  (in the following, c1 and c2 are constants): 

 ( )( )j jk jk
j k

b∂ ∂ ′
∂ ∂∑ ∑H(μ - π) = o o μ - π
π π

 (107) 

( )( ) ( )( ) ( ) ( )
1

2

1 2 jk

jk
jk jk jk jk jk jk

−

∂∂ ∂ ∂′ ′ ′ ′⋅ ⋅
∂ ∂ ∂ ∂c =o

c =μ π

o
o o μ - π = o μ - π + c o c + o o μ - π

π π π π
 (108) 

 ( )( ) ( ) ( )
1

2

1 2 2  interchanging ,
jk

jk
jk jk jk jk jk

−

∂ ∂′ ′ ′⋅ ⋅
∂ ∂ c =o

c =μ π

o
= o μ - π + c c o + o o -I c o

π π
 (109) 

 ( )( ) ( )jk jk
jk jk jk jk

∂ ∂′′ ′
∂ ∂
o o

= o μ - π + o μ - π - o o
π π

 (110) 

so ( )( ) ( )jk jk
j jk jk jk jk

j k

b
∂ ∂⎛ ⎞∂ ′′ ′−⎜ ⎟∂ ∂ ∂⎝ ⎠

∑ ∑
o oH(μ - π) = o μ - π + o μ - π o o

π π π
 (111) 

and the required first order approximation is given by 

 ∂
≈ +

∂π=μ
π=μ

H(μ - π)H(μ - π) H(μ - π) (π -μ)
π

 (112) 

noting the final factor is π -μ , as per a Taylor series, not μ - π  

 ( ) ( )j jk jk
j k

b
=

′∑ ∑
π μ

= 0 + 0 + 0 - o o π -μ  using (111) (113) 

 ( )μ−= H π -μ   (114) 

 ( )μ= H μ - π   # (115) 
This technical result is straightforward.   A first order approximation is quite accurate in 
the region around the mean μ . Consideration of the underlying process suggests that 
points in the other, outlying regions will be rapidly pushed into the region where the 
approximation is good. 
 
Let ρ denote the harmonic mean of price coefficient ρ . 

 
1

1Eρ
ρ

−
⎡ ⎤⎡ ⎤

= ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦

    ie     1 1E
ρ ρ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
  (116) 

LEMMA 13.  The eigenvalues λ  and eigenvectors v  of the matrix dw
μρ

+I H  are given by 
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 1 dw
ρ

= +λ λ   (117) 

 =Λ Λ   (118) 
where λ , Λ  denote the eigenvalues and eigenvectors of the estimation matrix μH . 

PROOF: dw dw
μρ ρ

⎡ ⎤ ⎡ ⎤
⋅ =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
I + H Λ Λ I + λ   # (119) 

 
LEMMA 14.  If stability condition (125) is satisfied, any eigenvalues λ  of the matrix 

dw
μρ

+ ⋅I H     falls in the range: 

 0 1λ< <   (120) 

PROOF: 1 dw λ
ρ
⋅

> −  rearranging (125), true for all λ , and noting 0ρ <  (121) 

so 0 1dw λ
ρ
⋅

< − <  expression is positive (122) 

 1 1 0dw λ
ρ
⋅

> + >  multiply by -1, add 1 (123) 

 0 1λ< <   by (117)  # (124) 
 
Two features of the model are required here but not given a full treatment until the 
following section: 

• Expectational stability condition:  
 maxdwρ λ< − ⋅   (125) 

This condition is expressed in terms of the endogenous variable maxλ , the 
maximum eigenvalue of μH .    A statement of the condition in terms of 
exogenous variables is developed in section 4 below.   The reader may consider 
that to require a stability premise for the results below is to beg the question – 
market stability is a property which should be proven within the framework of the 
model.   This view presupposes that real world markets are stable and this is not 
always the case.  One way of explaining market bubbles is by violation of the 
stability condition.   

• Practical independence of the price coefficient: 0ρ  is independent of current price 

0π .  This property cannot be literally true as the price coefficient and price are 
endogenous variables and there is only one source of noise in the model.   
Nonetheless it is shown in section 4 that it is approximately true both theoretically 
and in simulation. 

 
It is now possible to prove the central result of this paper. 
 
THEOREM 15: THE EFFICIENT MARKET THEOREM.   If the stability condition (125) is 
satisfied then: 
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 ( )lim nn
E

→∞
π = μ   (126) 

PROOF: ( )0 0 0
0

dw
ρ

−dπ = H μ - π + e   Equation (62) (127) 

 ( )1 0 0 0 0
0

dw
ρ

μ - π = μ - π + H μ - π + e   rearranging (128) 

 ( )0 0 0
0

dw
μρ

≈ μ - π + H μ - π + e   applying Lemma 8 (129) 

Take expectations given 0ρ  is taken as independent of π  and μH  is constant: 

 [ ] [ ] [ ]1 0 0
0

1E E dw E Eμρ
⎡ ⎤

= + ⋅ ⎢ ⎥
⎣ ⎦

μ - π μ - π H μ - π  noting [ ]0E =e 0  (130) 

 [ ]0
dw Eμρ

⎛ ⎞
+⎜ ⎟

⎝ ⎠
= I H μ - π   (117), factorizing (131) 

 [ ]0E′= ΛλΛ μ - π  substituting ′ΛλΛ for dw
μρ

+I H  by Lemma 9 (132) 

so [ ] [ ]2
2 0E E′μ - π = Λλ Λ μ - π   orthogonal eigenvectors (133) 

and result follows by Lemma 10. # 
 
For a stock which has traded for a few months after its initial listing, this result can be 
restated more simply as  
 [ ]E π = μ   (134) 
The process of convergence is illustrated in the following diagram: 
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FIG. 1.  Convergence of price to return in the objective model.   Investor j regresses the 
net return μ - π  against a private set of regressors jα .    This corresponds to the 
projection of  the net return vector onto the regressor vector.   The investor then buys 
according to this information, which moves the price along the line of the regressor – this 
is shown by the unbolded arrows.   The total impact on price is the vector summation of 
the individual impacts of each investor and this is shown by the bold arrows.  Successive 
iterations of this regression process move price along the path of the bold arrows to 
converge with return. 
 
3.6.  Consistency of the price estimator 
 

π0 
current  
price 

new price 
      π1 

Heavy arrows show the 
summation of the two  
price impact vectors, 
which becomes the 
price move.  Price  
converges to return. 

arrows show the price 
impact of each investor, 
given by  
dw*bj*αjαj′(μ−π0) 
and proportional to the 
projection vectors 
 

Coefficient 1 

Coefficient 2 

Coefficient space 
(RN space ) statistical variation  

e0  left out of this  
diagram 

μ   gross 
return regressors α2  

of investor 2 
regressors  
α1 of investor1

projection vector for  
investor 1, ie 
projection of the net  
return vector  μ−π0    
onto the regressors  
α1 of investor 1,  
given by:  α1α1′(μ−π0) 

projection vector 
for investor 2 

π2

π3
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Consider the matrix  
0

dw
μρ

− H .    This matrix has eigenvector matrix Λ  and eigenvalue 

matrix 0λ  given by  

 0
0

dw
ρ

−λ = λ   proof as per Lemma 3.8 (135) 

λ  without a time subscript denotes the eigenvalue matrix of dw
μρ

− H . 

Observe 0
0

dw dwE E
ρ ρ

⎡ ⎤
⎡ ⎤ = − = − =⎢ ⎥⎣ ⎦

⎣ ⎦
λ λ λ λ   (136) 

and 0 0
0 0

dw dw
ρ ρ

⎡ ⎤
+ −⎢ ⎥

⎣ ⎦
λ + λ = I λ λ = I   by (117) and (135) (137) 

0λ  is the same order of magnitude as λ , small, unlike 0 0= −λ I λ  which is roughly unity. 
Now define the variance of price *N NΣ by  

 *N N E ⎡ ⎤′
⎢ ⎥⎣ ⎦

Σ = μ - π μ - π     (138) 

where the vincula indicate coordinates of the variable relative to the orthogonal basis 
defined by the eigenvectors, derived by multiplying by ′Λ .  The variance of the error 
term  transformed to the eigenvector coordinates, e , is still 2σ : 

 [ ] 2 2
0 0 0 0 *N NE E σ σ⎡ ⎤′ ′ ′ ′= = =

⎣ ⎦
e e Λ e e Λ Λ ΙΛ Ι . (139) 

System equilibrium requires that the expected variance of price around parameter is 
constant with respect to time, i.e. 
 0 1  Σ = Σ   (140) 
RESULT 16.  If ,t tλ λ  are taken as constants equal to the mean values, at equilibrium the 
variance of price  is given by: 
 ( )( ) ( )1 12 2σ σ

− −
= ⋅Σ = I - λ 1 + λ λ 2Ι - λ  (141) 

PROOF: ( )1 0 0
0 0

dw dw
μ μρ ρ

⎛ ⎞
⎜ ⎟
⎝ ⎠

μ - π = I + H μ - π + H e  by (129) (142) 

 ( )1 0 0 0 0′ ′−μ - π = Λλ Λ μ - π Λλ Λ e   (143) 

 ( )0 0 0 0−1μ - π = Ι - λ μ - π λ e    (144) 
Multiplying each side by itself: 

 ( ) ( ) ( )1 1 0 0 0 0 0 0 0 0 0 0 0 02′ ′ ′ ′−μ - π μ - π = Ι - λ μ - π μ - π Ι - λ Ι - λ μ - π e λ + λ e e λ  (145) 

 ( ) ( )1 1 0 0 0 0E E E⎡ ⎤ ⎡ ⎤ ⎡ ⎤′ ′ ′
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
μ - π μ - π = Ι - λ μ - π μ - π Ι - λ + λ e e λ  (146) 

 0 0noting   , μ - π e  are independent so the expectation of the second term is 0.  

 ( ) ( ) 2 2σ−Σ Ι - λ Σ Ι - λ = λ  by (138), (139), (140) (147) 
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Consider element ijΣ  of these N*N matrices, i j≠ : 

 0,     ij i ij j i jλ λΣ − Σ ≠=   recalling that 1λ λ+ =  (148) 

 ( )1 0i j ijλ λ− Σ =    (149) 

 0ijΣ =   given 0 , 1i jλ λ< <  by (120) (150) 
So Σ  is a diagonal matrix.   Rewriting (147) given diagonal matrices are commutative: 
 ( ) ( )( ) 2 2σ−Σ I Ι - λ Ι - λ = λ    (151) 

 ( )( )( ) 12 2σ
−

−Σ = λ I Ι - λ Ι - λ ( ) 12 2σ
−

−= λ I λ ( )( ) 12σ
−

= I - λ 1 + λ  # (152) 

 
This result establishes the consistency of price π  as an estimator of return, although this 
is disguised.  Normally the variance of an OLS estimator is given by ( ) 12σ −′X X  and the 

factor ( ) 1−′X X  increases as T → ∞ .  Here ( ) 1−′X X is fixed at *N NI  and the variance Σ  is 
also fixed as T increases.  As T → ∞  the data is scaled downwards to maintain the 
identity condition, and the coefficients ,μ π  are correspondingly scaled upwards.   The 
ratio of variance to variable decreases to zero as T → ∞  as expected. 
 
In fact ,t tλ λ are not constant, but simulation shows that the variance is small relative to 
the mean so the above result is a reasonable approximation.   
 
3.7.  Simulation 
 
As results depend on first order approximations the objective model was simulation 
tested.  Return is assumed to be a function of two parameters, and there are two classes of 
investor.  The first type look at data only and the second type look at price only. 
 
  Investor 1: data only Investor 2: price only 
Relative proportion jb  0.5 0.5 
Augmented strategy 
matrix 

ja  1 0
0 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

 2*1π  

Regression coefficient 
using (34) 

ˆ
jβ  2*1 2*1 2*1

ˆ =β μ - π + e  ( ) 1
2*1 2*1 2*1ρ̂ −′ ′= π π π (μ - π + e )

TABLE 1:  Characterization of investor types used in the simulation. 

Estimates 1β̂ , 1ρ  are updated as per (52),(59) and price is calculated by 1
1

1

ˆ

ρ
= −

βπ .   There 

are no approximations in this stratagem.  Typical results are shown in Figure 2.  The price 
coefficient converges to a negative value providing the update proportion dw  is kept low.  
This is necessary because of the low degrees of freedom 2N =  and is explained in 
Section 6 (high errorr ). Parameters of the simulation shown below are:  



 23

0 0 0

0.2 0.10 0.000012 0.6ˆ ˆ;  ; ;  0.00002;  = ; 0.000001   
0.3 0.05 0.000001 0.1e x dwρ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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π element 2   converging to μ2 = 0.3

 
FIG. 2.  Simulation showing convergence of price vector π  to return vector μ .  
 
4.   The price coefficient 
 
4.1.   Price change theorem under an even distribution assumption 
 
The most basic requirement of a market model is that it is capable of making a price, and 
to that end we need to demonstrate that the price coefficient ρ̂  used in the price equation  
(22) will be negative. Prima facie it appears that regression of net return ≈y - p Xμ - Xπ  
against price Xπ  will eventually yield a result close to zero, and this is borne out by 
Result 3.4.1. Price has so far been treated the same as any other variable, but it has 
special properties which must be studied in order to understand how it can be negative.   
 
Note that the situation where price is negative (insurance policies)  requires a negative 
price coefficient in the same way as the ordinary case.  At zero price all investors will 
want to go short as a negative payment is expected.  As price goes negative, a negative 
price coefficient is needed to generate a positive expected return.  Demand and supply are 
not mirror images of normal; they are the same as normal but displaced downwards. 
 
We can divide the estimation matrix between those investors who include price in the 
regression, and those who don’t. 

 ( ) ( )1 1

j j j j j j j j j j
j j
exclude include

b b
− −

′ ′ ′ ′= +∑ ∑H a a a a a a a a  (153) 

 exclude include= +H H   (154) 
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 PREMISE 9:  EVEN DISTRIBUTION.   We assume that the non-price regressors are evenly 
distributed so that the eigenvalues Xλ  are equal. 

 *

X
exclude

exclude exclude X exclude X N N
exclude exclude

X
exclude

λ

λ λ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥

′= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H Λ Λ I  (155) 

Where price is included in a regression it is an eigenvector of the projection matrix and 
its eigenvalue is unity.  Price must be an eigenvector of includeH , which is the sum of 
projection matrices containing price, and its eigenvalue is the sum of the proportions: 
 P j price

include j
include

b bλ = =∑   (156) 

Pursuant to the even distribution assumption the non-price eigenvalues are taken as equal.  
A non-price eigenvector of includeH  cannot have eigenvalue greater than one for any one 
projection matrix, so its eigenvalue cannot be greater than priceb . 

 ( )
( ) 0.5

0.5
2 3 2

3

P
include

include X
include

X
include

λ

λ

λ

−

−

⎡ ⎤
⎢ ⎥ ⎡ ⎤′ ′
⎢ ⎥ ⎢ ⎥⎡ ⎤′= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦

π π π
H π π π v v v

v
 (157) 

 ( ) 1
*X N N P X

include include include
λ λ λ −⎛ ⎞ ′ ′= + −⎜ ⎟

⎝ ⎠
I π π π π  (158) 

where 0P X
include include

λ λ− ≥   (159) 

So in total: 

 ( ) 1
* *X N N X N N P X

exclude include include include
λ λ λ λ −⎛ ⎞ ′ ′= + + −⎜ ⎟

⎝ ⎠
H I I π π π π  (160) 

 ( ) ( ) 1
*X N N P Xλ λ λ −′ ′= + −I π π π π   (161) 

where X X X
exclude include

λ λ λ= +   (162) 

 P X P
exclude include

λ λ λ= +  note P pricebλ ≥  (163) 

and 0P Xλ λ− ≥   (164) 
 
RESULT 27:  PRICE CHANGE THEOREM- EVEN DISTRIBUTION VERSION. 

 ( ) ( )0 0
0

ˆX P X new
simple

dw λ λ λ ρ
ρ

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

dπ μ - π + e π  (165) 

where ( ) ( )1
0ˆnew

simple
ρ −′ ′= π π π μ - π + e   (166) 
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denotes the result of simple regression of return on price.  Simple regression means that 
return is regressed on price alone, as distinct from multiple regression where other 
variables are included.  A constant term is not included in the simple regression. 

PROOF:   ( ) ( )( ) ( )1
* 0

0
X N N P X

dw λ λ λ
ρ

−′ ′− + −dπ = I π π π π μ - π + e   apply (161) to (62) (167) 

 ( ) ( )0 0
0

ˆX P X new
simple

dw λ λ λ ρ
ρ

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

μ - π + e π  (168) 

 
4.2.   Estimation of the price coefficient 
 
Premise 2 established a framework whereby parameters are estimated using OLS.  It is 
well recognized in the literature (for instance Bray (1982) and Routledge (1999)) that  
estimation of the price regression coefficient using OLS is misspecified because price is 
non-stationary.  In the context of this model the problem is that the price vector moves 
around in coefficient space.  If the price coefficient is estimated as one element of a 
multiple regression then it will be unstable although the movement in price is only small.  
It will be shown below that because of estimation error, profits are difficult in the first 
period after estimation and investors are likely to maintain estimates over several periods.  
Estimates which are unstable will not be useful for this purpose so investors will be 
obliged to consider this problem of multicollinearity. 
 
Methodologically, multiple regression has been assumed (in Premise 2) neither because it 
is indicated a priori nor because it is standard market practice.  Rather, it is a method of 
processing data which is known to be generally effective.  As analysis has revealed a 
statistical flaw (unstable regressor combined with multicollinearity) which makes it less 
suitable for this particular purpose, the assumption must be refined.  We suppose: 
 
PREMISE 10: ORTHOGONAL PRICE REGRESSOR.   Investors remove multicollinearity from 
the data by creating data variables which are orthogonal to price before carrying out 
multiple regression.   
 
Orthogonal variables in data space imply orthogonal variables in coefficient space. 

( )( ) ( )( ) ( )( )⊥ ⊥′ ′ ′ ′ ′ ′ ′ ′= = = − =-1 -1 -1x I - p p p p x I - Xπ π X Xπ πX Xa X I π π π π a Xa  (169) 

Premise 10 removes the instability problem for the price coefficient.  When an 
explanatory variable is orthogonal to all other explanatory variables in an equation then 
the multiple regression coefficient is identical to the simple regression coefficient.  So we 
take it that: 
 ˆ ˆnew new

multiple simple
ρ ρ=   (170) 

and ‘simple’ is dropped as a subscript. 
 
4.3.  Negative price coefficient 
 
For the purposes of the analysis the following working variables will be employed: 
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• y is the component of the price π  in the direction of return μ ,  ‘collinear price’. 
• x is the remaining component of price, ‘orthogonal price’. All of the individual 

1N −  orthogonal components in N dimensional coefficient space are added 
together. 

 
RESULT 28.  The price regression coefficient is given asymptotically by  
 1 2ˆ 1new Py x eρ −= − − +     (171) 

where 
0

,
1

x
y

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
π μ   (172) 

 x

y

e
e

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
e , 2 2

x y
P

xe ye
e

x y
+

=
+

  (173) 

PROOF:  Denote [ ]ˆnewE ρ   as newρ .      

 ( ) ( ) ( ) ( )
( ) ( )

1 , ,1
, ,new

x y x y
E

x y x y
ρ − ⋅ − −⎡ ⎤′ ′= =⎣ ⎦ ⋅

π π π μ - π + e  noting e  goes out (174) 

 2 2 1y
x y

= −
+

  (175) 

 ( ) 22 22new xy x y
x

ρ −∂
= − +

∂
  (176) 

 ( ) 22

1

2 1 2new

y

x x x
x

ρ −

=

∂
= − + ≈ −

∂
    asymptotically (177) 

 ( ) ( ) 22 2 2 2new x y x y
y

ρ −∂
= − +

∂
  (178) 

 2

0

new

x

y
y

ρ −

=

∂
= −

∂
  (179) 

 0
1

0 1
1

X Y
new new

x X xnew new
y Y y

x y
y x X

dx dy
x y

ρ ρρ ρ= =
= =

= =
= =

∂ ∂
= + +

∂ ∂∫ ∫  (180) 

 ( )2

0 1
1 0

0 2
X Y

x y
y x

x dx y dy−

= =
= =

≈ + − + −∫ ∫   (181) 

 2 1 1x
y

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠
   # (182) 

so we put this together with the even distribution version of the price change equation 
(165) to arrive at the following representation of market dynamics: 

 ( ) ( )00 01 1 2
0 0

00 01 0

0
1

1
x

X P X P
y

x ex xx dw y x e
y ey yy

λ λ λ
ρ

−
− +⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤

= − + − − − +⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ − +⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦
 (183) 

 ( )1 0ˆ ˆ1price price newb dw b dwρ ρ ρ= − + ⋅   (59) restated (184) 
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This system is not linear.  For the purposes of this paper we will obtain rough solutions of 
the expectations using approximations. If we take expectations of the y coordinate we get: 

 ( )
210 P P P X

y x yE E Eλ λ λ λ
ρ ρ ρ

⎡ ⎤⎡ ⎤ ⎡ ⎤
= − − − ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (185) 

The presence of the price coefficient ρ as denominator means this expression does not 
lend itself readily to finding [ ]E y .   Observe however that the rate of adjustment of the 

price coefficient ρ  is priceb dw , and of the x,y coordinates is  dw
ρ

− .    The rate of 

adjustment of x, y is larger by two orders of magnitude than the rate of adjustment of ρ , 
while the variables x, 1 y−  are around the same order of magnitude as ρ .   It appears 
that variation in x, y is on a different scale to variation in ρ -  the price coordinates x and 
y will adjust to equilibrium while the price coefficient ρ  essentially remains constant.  
We restate the independence property in this context: 
Practical independence of price coefficient:   The price coordinates x and y can be treated 
as independent of the price coefficient ρ . 
 
RESULT 29.  The expected orthogonal price is zero: 
 0x =   (186) 
where x  denotes the expected value of x. 
PROOF:  The process 

 ( ) ( ) ( )1 2
1 0 0 0 0 0

0

1X x P X P
dwx x x e y x e xλ λ λ
ρ

−= − − + + − − − +  (187) 

defines a Markov chain which converges to a stable distribution ( )f x .  Consider a 
process starting from the opposite starting point 0x− : 

 ( ) ( ) ( ) ( )0
1 2

1 0 0 0 0 0
0

1
x

x x X x P X P
e e

dwx x x e y x e xλ λ λ
ρ

−
=−
=−

= − − − − − − − +  (188) 

 1x= −   (189) 
Given the probability of xe equals the probability of xe− , this process mirrors the original 
distribution at every point and converges to distribution ( )g x  such that ( ) ( )g x f x− = .  
But the two processes are identical although starting points are opposite, so the two 
processes will converge to the same stable distribution:  ( ) ( )g x f x= .    Therefore 

 ( ) ( )f x f x= −   # (190) 
 
RESULT 30.   The expected value of collinear price y  and the expected value of the price 
coefficient ρ  are given by: 

 21 P X

P

y E x yλ λ
λ
− ⎡ ⎤= − ⎣ ⎦   (191) 

 2 2P X
price

P

b E x y E xλ λρ
λ

⎛ ⎞− ⎡ ⎤ ⎡ ⎤≈ −⎜ ⎟⎣ ⎦ ⎣ ⎦
⎝ ⎠

 (192) 
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PROOF:  Rearrange (185) to get: 

 

2

1
1

P X

P

x yE
yE E

E

ρλ λ
ρ ρ λ

ρ

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤ − ⎣ ⎦= − ⋅⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎣ ⎦

  (193) 

and result for y  follows from independence of price coefficient ρ .    

Now 1 11 1yy y
y

− −
− = ≈ −      given y is close to one. (194) 

so 2ˆ 1new Py x eρ ≈ − − +  applying (194) to (171)  (195) 

Then ˆ ˆ t
t new

t

E weightρ ρ⎡ ⎤= ⋅⎢ ⎥⎣ ⎦
∑   (196) 

 21t t t Pt
t

weight E y x e⎡ ⎤≈ ⋅ − − +⎣ ⎦∑  given tweight  is constant  (197) 

 1 vary x= − −  given 1t
t

weight =∑  (198) 

 2 2P X

P

E x y E xλ λ
λ
− ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦  by (191)  (199) 

 ˆpricebρ ρ=  by (61) # (200) 

Let var x denote the variance of x around the origin, 2E x⎡ ⎤⎣ ⎦ .  If as we expect, coordinates 
x and y are not strongly dependent, then the results can be further simplified to 

 [ ]21 1 varP X P X

P P

y E x E y xλ λ λ λ
λ λ
− −⎡ ⎤≈ − ⋅ ≈ −⎣ ⎦    noting 1y ≈  (201) 

 [ ]2 2 varprice XP X
price

P P

b
b E x E y E x x

λλ λρ
λ λ

⎛ ⎞− ⎡ ⎤ ⎡ ⎤≈ ⋅ − ≈ −⎜ ⎟⎣ ⎦ ⎣ ⎦
⎝ ⎠

  similarly (202) 

The objective model satisfies the fundamental requirement that the price coefficient be 
negative. This characteristic is intrinsic to the model and Assumption 1 is not required. 
 
4.4.   Exogenous price coefficient and stability formulae 
 
The result (202) does not present the price coefficient in terms of exogenous variables. To 
do this we need an estimate of the variance of price coordinate x.  From (183) the 
equation for x is: 

 ( ) ( )( )1 2
1 0 0 0 0 0

0

1X x P P
dwx x x e y x e xλ λ
ρ

−= − − + + − − +  (203) 

For these purposes we ignore the second term 0ˆP newxλ ρ  because ˆnewρ can be positive or 
negative and its impact on x will tend to cancel over time.    Proceeding on this basis we 
can derive: 
 
RESULT 31.   An approximate expression for the variance for the orthogonal price 
coordinate is:   
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 2var
2 X
ax σ≈   (204) 

where 2 2 21
X

N
N

σ σ σ−
= ⋅ ≈  is the variance of the error term xe  (205) 

and Xdwa λ
ρ
⋅

= −   (206) 

PROOF:  Pursuant to the above we modify (203) to get: 

 ( )1 0 0 0
0 0 0

1X x X X x
dw dw dwx x x e x eλ λ λ
ρ ρ ρ

⎛ ⎞⎛ ⎞ ⎛ ⎞
= − − + = − − + −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 (207) 

Introduce the further approximation that  
 2 2 2varE ρ ρ ρ ρ⎡ ⎤ = + ≈⎣ ⎦   (208) 
Then we can square both sides and take expectations to get: 
 ( )2 2 2var var 1 Xx x a a σ= − +   (209) 

 ( )( )2 2 2var 1 1 Xx a a σ− − =    (210) 

 2 2var
2 2X X

a ax
a

σ σ= ≈
−

    given a is small relative to 2. # (211) 

Armed with this admittedly rough and ready approximation we can derive an expression 
for ρ in terms of exogenous variables.   The reader may like to remember that the key 
theoretical result, that the price coefficient ρ is negative, is already established at (199) 
and does not rely on this concatenation of inexactitudes.   
 
Notice that the variance is directly proportional to update proportion dw.  One might 
expect that more updating would lead to a more precise variable x, but in fact it amplifies 
errors.  When the update proportion is small errors tend to cancel out and x moves slowly 
but steadily to the central position. 
 
RESULT 32:  EXOGENOUS PRICE COEFFICIENT FORMULA.   

 
2

price
X X

P

b dw
ρ λ σ

λ
⋅

= −   (212) 

PROOF: 2var
2

X

X

dw

x

λ
ρ σ

⎛ ⎞⋅−⎜ ⎟
⎝ ⎠=  from (204),(206) (213) 

 var P

price X

x
b
ρ λ

λ
= −  from (202), eliminating var x yields the result.# (214) 

Finally a prima facie stability condition can be imposed on the update proportion dw .  
 
RESULT 33: EXOGENOUS STABILITY CONDITION.  For stability we require that the update 
proportion is constrained according to: 
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22

2
priceX X

P P

b
dw σ λ

λ λ
⎛ ⎞⎛ ⎞

< ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  (215) 

PROOF:   We apply the stability condition (125)  using  
 max

H Pλ λ=   (216) 
to get Pdwρ λ< − ⋅   (217) 
Substituting for ρ  using (212) yields the result. # 
The importance of this result lies in the implication  that frequent reestimation is 
inconsistent with market stability.    A bubble environment is precisely where one might 
expect fervent reestimation, and this is one possible explanation of the mechanism which 
sustains a bubble.  The result is consistent with the Brock Hommes (1997) emphasis on 
‘intensity of choice’ as the key parameter determining market stability. 
 
4.5.  Simulation 
 
As the results depend on approximations they were tested by simulation.   The system 
implemented was 

 ( )00 01

00 01 0

0
ˆ

1
x

X P X new
y

x ex xx dw
y ey yy

λ λ λ ρ
ρ

− +⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
= − + −⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ − +⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

 (218) 

 ( )1 0ˆ ˆ1price price newb dw b dwρ ρ ρ= − + ⋅   (59) restated (219) 
Error ,x ye e is normally distributed.  The price regression coefficient is calculated exactly; 
in this way any inaccuracies introduced by the approximation for ˆnewρ are avoided.   

 ( ) ( )
( ) ( )

( ) ( )
1 , ,1

ˆ
, ,

x y
new

x y x e y e
x y x y

ρ − ⋅ − + − +
′ ′= =

⋅
π π π μ - π + e  (220) 

The ratio of errors errorr  is the ratio of the standard deviation of collinear error to the 
standard deviation of orthogonal error.    

 y
error

x

r
σ
σ

=   (221) 

Parameter Symbol Value 
Eigenvalue of non-price eigenvectors of estimation matrix H Xλ  0.5 
Eigenvalue of the price eigenvector of estimation matrix H Pλ  0.7 
Proportion of investors using a price regressor priceb  0.5 
Initial value of orthogonal price  0x  0 
Initial value of collinear price 0y  1 
TABLE 2: Shows the parameters of the price coefficient simulation.  
 
Results: 

• FIG. 3.  The graphs depict the series for the price coefficient ρ  and the collinear 
component of price y.  They are generated using typical settings for the 
parameters:   
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o dw , the proportion of investors updating estimates in each period, is 0.001 
o xσ , standard deviation of orthogonal error,  is 0.20 
o yσ , standard deviation of collinear error, is 0.04.    ( errorr =0.20) 

The simulation starts from the small value for 0ρ of 0.0005.   The variables 
converge to the expected values despite the initial disturbance.   As expected, 
convergence of the price coefficient is several magnitudes slower (950 iterations) 
than that of the other variables (less than five iterations).  The logic underlying 
Assumption 2 is validated. 
Price coefficient ρ : 

-0.0025

-0.0020

-0.0015

-0.0010

-0.0005

0.0000

trial (1 to 32000)

 
 Collinear price y: 

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

trial (1 to 32000)

 
For reasons of space the graph of orthogonal price x is omitted: it is visually 
similar to collinear price and shows variations around a mean of zero as expected. 

 
• Independence assumptions:  The variables were tested for independence by 

calculating the following ratio, which is 100% for independent data 
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 [ ]
[ ] [ ]independence
E ab

r
E a E b

=
⋅

  (222) 

because this is the property which is relevant to the assumptions made in the 
derivations.    Results for the standard data 0.001, 0.20, 0.04x ydw σ σ= = = : 

o For y and ρ ,  100.00%independencer =  

o For 2x  and ρ , 101.15%independencer =  

o For 2x  and y, 100.23%independencer =  
On this basis the assumption of independence is upheld.  Similar results held at all 
test points.   
 

• Accuracy of the approximation of the price regression coefficient ˆnewρ :  the 
approximation given at (171) was tested along with two other approximations.  
Each variant was regressed on the true price regression coefficient and the slope 
and coefficient of determination 2R recorded. Each of the approximations is 
excellent, even though values of the x variable of up to 0.3 are recorded.   The 
most accurate version outperforms the others but 1 2ˆ 1new y xρ −≈ − −   is preferred 
for its analytic tractability. 

ˆnewρ approximation Comment Regression slope β̂  2R  
1 21y x− − −   This is variant used 1.0068 .99973 

21 y x− −  Simplest version 1.0062 .99971 

( ) 11 2 1 2y x
−− + + −  Most accurate version 1.0028 .99992 

TABLE 3: Shows the accuracy of three approximate expressions for the price 
regression coefficient ˆnewρ . 

 
• Accuracy of the price coefficient formula (212) is measured by accuracyr , the ratio 

of the simulation value to the formula value.  accuracyr is measured over a wide 
range of parameter values.  The theoretical price coefficient is surprisingly 
accurate considering the approximations used to derive it.    When the ratio of 
errors errorr  and the update proportion dw are low, these approximations are more 
nearly satisfied and this is borne out in the results. 

accuracyr (%) 
Ratio of errors    /error y xr σ σ=  Orthogonal error s.d. 

xσ  (stability limit) 
Update  
proportion 
dw 

0.00
 

0.05 0.20 0.50

0.000001 100.2 99.7 90.2 33.7
0.00001 100.3 100.0 93.9 41.9
0.0001 102.0 101.6 95.4  unstable 
0.001 105.9 105.5 99.2  unstable 

0.20 ( dw < 0.0075 ) 

0.01 119.5 119.2 111.6  unstable 
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0.02 131.5 131.4 unstable  unstable 
0.03 unstable unstable unstable  unstable 
0.0000001 101.0 101.0 94.0 38.1
0.000001 104.5 104.0 99.5  unstable 
0.00001 114.2 113.3 106.8  unstable 

0.01( dw < 0.000018 ) 

0.0001 unstable unstable unstable  unstable 
TABLE 4: Shows accuracyr , the ratio of the average simulation price coefficient to 
the theoretical price coefficient given at (212).  If the price coefficient violates the 
negativity constraint or jumps around, it is described as unstable.   Entries above 
the dashed line are expected to be stable and those below are expected to be 
unstable.  Bolded entries are unstable contrary to the theoretical expectation (215).   
 

• Stability.   When the ratio of errors is not large, i.e. 
 20%errorr ≤   (223) 

the stability condition (215) is essentially correct but for higher ratios instability 
sets in at much lower values of the update proportion dw .  Presumably when the 
variance of collinear price is high it overwhelms the calming effect of orthogonal 
data on the price regression coefficient.  The stability characteristics of the model 
are not fully captured by the theory because the derivation of the stability formula 

does not consider collinear variance.  The variance of collinear price will be 1
N

 

of  total price variance on average so it will be relatively high when the data set 
contains only a few variables.  

 
5.   The economics of the objective model 
 
5.1.  Premises and notation 
 
We look at the return to the investor and its implications for the economic consistency of 
the objective model.   The two questions arising are:  

• Can the investors’ expectations of positive return can be reconciled with an 
aggregate profit of zero?    

• In addition to a negative price coefficient, the price making process requires that 
price equation (22) has a numerator.  Is there an economic incentive for investors 
to consider non-price data – in other words does this model avoid the Grossman 
Stiglitz paradox? 

 
Profit is the product of quantity and return.  We sum the profit of every observation 
period in an estimation period by taking the inner product, and use relative jb  rather than 
absolute weight of money jB  to arrive at the following representation of profit 1*1Π  
within coefficient space.    
 ˆj j j j jb′Π = ⋅ =q r r r   (224)  
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where the expected return *1T̂r  of investor j who created their estimates in period t is 
given by: 
 ( )1ˆ j jt jt t t

′=r X α α μ - π + e   by  (33),(34) (225) 

So ( )( ) ( )1 1 1 1j j jt jt t tb
′′Π = X α α μ - π + e X μ - X π + u   by (28), (225) (226) 

 ( ) ( )1 1j t t jt jtb ′ ′= μ - π + e α α μ - π + e      by (3), (35) (227) 
 
As price has been assumed to be orthogonal to the other regressors the regression matrix 
of investor j can be written as: 

 ( ) ( ) ( )0 0 0 0 0 0 0 0 0 0 0 0j j j j j j j j
′ ′ ′ ′ ′ ′= +a a a a a a a a π π π π  (228) 

The two sets of regression matrices – data and price -  can be expressed in terms of 
orthogonal unit vectors ,jt tv u  using the argument given earlier for jtα .  Since jtv  is a 

basis for a, it is orthogonal to u.   ( ′ =a π 0  so ( ) ( )0.5 0.5− −′ ′ ′⋅ =v v v u u u 0 ).   Rewriting: 

 jt jt jt jt t t
′ ′ ′= +α α v v u u   (228) rewritten (229) 

There is a difference in the profit expectation of new investors, and investors who 
estimated a while ago.   Mature investors are defined as those whose estimation period t 
is sufficiently removed from the present that current price 1π  is not correlated with the 
price or error t t-π + e .  The set of  old investors is a broader set which includes investors 
who last estimated in estimation period -1 and in general does not satisfy the no-
correlation criterion. 
 
The expected value of price implied by (191) is denoted π .  For the purposes of this 
section the estimation matrix H will be taken as constant.   
 
RESULT 34: Aggregate profit is zero. 
PROOF: 1* 0j j T

j j

′Π = = =∑ ∑q r 0 r       by (16), r constant across j # (230) 

 
5.2.   Mature profit 
 
RESULT 35:  For mature investors using price: 

 ( ) ( )2mature
j j j j jt jtE b E R b E ⎡ ⎤′′⎡ ⎤ ⎡ ⎤Π = ⋅ ⋅ − ⋅ + ⋅ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

μ μ π μ u u π μ π  (231) 

where 2
jR  is the coefficient of determination from regression of return μonto investor j’s 

data. 

PROOF: ( ) ( )1 1/mature
j j t t jt jtE b E ⎡ ⎤′ ′⎡ ⎤Π =⎣ ⎦ ⎢ ⎥⎣ ⎦

μ - π + e α α μ - π + e  (232) 

 ( ) ( )1 1t t jt jtE E⎡ ⎤′ ′= ⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦
μ - π + e α α μ - π + e   by definition mature (233) 
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 ( ) ( ) ( )t t jt jt t tE ⎡ ⎤′ ′ ′= + −⎢ ⎥⎣ ⎦
μ - π + e v v u u μ π   (234) 

 ( ) ( ) ( )jt jt jt jtE E⎡ ⎤ ⎡ ⎤′ ′′ ′ ′= − + ⋅ − −
⎣ ⎦ ⎣ ⎦
μ v v μ π μ u u π μ π  using orthogonality  (235) 

 /mature data
j j jt jtE b E

−⎡ ⎤′′⎡ ⎤Π =⎣ ⎦ ⎣ ⎦
μ π

μ v v μ
μ

 (236) 

 22
jE R

−
⎡ ⎤= ⋅ ⋅⎣ ⎦

μ π
μ

μ
   noting

2

2
2

ESS
TSSjR

μ
= =

μ
  # (237) 

It might be asked how the expectation of non-price variables jt jtE ⎡ ⎤′′
⎣ ⎦
μ v v μ can capture 

μ , when the data variables jtv are orthogonal to price which has expected value c= ⋅π μ .   
The answer is that the expectation of vectors orthogonal to price is not the same thing as 
vectors orthogonal to the expectation of price.  jt jtE ⎡ ⎤⎣ ⎦v v  does have components in the 
direction of μ . 

We now analyze the expression jt jtE ⎡ ⎤′′ ′⋅ −
⎣ ⎦

μ u u π  using the working variables 

,x y defined in Section 4 above and the same distribution assumptions. 

LEMMA 36:   If return is projected onto price as per the expression jt jt
′′ ⋅μ u u   in (231),  

the expectation of  predicted return  is given asymptotically by: 

 
0

ˆ
E varˆ 1 var 1 2 var

1

x
P X P

y
P X

xx x
N

μ
λ λ λμ

λ λ

⎡ ⎤
⎡ ⎤ ⎢ ⎥≈ ⎛ ⎞−⎢ ⎥ ⎢ ⎥− + ⋅ − ⋅⎜ ⎟⎣ ⎦ ⎢ ⎥−⎝ ⎠⎣ ⎦

 (238) 

where ˆxμ  denotes the orthogonal component of predicted return μ̂  and ˆ yμ  denotes the 
collinear component. 

PROOF: [ ] [ ]
1

22 2

ˆ 0 1
ˆ 1

x

y

x x xy
x y x y

y y yx y
μ
μ

−
⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎝ ⎠
 (239) 

Consider the x component.   Take expectations of (187) 

 [ ] [ ] [ ] ( ) ( )2

0

1X P X
dwE x E x E E x E y x xλ λ λ
ρ

⎡ ⎤ ⎡ ⎤= + + − − −⎢ ⎥ ⎣ ⎦⎣ ⎦
 (240) 

using 1 y−  in place of 1 1y− − .   Since [ ] 0E x = , 3 0E x⎡ ⎤ =⎣ ⎦  we get: 

 [ ] 0E xy =   (241) 

Asymptotically  2 2x y+  goes to unity,  so [ ] 2 2ˆ 0x
xyE E

x y
μ ⎡ ⎤

= =⎢ ⎥+⎣ ⎦
 asymptotically.  

Turning to the y component, 
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 2

2

1ˆ
1

yE E
x
y

μ ⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎢ ⎥
+⎢ ⎥

⎣ ⎦

  (242) 

 
2

21 xE
y

⎡ ⎤
≥ −⎢ ⎥

⎣ ⎦
 but asymptotically equal  (243) 

 2

var1
var

x
y y

≈ −
+

 Σ is diagonal by (141) so x,y independent (244) 

 
 ( )( )21 var 1 1 varx y y≤ − − − −  but asymptotically equal (245) 

 var1 var 1 2 var
1

P X P

P X

xx x
N

λ λ λ
λ λ

⎛ ⎞−
= − + ⋅ − ⋅⎜ ⎟−⎝ ⎠

     using the following: (246) 

 
2

2 1 var 1 2 varP X P X

P P

y x xλ λ λ λ
λ λ

⎛ ⎞− −
≈ − ⋅ ≈ − ⋅ ⋅⎜ ⎟

⎝ ⎠
   by (201) (247) 

and varvar
1

P

X

xy
N

λ
λ

= ⋅
−

 by (141), x incorporates 1N −  degrees of freedom (248) 

RESULT 37.  The price component of mature profit is negative if: 
 var 1x <   (249) 

and 
1

P
X N

λλ >
−

  (250) 

PROOF: ( ) ( )mature price
j j jt jtE b E ⎡ ⎤′′ ′⎡ ⎤Π = ⋅ − −⎣ ⎦ ⎣ ⎦

μ u u π μ π  (251) 

( )var1 var 1 2 var 1 var
1

P X P P X
j

P X P

xb x x x
N

λ λ λ λ λ
λ λ λ

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞− − ′= − + ⋅ − ⋅ − − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
μ μ π  (252)     

 substituting (201),(238) 

 ( )varvar 2 var
1

X P X P
j

P P X

xb x x
N

λ λ λ λ
λ λ λ

⎛ ⎞− ′= − − ⋅ ⋅ + ⋅ −⎜ ⎟−⎝ ⎠
μ μ π  (253) 

Now var2 var 2 var var
1

X P X P X P X

P P X P P

xx x x
N

λ λ λ λ λ λ λ
λ λ λ λ λ

− −
− − ⋅ ⋅ + ⋅ < − − ⋅ ⋅ +

−
(250) (254) 

 ( )var 1 var 1X X

P P

x xλ λ
λ λ

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠
 on rearrangement (255) 

 0<   noting 1X

P

λ
λ

≤ , var 1x <  (256) 

and since ( ) 0′ − >μ μ π , result follows from (253). # 
The premises impose minimal constraints and it can be taken that the price component of 
mature profit is generally negative. 
 
RESULT 38.  For mature investors not using price: 
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 2 2/mature
j j jE b E R⎡ ⎤ ⎡ ⎤Π = −⎣ ⎦ ⎣ ⎦μ π   (257) 

PROOF: ( ) ( )1 1/mature
j j t t j jE b E ⎡ ⎤′ ′⎡ ⎤Π =⎣ ⎦ ⎢ ⎥⎣ ⎦

μ - π + e α α μ - π + e  (258) 

 ( ) ( )1t j jE E⎡ ⎤′ ′= ⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦
μ - π v v μ - π    as before (259) 

 2 2
jE R⎡ ⎤= − ⎣ ⎦μ π  in this case tπ is not orthogonal to jα  # (260) 

 
5.3.  New profit 
 
LEMMA 39.  The expected profit of new investors is given by: 

 2
0 0

new
j j jk jk

k

E b E σ⎡ ⎤⎛ ⎞′′⎡ ⎤Π = ⋅ −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
∑o μ - π μ - π λ λ o  (261) 

where vincula indicate the variable relative to the orthogonal basis defined by the 
eigenvectors, derived by multiplying the original form of the variable by ′Λ ; thus  0jα  
denotes the 0jα matrix expressed relative to the eigenvectors,  i.e.  0 0j j′=α Λ α . 

0jα is partitioned into columns 1 2j j⎡ ⎤⎣ ⎦o o . 

PROOF:  ( ) ( )1 0 0 0 0 1 1j j j jb ′ ′Π = − +μ - π + e α α μ π e  (262) 

 ( ) ( )0 0 0 0 0 1 0 0
0

j j j
dwb μρ

⎛ ⎞′ ′= ⎜ ⎟
⎝ ⎠

μ - π + e α α μ - π + e + H μ - π + e  using (129) (263) 

 

( ) ( )

( ) ( )

( )

0 0 0 0 0 1

0 0 0 0 0
0

0 0 0 0 0
0

j j j

j j j

j j j

b

dwb

dwb

μ

μ

ρ

ρ

′ ′

′ ′+

′ ′+

= μ - π + e α α μ - π + e

μ - π + e α α H μ - π

μ - π + e α α H e

 (264) 

 no pricemove estimation pricemove misestimation pricemove
j j jΠ + Π + Π=  (265) 

where profit is broken into components corresponding to the terms in (264).  Consider the 
first component which is the profit in the absence of the pricemove from 0π  to 1π : 

 ( ) ( )0 0 0 0/no pricemove
j j j jE b = E ⎡ ⎤′ ′⎡ ⎤Π⎣ ⎦ ⎢ ⎥⎣ ⎦

μ - π α α μ - π   given 0 1,e e independent (266) 

 0 0 0 0j jE ⎡ ⎤′ ′
⎢ ⎥⎣ ⎦

= μ - π α α μ - π   introducing ′ΛΛ and multiplying (267) 

 

1

0 1 2 2 0

j

j j jE

⎡ ⎤⎡ ⎤′
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥′ ′⎡ ⎤= ⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦

o

μ - π o o o μ - π  (268) 
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0 1

1 0 2 0 0 2

j

j j jE

⎡ ⎤⎡ ⎤′
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎡ ⎤′ ′ ′= ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦

μ - π o

o μ - π o μ - π μ - π o multiply, transpose (269) 

 0 0jk jk
k

E ⎡ ⎤′ ′= ⋅⎢ ⎥⎣ ⎦
∑o μ - π μ - π o   multiplying out (270) 

The second profit component derives from the adverse movement of price due to correct 
estimation: 

 ( ) ( )0 0 0 0
0

/estimation pricemove
j j j j

dwE b E μρ
⎡ ⎤′ ′⎡ ⎤Π = ⎢ ⎥⎣ ⎦
⎣ ⎦
μ - π α α H μ - π 0e independent (271) 

 ( ) ( )0 0 0 0j jE ⎡ ⎤′ ′′ ′− ⎢ ⎥⎣ ⎦
= μ - π ΛΛ α α ΛλΛ μ - π  substituting ′-ΛλΛ  for 

0

dw
μρ

H   (272) 

 0 0 0 0j jE ⎡ ⎤′ ′− ⎢ ⎥⎣ ⎦
= μ - π α α λ μ - π   converting to eigenvector coordinates(273) 

 0 0jk jk
k

E ⎡ ⎤′ ′= − ⋅⎢ ⎥⎣ ⎦
∑o μ - π μ - π λ o   as for the first profit component (274) 

 
The third profit component is the adverse movement of price which is due to error: 

 0 0 0 0
0

/misestimation pricemove
j j j j

dwE b E μρ
⎡ ⎤′ ′⎡ ⎤Π = ⎢ ⎥⎣ ⎦
⎣ ⎦
e α α H e   given 0e independent (275) 

 0 0 0 0j jE ⎡ ⎤′ ′= − ⎢ ⎥⎣ ⎦
e α α λ e   as for second profit component (276) 

 0 0jk jk
k

E ⎡ ⎤′ ′= − ⋅⎢ ⎥⎣ ⎦
∑o e e λ o   as for first profit component (277) 

 2
jk jk

k

σ′= −∑o λ o   as above, see (139) # (278) 

LEMMA 40. 

 2
0 0E σ⎡ ⎤′⋅ − = −⎢ ⎥⎣ ⎦

μ - π μ - π λ λ Σ   (279) 

PROOF: 2 2
0 0E σ σ⎡ ⎤′⋅ − = −⎢ ⎥⎣ ⎦

μ - π μ - π λ λ Σλ λ   (280) 

 ( )( ) 12σ
−

= − = −I - λ 1 + λ Σ     using (141) # (281) 
 
LEMMA 41.  An approximate result is: 

 new
j j jk jk

k

E b E ⎡ ⎤⎡ ⎤Π ≈ − ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑o Σ o   (282) 
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PROOF: 2
0 0

new
j j jk jk

k

E b E σ⎡ ⎤⎛ ⎞′′⎡ ⎤Π = ⋅ −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
∑o μ - π μ - π λ λ o  (283) 

 2
0 0 0j jk jk j

k

b E E σ
⎡ ⎤⎡ ⎤⎛ ⎞′′= ⋅ −⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦

∑o μ - π μ - π λ λ o α  (284) 

 2
0 0 0j jk j jk j

k

b E E σ
⎡ ⎤⎡ ⎤⎡ ⎤′′= ⋅ −⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦

∑o μ - π μ - π λ λ α o α  as jko fixed given 0jα  (285) 

 j jk jk
k

b E ⎡ ⎤′≈ − ⎢ ⎥⎣ ⎦
∑o Σo   by (279) # (286) 

The rationale for (286) is that the expression 2
0 0 σ′⋅ −μ - π μ - π λ λ  does not depend in any 

particular way on regressors 0jα  as they are normalized and embrace all magnitudes of 
price in a particular direction.  The result is good enough for a first order investigation of 
profits. 
 
RESULT 42.  For new investors using price: 

 ( ) ( )2 2
0 0 0 0

new
j j j jE b E R b E ⎡ ⎤′ ′⎡ ⎤ ⎡ ⎤Π = − −⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

μ μ - π u u μ - π  (287) 

PROOF: ( ) ( )0 0 0 0jk jk j j
k

E E⎡ ⎤ ⎡ ⎤′ ′=⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
∑o Σ o μ - π α α μ - π  reversing steps (266) to (270) (288) 

so ( ) ( )0 0 0 0
new
j j j jE = b E ⎡ ⎤′ ′⎡ ⎤Π −⎣ ⎦ ⎢ ⎥⎣ ⎦

μ - π α α μ - π   by (282) (289) 

 ( ) ( ) ( ) ( )0 0 0 0 0 0 0 0j j j jb E b E⎡ ⎤ ⎡ ⎤′ ′′ ′= − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
μ - π v v μ - π μ - π u u μ - π    (290) 

 0 0
new data
j j j jE b E ⎡ ⎤′′⎡ ⎤Π = −⎣ ⎦ ⎣ ⎦

μ v v μ      given 0 0j ⊥v π  (291) 

 [ ]ˆ ˆjb E ′= − ⋅μ μ      where μ̂ is the projection of μonto a  (292) 

 2 2
j jb E R⎡ ⎤= − ⎣ ⎦μ  noting 

2

2
2

ESS
TSSjR

μ
= =

μ
 # (293) 

 
RESULT 43.  For new investors not using price: 

 ( ) ( )0 0
new
j j j jE b E ⎡ ⎤′ ′⎡ ⎤Π = −⎣ ⎦ ⎢ ⎥⎣ ⎦

μ - π v v μ - π  (294) 

PROOF:  As per (288); here 0j j=α v  # 
 
5.4.   Total profit 
 
Both new and mature profits are summarized in the following table.  It would enhance the 
integrity of the model if the elements in the table demonstrably summed to zero but this 
development has not yet been undertaken. 
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Investor 
type 

 Data profit Price profit 

Using 
price 

mature 2
jE R⎡ ⎤+ ⋅ − ⋅ ⎣ ⎦μ μ π  ( ) ( ) 0jt jtE ⎡ ⎤′′ ⋅ − − <

⎣ ⎦
μ u u π μ π  

 new 2
jE R⎡ ⎤− ⋅ ⋅ ⎣ ⎦μ μ  ( ) ( )0 0 0 0E ⎡ ⎤′ ′− ⎢ ⎥⎣ ⎦

μ - π u u μ - π  

Not 
using 
price 

mature 2 2
jE R⎡ ⎤+ − ⎣ ⎦μ π   

 new ( ) ( )0 0j jE ⎡ ⎤′ ′− ⎢ ⎥⎣ ⎦
μ - π v v μ - π  

 

 
TABLE 5:  Expected net profit of investor j in period 1, classified by investor type and 
source.  Investors may or may not include the price variable in their estimations. The 
mature class of investors formed their estimates sufficiently long ago that current price 
has no particular relationship to price at the time of estimation.   The new investors 
formed their estimates in the most recent period so that the price in the current period is 
correlated with the price in their estimating period.  This affects new investors adversely.  
The conclusion is that the analysis of non-price data is profitable, and analysis of price 
data is unprofitable.  Entries in the table should be multiplied by the weight of money jb . 
 
The results cover only new investors and mature investors, with none for the time 
intervals between; it is reasonable to suppose that profit expectations for intermediate 
time periods are intermediate in magnitude, and that the investor’s expected profit is 
some function of the new and mature expected profits.   We assume this is the case: 
 
PREMISE 11: PROFIT INTERPOLATION.  Profit can be linearly interpolated from new and 
mature profit for data and price. 

 
mature mature mature mature new new new new
data data price price data data price price

j j j j j j j j jE c E c E c E c E⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤Π = Π + Π + Π + Π⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
      (295) 

where , , , 0
mature mature new new
data price data price
j j j jc c c c >   (296) 

 
RESULT 44.   Data profit is positive for the average investor. 

 0
mature mature new new
data data data data
j j j j

j

c E c E
⎛ ⎞⎡ ⎤ ⎡ ⎤Π + Π >⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

∑  (297) 

PROOF: 0 j
j

E ⎡ ⎤= Π⎣ ⎦∑    taking expectations of (230) (298) 
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mature mature new new
data data data data
j j j j

j

mature mature new new
price price price price
j j j j

j

c E c E

c E c E

⎛ ⎞⎡ ⎤ ⎡ ⎤= Π + Π +⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤ ⎡ ⎤Π + Π⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

∑

∑
  using (295) (299) 

Now 0
mature mature new new
price price price price
j j j jc E c E⎡ ⎤ ⎡ ⎤Π + Π <⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  for all investors j (300) 

so 0
mature mature new new
price price price price
j j j j

j

c E c E
⎛ ⎞⎡ ⎤ ⎡ ⎤Π + Π <⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

∑  result follows (299) # (301) 

 

RESULT 45.  If the profit coefficients , , ,
mature mature new new
data price data price
j j j jc c c c are the same for every 

investor, then for each investor expected profit is a positive function of their coefficient of 
determination 2

jE R⎡ ⎤⎣ ⎦ .  

 2data price
j j j jE K E R K⎡ ⎤ ⎡ ⎤Π = +⎣ ⎦ ⎣ ⎦     (302) 

where 0data
jK >  is independent of the data ja used by investor j (303) 

and 0price price
j jK E ⎡ ⎤= Π <⎣ ⎦  is independent of the data ja used by investor j (304) 

PROOF: 2 2 0
mature new
data data

j j j j
j

c b E R c b E R⎛ ⎞⎡ ⎤ ⎡ ⎤⋅ − ⋅ − ⋅ ⋅ >⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠
∑ μ μ π μ μ    Table 5, (297) (305) 

 2 0
mature new
data data

j j
j

c c b E R⎛ ⎞ ⎡ ⎤⋅ − − ⋅ >⎜ ⎟ ⎣ ⎦⎝ ⎠
∑μ μ π μ μ   rearranging (306) 

 0
mature new
data datac c⋅ − − ⋅ >μ μ π μ μ    given 2 0j j

j

b E R⎡ ⎤ >⎣ ⎦∑  (307) 

so applying this to the expected data profit of a single investor,  

 2
mature new

data data data
j j jE c c b E R⎛ ⎞⎡ ⎤ ⎡ ⎤Π = ⋅ − − ⋅⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

μ μ π μ μ  (308) 

 2data
j jK R=     (309) 

where 0
mature new

data data data
j jK c c b⎛ ⎞= ⋅ − − ⋅ >⎜ ⎟

⎝ ⎠
μ μ π μ μ     by (13),(307)  (310) 

The expected price profit 

 ( ) ( )0 0 0 0var 0price X
j

P

E x Eλ
λ

⎛ ⎞ ⎡ ⎤′ ′⎡ ⎤Π = − ⋅ − ⋅ − <⎜ ⎟⎣ ⎦ ⎢ ⎥⎣ ⎦⎝ ⎠
μ μ π μ - π u u μ - π  (311) 

is not a function of data variables. # 
 
The premise of equal profit coefficients is one way of developing this result.  Another 
way is to interpret the previous result as an expectation over investors, but this does not 
guarantee that 0data

jK >  for every investor. 
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5.5. Long term expectations and rational learning 
 
We now ask whether the behavioural premises 7 and 8 are consistent with ‘rational 
learning’ as defined by premise 1. We judge realizations by the expected profit given in 
Table 6 above and this is to be compared with the predicted returns (20) obtained from 
estimation.   We see that the return to new investors is less than the return to mature 
investors which is perhaps surprising given that their estimates are more up to date.   The 
short term profit no pricemoveΠ  which would be earned in estimation period 1 in the absence 
of a price move is positive as expected, but it turns out that the situation is not as simple 
as this and we have to consider price shift and estimation error, both of which affect the 
investor adversely.   As the offset μ - π  is small, we expect that for new investors the 
short run loss will exceed the long run profit components, and overall profit will be 
negative.  As the price shift and misestimation factors wear off over time as the price and 
estimation matrix move, profit will increase and eventually become positive.  This 
progression is consistent with an overall profit across all investors of zero.  The profit 
outcomes, and hence long term expectations and behaviour, of the investor are 
compatible with the assumed behaviour of the investor insofar as: 
 

• Estimating:  The investor must start off by estimating notwithstanding the initial 
loss.   Furthermore, the long term profit value given above is an expected value, 
not a definite amount, and the investor must sample several times to be sure of 
having a sufficiently representative sample.  There is also the matter of structural 
change in the return relationship (10). 

• Not estimating:  As positive profit comes only over time, the investor will not 
reestimate in every period to get fresh estimates, so the majority of investors will 
be old investors as assumed. 

• Investor demand function:  The return which is received will ultimately be 
positive so the investor is justified in using the relationship (11) to determine the 
quantity which they invest.   However, the investor will find that realized return is 
less than the predicted return ĵr .   This will be reflected in somewhat smaller 
values of the weight of money jB  and the proportion of new investors dw  than 
would be the case if expectations were exactly realized. 

 
As stability condition (215) requires a relatively low proportion of new investors, it 
appears that the failure of investors to fully realize the return which the regressions 
indicate is important for the stability of the market. 
 
5.6.   The viability of non-price data 
 
A primary concern of the literature dealing with the Grossman Stiglitz paradox has been 
that low-cost price watchers can outperform high cost fundamental analysts, reducing the 
viability of fundamental analysis and disrupting market efficiency.  Consider that some 
data costs virtually nothing to compile yet can have considerable explanatory value:  the 
constant vector ι  and time period dummy variables.    
DEFINITION:   RELEVANT VARIABLE.   A variable is relevant if it is correlated with μ - π  .   
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DEFINITION:  DISTINCT VARIABLE.   A relevant variable is considered distinct if it cannot 
be expressed as a linear sum of other relevant variables. 
 
PREMISE 12:  INVESTORS’ GOAL.    Investors will maximize expected net profit netΠ which 
is a function of the gross profit given in (302) and the cost of the data.  
 ( )2net data price

j j j j jE K E R K C⎡ ⎤ ⎡ ⎤Π = + −⎣ ⎦ ⎣ ⎦ a   (312) 

where ( ) ( )j jk
k

C C= ∑a a   (313) 

is the total cost of data which is an arithmetic sum of the cost of each data series jka used 
by the investor. 
 
PREMISE 13: DATA CHARACTERISTICS.   At least two relevant, distinct and free data series 
are available. 
 
RESULT 46: VIABLE MARKET THEOREM.  Investors will use data other than price.  
PROOF: 2 data+price price alonemarginal net net

j j jE E E⎡ ⎤ ⎡ ⎤⎡ ⎤Π = Π − Π⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (314) 

 ( ) ( ) ( )2 2
2 32 data+price price alonedata

j j j j jK E R E R C C⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦ a a  (315) 

 noting that data
jK  and price

jK  are independent of data ja used by the investor 

 ( )2 22 data+price price alonedata
j j jK E R E R⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦    as ( ) ( )2 3 0j jC C+ =a a  (316) 

Now 2 22 data+price price alonej jE R E R⎡ ⎤ ⎡ ⎤>⎣ ⎦ ⎣ ⎦     (317) 

as price cannot be collinear with two distinct variables, by Premise 13 they are relevant.  
so 0marginal

jE ⎡ ⎤Π >⎣ ⎦  as both factors in (316) are positive. # 
 
If it is accepted that a certain amount of free and useful data is available then this result 
demonstrates that a data set is always available in the face of strategy switching.  Premise 
3 of the objective model is upheld (i.e. non-price data is used by investors) and market 
processes are viable in the long term.   While it has not been demonstrated formally that 
the system will find its way to a sustainable equilibrium from any starting point, it seems 
clear intuitively.  If less data is being used, the investor will add the free series.  If more 
data is being used and cost makes the investor’s position untenable, the investor will drop 
back to the free set.  In fact more than two sources of free data are needed to avoid 
instability due to relatively large collinear variance: the criterion identified at (223). 
 
5.7.   The viability of price data 
 
We turn to the problem, which is probably unique in the history of literature inspired by 
Grossman Stiglitz (1980), of having to explain why investors would be motivated to look 
at price.   The importance of price in the investment decision would seem to be self-
evident; but the preceding analysis demonstrates that the imprecise nature of the price 
variable – which wanders through coefficient price – makes it a poor guide to where 
positive returns might be found.  In the short term estimation error destroys its value and 
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in the long term it is too vague.  In both cases the losses of the price-watchers subsidize 
the investors using ‘hard’ data. 
 
In terms of the objective model as set out here the answer is as follows:  if  some 
investors stop looking at price then the proportion of those who do, priceb , will fall.  The 
stability condition: 

 
22

2
priceX X

P P

b
dw σ λ

λ λ
⎛ ⎞⎛ ⎞

< ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (215) restated (318) 

implies that past a certain point in this fall in priceb the market will become unstable and 
bubble.   It is reasonable to suppose (although it is not proved here) that in a bubble the 
investors who consider price will ultimately profit and those who do not will incur losses.  
There is a long run cycle within which price watching behaviour is rewarded.   
 
6.   Heterogeneous least squares learning as a genetic algorithm 
 
Any process which uses a blind multipronged hill-climbing algorithm can be described as 
a genetic algorithm because this is the presumed mechanism of natural selection.  We 
show that heterogeneous least squares learning is a genetic algorithm by constructing a 
genetic algorithm for a natural system and showing that it operates identically to 
heterogeneous least squares learning within the objective model.  
 
The similarity of the processes does not depend on the profitability and survival of the 
economic actors, which is the traditional avenue for constructing an analogy of the 
‘economic Darwinism’ type.  Nor does it depend on the selection of particular strategies, 
which is the version of this concept found in modern rational expectations literature.  For 
instance Marimon McGrattan (1995) demonstrate an isomorphism between adaptive 
learning and evolutionary learning.   The process described by the objective model will 
operate without any elimination of less profitable investors or strategies.  It is the 
information processing itself – least squares learning – which is analogous to natural 
selection.    
 
Let a creature j, i.e. a single organism, be represented by an N*1 vector jg  in ‘gene 
space’.  Each gene represents a separate dimension of variation, variations are ranked in 
some physical order, and there are N separate genes so gene space is N .  It is a question 
whether genetic variation has a continuous character but we will ignore this.  Let the 
population mean of the g vectors be denoted by π , and the optimal genotype - the 
genotype which is superior to all others in reproductive capability - by μ + e .  Optimum 
fitness has a stochastic component, denoted e, which is set by prevailing environment 
conditions, the situation with predator/prey species etc.  We suppose that the mean is 
sufficiently close to the optimum that reproductive capability is a smooth concave 
function of π , with maximum at μ + e .  For the species this presents as a hill climbing 
problem. 
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Let  the relative weight of creature j (the number of individuals with genotype jg ) be 
denoted by bj .  At period 0  
 1 j

j

b∑=   (319) 

 0 j j
j

b∑π = g   (320) 

Variation around the mean, referred to as the ‘variation’ vector, can be denoted by jα :  
 0j j −α = g π   (321) 

Observe j j
j

b∑ α = 0   (322) 

The population fitness vector r is the vector from the population mean π  to the current 
optimum μ + e . 
 0 0 0=r μ + e - π   (323) 
NATURAL SELECTION PREMISE 1.   The fitness of a each creature is given by the distance 

0 j+ −μ e g   of its genotype jg  from the optimum genotype 0+μ e .  The fitness of the 

mean genotype is given by the distance 0 0+ −μ e π .    The relative fitness of a creature is 
the difference between its fitness and the population fitness and this is approximately 
proportional to the coordinate of its fitness vector in the direction of the population 
fitness vector. 
 0 0 0j jrelative fitness = + − − + −μ e g μ e π  (324) 

 j
′∝ α r   (325) 

NATURAL SELECTION PREMISE 2.   The Net Reproduction Rate (NRR) of a creature (i.e. 
production of offspring after replacing itself) is proportional to the relative fitness of the 
creature.    
 j jNRR w relative fitness w ′= ⋅ = α r   (326) 
 where w is some positive constant.  NRR will be positive for some creatures and negative 
for others; on average it is zero as shown in (329).  The Gross Reproduction Rate (GRR), 
which includes the replacement creature, is given by 
 1 1j j jGRR NRR w ′= + = +α r   (327) 
so the weighting of descendents produced by creatures of type j will be given by 

 ( )1j descendents j j j jb b GRR b w ′= ⋅ = + α r  (328) 

Observe that the total weighting attributed to descendents is unity: 

 ( )1 1j descendents j j j j j
j j j j

b b w b w b
⎛ ⎞′ ′= + = + =⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑α r α r     by (319),(322) (329) 

so these weights j descendentsb can be used for the purpose of finding the new population 
mean in period 1. 
NATURAL SELECTION PREMISE 3.  The average genotype ijg  of the descendents i of 
creature j equals the genotype of the parent, i.e. 
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 ij j ig = g + u  where iu is an error term (330) 

 
ij

i
ij j

jGRR

∑g
g = = g   (331) 

 
RESULT 47:  GENETIC ALGORITHM THEOREM.   Heterogeneous least squares learning is a 
genetic algorithm. 
PROOF:  The above three assumptions define a genetic algorithm.  We proceed by 
showing that this algorithm embodies the same process as heterogeneous least squares 
learning. 
Evaluate the population mean in period 1, 1π . 

 1 ij j descendents
j

b⋅∑π = g   (332) 

 ( ) ( )0 1j j j
j

b w ′⋅ +∑= π +α α r   by (331),(321),(328) (333) 

 0 0j j j j j j j j
j j j j

b b w b b w′ ′∑ ∑ ∑ ∑= π + π α r + α + α α r  (334) 

 0j j j j
j j

b w b ′∑ ∑= π + 0 + 0 + α α r   by (322) (335) 

 ( )0 0 0w+= π H μ - π + e            using (323) (336) 

where j j j
j

b ′∑H = α α   (337) 

Effectively each creature is forming a regression coefficient ( )0j
′α μ - π which is applied 

to explanatory variable jα to yield prediction vector ( )0j j
′α α μ - π .     Matrix H, the 

weighted sum of the projection matrices j j
′α α , is cognate with the estimation matrix H 

defined at (85). 
Now this expression can be rearranged and expectations taken to give  
 [ ] [ ] [ ]1 0 0E E w E⋅μ - π = μ - π - H μ - π  (338) 
 ( ) [ ]0w E= ⋅I - H μ - π  which conforms with (131) # (339) 
One apparent difference is that the vectors jα are normalized in the financial model, i.e. 

j j
′α α = I  whereas this is not the case for the genetic algorithm; but the scaling of genetic 

variation is in any case arbitrary.  The estimation matrix H is a genetic operator – it takes 
the system state (price, mean genotype) and an observation of the environment (return, 
mean fitness) and produces the next state. 
 
The following figures and table examine the correspondence between financial and 
natural systems for its own interest.  
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FIG. 5.  Objective model applied to finance.   The market is initially at price 0π , the 
lowest    symbol.  Each investor attempts to find a profitable strategy by regressing the 
net return 0 0μ + e - π  onto particular regressor vectors α  which they have chosen, shown 
by the target symbols .  This yields a predicted return given by the geometric projection 
of the net return vector onto the regressors.  The consequent impact of the investor’s 
position on the price is in the direction of the regressors α  and proportional to this 
geometric projection: the impact is shown by the heavy arrows.  Effect is to move the 
price to 1π in the next generation and ultimately to the gross return vector μ . 
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 48

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
FIG. 6.  Objective model applied to natural selection.   The species initially has mean 
genotype 0π , the lowest  symbol, and individual creatures are shown by the target 
symbols .   Each creature’s fitness is determined by the covariance of its genetic 
variation α  and the fitness vector 0 0μ + e - π , suggested by geometric projection of the 
fitness vector onto the variation line α . Consequent net reproduction of the creature 
perpetuates its variationα , but is proportional to fitness: net reproduction is shown by the 
heavy arrows.  Effect is to move the mean genotype to 1π  in the next generation and 
ultimately to optimal fitness μ . 
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TABLE 7: Correspondence of the elements in financial and natural systems. 
 FINANCE NATURAL SELECTION 
STARTING POINT Price 

Price is a vector 0π  in 
‘coefficient space’, not a 
single piece of information; it 
stores all the information 
which generates an accurate 
price. 
 

Mean genotype 
The mean genotype is a vector 

0π  in ‘gene space’.  A creature is 
a function, not a single piece of 
information, formed by all the 
information in its gene vector 
(set of chromosomes). 

CREATION OF 
VARIATION 

Different variables are 
selected by actors for 
investigation.   Each actor j 
relies on the price to explain 
the majority of return, and 
chooses only a small number 
of variables jα  for further 
investigation in a process of 
econometric specification. 
 

Different genotypes are created 
by genetic crossover, i.e. for 
sexually reproducing species this 
comprises meiosis & 
fertilization. Different creatures j 
show variation along every 
genetic axis  to produce genotype 

jg  with variation jα from the 
mean. 
 

TEST OF 
VARIATION 

Set of statistical trials i 
forming an estimation period, 
in which security returns and 
explanatory variable values 
are generated.   
 

The creature’s efforts to 
reproduce represent separate 
statistical trials.  
 

EVALUATION OF 
TEST 

Estimation i.e. regression to 
determine new estimates. 
 

Natural selection, i.e. differential 
rates of survival.  As shown 
above, this is equivalent to an 
estimation by regression. 
 

TEST ERROR The accuracy of estimates is 
affected by error (statistical 
variation), denoted e in 
coefficient space. 

Creature lives are affected by 
random variations – different 
environmental conditions, 
different numbers of predators 
and prey at various times etc. 
(The role of chance has received 
attention in ecological literature 
in recent years.) 
 

RECOMBINATION Intermixing of the new 
estimates and the old through 
a process of price formation to 
generate a new price 1π . 

Intermixing of members of the 
next generation of the population 
to produce a new mean genotype 

1π . 
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7.  Conclusion 
 
7.1.  Economics of the efficient market and the Grossman-Stiglitz paradox 
 
Financial markets are a challenge to rational expectations theorists because they are a 
zero sum game.   For expectations to be ‘rational’ requires that they be realized to some 
extent, yet it is not possible for everybody to have a positive expected return in the single 
period model.  This contradiction is an alternative way of stating the Grossman Stiglitz 
paradox which puts the emphasis on expectations rather than behaviour.    
 
The properties exhibited by the market in the objective model suggest that efficiency is a 
journey rather than a destination.   It is the expected value of price which approximately 
equals return: [ ]E ≈π μ  rather than price itself which equals return: =π μ .  The process 
by which price gravitates to return is a stochastic one in which investors are rewarded 
according to their contributions.  As in the original Grossman Stiglitz (1980) model it is 
noise which guarantees the economic viability of the process, but unlike Grossman 
Stiglitz and like Goldbaum (2005, 2006) the noise is generated endogenously by the 
learning process.  
 
Specifically, the return received by each investor is determined by: 

• use (or not) of non-price data, for which expected return is positive in a stable 
market 

• the relevance 2R  of the investor’s non-price information 
• use (or not) of  price data, for which expected return is negative in a stable market 

and presumed to be positive in a bubble/crash market 
• the sampling error in the estimate derived from the information 
• the timeliness of the estimates ( new , old  or mature) 
• whether the market is in stable or bubble mode  

 
and the returns may be positive or negative depending on these factors.  All of these 
factors could be predicted on a priori grounds, and most are related to profit as one would 
expect intuitively – except that new estimates are expected to lose money because of 
statistical error,  and price estimates do not yield a positive return in a stable market.  
Many of the models in the literature are driven on cost and strategy switching 
assumptions.  Within the context of these models, too high a level of cost causes investors 
to switch into price watching behaviour, which causes the market to falter.  Within the 
objective model it is always possible for the market to make a price even when 
fundamental analysis is costly and investors switch away from it, because of the existence 
of useful but free regressors such as the constant regressor *1Tι  and time related dummy 
variables.    
 
The objective model suggests that when the market is stable, the return to the price 
variable will be negative because the price vector moves in coefficient space and the 
price coefficient does not estimate well.  Investors who use price as a variable will lose 
money on that account (although they may make money on other variables) and subsidize 
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the other market participants.  The negative return will discourage the use of the price 
variable in stable markets.  In bubble/crash conditions it is assumed (although it has not 
been shown) that use of the price variable will be profitable because the investor will 
avoid the crash and the ranks of the price watchers will be replenished.  This suggests that 
rather than being an aberration, price bubbles are intrinsic to the way that markets work.  
The market cycles between stable and bubble modes as the proportion of investors using 
price, priceb ,  falls in stable times and rises after market crashes.     
 
The disposition of returns in the objective model is consistent with sustainable patterns of 
behaviour and this points the way to the resolution of the Grossman Stiglitz paradox.  It 
appears that a rational expectations model is capable in principle of explaining the 
observed facts of financial markets and that recourse to ad hoc or behavioural 
assumptions is not necessary.   
 
7.2.  The fragile nature of financial market processes 
 
The process of forming a price in financial markets is inherently fragile because it relies 
on the generation of a negative price coefficient to act as denominator, and it turns out 
that the price coefficient is close to zero. Amplifying the denominator problem is the 
instability which probably attends any system where expectations of positive return have 
to be reconciled with a net realization of zero. It is only a fortuitous interplay of 
parameters which allows markets to operate at all, and it is not surprising that markets are 
susceptible to occasional malfunction for a variety of different reasons.    
 
Three specific mechanisms for market bubbles have been identified.  They arise as 
natural consequences of objective theory rather than a conscious attempt to model 
bubbles.  Market efficiency and market bubbles can be regarded as two sides of the same 
coin: if the market is not heading to the efficient point it is heading to infinity. 
 

• The stability condition of the price convergence process is not satisfied, because 
the frequency with which investors update their estimates, dw , is too great.     

 
22

2
priceX X

P P

b
dw σ λ

λ λ
⎛ ⎞⎛ ⎞

> ⎜ ⎟⎜ ⎟
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 (215) restated with sign reversed (340) 

• There is insufficient variance in the component of return which is orthogonal to 
the true value of return to generate a negative value for the price coefficient.  In 
practice this means that investors are only looking at a small range of 
information.  A rule of thumb derived from simulation testing is that instability 
sets in where: 

  20%error y
error

error x

r
σ
σ

= >  (221) restated (341) 

• The analysis of profit demonstrates that the returns to price watching are negative 
in the short term. This may lead investors to ignore price and concentrate on 
other variables so that the proportion of investors using price priceb  falls. As a 
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result stability condition (340) is not satisfied.   It is conjectured that the 
consequent bubble/crash will reward price watching and lift priceb . 

 
The practical effect of each of these mechanisms is that the price coefficient is too close 
to zero for the learning process to operate; the stability condition is not satisfied and 
deviations of price from return are magnified rather than damped.  In practice these 
situations are particularly likely for startup issues which are not yet making a profit in a 
time of buoyant economic growth.  There is too little non-price information available and 
investors are concentrating on price alone.   Three famous historical bubbles fall into this 
category: the Dutch tulip mania of 1636-37, the South Seas bubble of 1720, and Dot-com 
mania in 2000.   It is common to suppose that bubbles occur despite the fact that investors 
realize that stocks are overpriced,  because each investor thinks they can find a ‘greater 
fool’ to sell to.   The mechanisms given here flesh out that intuition in the context of 
learning models. 
 
7.3.   The coefficient superstrate and the reinterpretation of price as an object 
 
When the original data model is reduced to coefficient space every variable and process 
takes a new form.  The representation of the least squares learning process in coefficient 
space is simpler and the behaviour of the market is more intuitive.  Coefficient space can 
be understood as a hidden superstrate which constructs the market.  This expression 
‘constructs the market’ can be given a formal meaning: 
 
In any well-formed explanation of why the market price tends towards the realized return 
in a heterogeneous least squares learning market, the data X will drop out and we will be 
left with the coefficient representation. 
 
Although the word ‘substrate’ is used in this paper’s abstract, the less familiar term 
‘superstrate’ is more accurate in describing the concept of the coefficient layer.  
‘Constructs the market’ is used rather than ‘determines market behaviour’ because from a 
causal point of view it is the investors operating at the data level who determine market 
behaviour.  Notwithstanding, this behaviour can only be understood at the superstrate 
level. 
 
We have noted that price is not a single value which is immediately dependent on 
demand and supply conditions but a vector with a persistent value.  Viewed from within 
the superstrate, price can be regarded as an object in the sense that this word is used in 
computing; viz. it is an independent entity with its own properties and methods.   Its 
property is a collection π  of information. Its methods are those of a computer memory: it 
stores the information, makes it available to investors via estimation (34) and updates 
according to the price change theorem (62).  The process by which price gravitates to the 
return can be regarded as emergent behaviour – it is not operating on the data level which 
is seen by the participants nor do they need to be aware of it. 
 
It follows from the objective existence of price that price fluctuations will occur as the 
price vector π  rotates around return μ .  These endogenous gyrations suggest the market 
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will exhibit mean reversion and may provide a theoretical basis for that army of 
practitioners who claim to discern such patterns through ‘technical analysis’.   The 
implications of technical analysis are beyond the scope of this paper which is concerned 
only with fundamental analysis. 
 
7.4.  The investor’s life in the bush of ghosts 
 
One of the oldest and most important themes in economics, going back to Adam Smith’s 
“invisible hand”, is that the whole is greater than the sum of the parts.  The objective 
model locates the parts which have previously been obscured. Behind the outward 
appearance of a market – the trades and the current market price –  is a hidden 
superstrate, in which price is not a single piece of information but an object with its own 
independent existence as an economic entity.  The object stores information and makes it 
available to traders in a same way as a set of genes in biology.  Heterogeneous least 
squares learning is a genetic operator which moves price to the point of optimum 
explanatory power.  The gravitation of price to the efficient point is emergent behaviour 
in that it cannot be determined from the motivations or initial information of the 
investors.  The process is as invisible to the investors as natural selection is to creatures. 
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