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Abstract. In this study we inquire into the optimal simultaneous Bayesian learning
and control of a linear first-order autoregressive stochastic process with unknown policy
impact and persistence parameters. Dynamic programming solution to this imperfect
information problem has previously been infeasible due to the curse of dimensionality.
We provide the first characterization of the optimal decision rule that balances explo-
ration Information acquisition) and exploitation (target stabilization). Our numerical
results indicate substantial degree of experimentation inherent in the optimal decision
rule. Optimal policy is often discontinuous and takes irregular shapes. We identify state
space regions where experimentation motive dominates stabilization and visa versa, and
explore sensitivity to the model parameters. Second, we contrast the optimal policy
against an ensemble of suboptimal alternatives, in hope of identifying key features that
could form an arsenal of good rules of thumb to attack higher dimensional problems
where dynamic programming is not yet feasible. Our ensemble of approximate solutions
includes myopic, certainty equivalent, anticipated utility, limited lookahead policies and
assorted hybridizations and modifications, including methods for the actively adaptive
prediction of posterior variance. We conclude that aligning the degree of experimen-
tation with that of the optimal policy is essential for good performance of suboptimal
approximation.

JEL classification: C44; C63; D83; E17; E52

Keywords: Bayesian dual control, active learning, experimentation, certainty equiva-
lence, anticipated utility, limited lookahead, rules of thumb

It is what we think we know already that often prevents us from learning.
–Claude Bernard

1. Introduction

This paper studies control of a simple first-order autoregressive process

(1.1) xt = βut + γxt−1 + ǫt,

where the slope coefficient β and persistence parameter γ are both unknown with a joint
Gaussian prior. Minimizing expected discounted quadratic loss subject to (1.1) is a common
stylized representation of many macroeconomic policy problems, such as monetary or fiscal
stabilization, exchange rate targeting, pricing of government debt, etc.

The problem belongs to a class of dynamic programs with imperfect information. As
the system evolves, new data on the both sides of the regression relationship (1.1) forces
revisions of estimates for location and precision that characterize Gaussian posterior beliefs.
Anticipation of posterior revisions makes beliefs a part of the state vector, inducing a tradeoff
between current stabilization and future sharpening of posterior beliefs. The actively opti-
mal control is the one that balances exploration (information acquisition) and exploitation
(target stabilization) optimally. Prescott (1972); Kendrick (1979, 1982); Wieland (2000); ?);
Cogley, Colacito, and Sargent (2007) predict varying degrees of experimentation, depending
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on details of the model but they all agree that some degree of experimentation is indeed
optimal.

Imperfect information dynamic programs such as this are notoriously hard. Indeed,
Bayesian updating is nonlinear, state dimension is high due to the inclusion of beliefs,
and cost-to-go function need not be convex with respect to the policy variable. The last
problem may imply non-smooth shape of the optimal cost-to-function with respect to the
state variables and discontinuities of the optimal policy function. The predicament precludes
use of more efficient ways to combat the curse of dimensionality such as Smolyak sparse grid
algorithm (Krueger and Kubler, 2004) or projection methods (Judd, 1998) as these rely
heavily on function continuity.1

The objective of this study is two-fold. First, we provide the first characterization of
the actively optimal solution to the simultaneous problem of learning and control that opti-
mally balances exploration (information acquisition) and exploitation (target stabilization)
by means of dynamic programming in the state space that is extended to include both phys-
ical and informational state variables. Our numerical findings indicate substantial degree of
experimentation inherent in the optimal decision rule. Optimal policy is often discontinuous
and takes on irregular shape. We identify regions in the state space where the optimizing
decision-maker is prompted to explore more actively while foregoing some stabilization per-
formance and regions where stabilization motive is the dominant one. For example, the
degree of experimentation decreases as beliefs about persistence approach unit root. In
contrast, the experimentation rises with the variance of belief about persistence unless it is
so large that the sign of autoregressive coefficient becomes highly uncertain, so that further
increases lead now to a reduction of the policy activism. We also explore sensitivity of the
solution to the changes in the known model parameters. For instance, we find that the
variance of state shock tends to make the optimal policy more cautious, except for some
outlying regions in the belief space.

Second, we contrast the features of the optimal control against an ensemble of suboptimal
alternatives, in hope of identifying key strategies that help mimic the performance of the
actively optimal solution without mounting computational complexity of exhaustive elabo-
ration. These could potentially form an arsenal of good rules of thumb to attack problems of
higher dimension where dynamic programming is not yet feasible. Our ensemble of approx-
imate solutions includes myopic control, certainty equivalent rule, anticipated utility policy,
limited lookahead and assorted novel hybridizations and modifications, such as methods for
the actively adaptive prediction of posterior variance. The comparison is done in terms
of the analysis of policy and value functions as well as in terms of simulated Monte Carlo
dynamics. We conclude that aligning the degree of experimentation, whether intentional
or not, with that of the optimal policy is essential for good performance of suboptimal ap-
proximation. In this regard, the policy that incorporates unscented Kalman filter to project
future beliefs in the indirect approximate limited lookahead often performs closest to the
optimum.

The paper is laid out as follows. Section 2 places our contribution in the context of
existing literature. Section 3 sets up the imperfect information dynamic control problem
and develops optimal solution by means of dynamic programming. A number of approximate
policies is obtained in the section 4. Section 5 is devoted to comparative analysis of various
suboptimal policies and their relationships to the fully optimal solution. Section 7 offers
concluding remarks. Technical details are relegated to the appendix.

1Adaptive Smolyak sparse grid methods that offer heuristics designed to concentrate most of the points in
the directions that have the steepest gradient or have discontinuities have been proposed recently (Gerstner
and Griebel, 1998; Novak, Ritter, Schmitt, and Steinbauer, 1999; Hegland, 2001; Bungartz and Dirnsor-
fer, 2003; Klimke and Wohlmuth, 2005). Application of these methods to imperfect information dynamic
programs is a subject of ongoing research.
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2. Review of the Literature

The problem of conflict between information gathering and control quality was originally
introduced and discussed by A. A. Feldbaum in a sequence of four seminal papers from 1960
and 1961 (Feldbaum, 1960a,b, 1961a,b). The compromise between probing and control or
in Feldbaum’s terminology, investigating and directing lead to the concept of dual control.
Feldbaum was the first to show that, in principle, the optimal solution can be found by
dynamic programming, via what later became known as Bellman functional equation.

A seminal paper by Prescott (1972) introduced active learning into economics, even
though it only considered a toy multi-period control problem with the data generated by
the simple regression with an unknown slope, xt = βut + ǫt. Assuming linear quadratic
Bayes risk with the entire weight given to deviation of yt from its target, he solved for
the optimal learning policies as functions of beliefs for several small values of the planning
horizon (up to 6). The results showed little difference between the myopic and optimal
policies except under very large parameter uncertainty. His numerical study also showed
the myopic policy to be superior to the certainty equivalent policy in approximating the
optimal policy.

The problem of active learning has appeared in many applied economic studies. These
include the works of Rausser and Freebairn (1974a,b) on agricultural trade policy, Roth-
schild (1974); Balvers and Cosimano (1990); Trefler (1993) on monopolistic pricing with
unknown demand, Chong and Cheng (1975) on pricing strategies for the introduction of a
new product, Bergemann and Välimäki (1996) on strategic pricing, Craine (1979); Bertocchi
and Spagat (1993); Yetman (2000); Ellison and Valla (2001); Ellison (2006); Ellison, Sarno,
and Vilmunen (2006); Cogley, Colacito, and Sargent (2007) on the optimal monetary pol-
icy, Bertocchi (1993) on a theory of floating public debt issues using ”subscription issues”
when demand schedule for bonds is unknown, Zampolli (2005) on the exchange rate stabi-
lization, Moscarini and Smith (2001) on R&D investment, Hong and Rady (2002) on asset
pricing with uncertain supply of liquidity, small scale macroeconometric models of Kendrick
(1979); Bar-Shalom and Wall (1980); Kendrick (1982); Amman and Kendrick (1994, 1997)
and many others.

3. Actively Optimal Policy

The decision-maker is minimizes discounted intertemporal cost-to-go function with qua-
dratic per-period losses,

(3.1) min
{ut}∞t=0

E0

[
∞∑

t=0

δt
(
(xt − x∗)2 + ω(ut − u∗)2

)
]

,

subject to the evolution law of policy target xt from a class of linear first-order autoregressive
stochastic processes2

(3.2) xt = βut + γxt−1 + ǫt, ǫt ∼ N (0, σ2
ǫ ).

δ ∈ [0, 1) is discount factor, x∗ is the stabilization target, u∗ is ”costless” control, ω ≥ 0
gives weight to the deviations of ut from u∗. Variance of the shock, σ2

ǫ is known.
The two parameters that govern the conditional mean of xt, namely the slope coefficient

β and persistence γ are unknown. Initially, prior beliefs about (β, γ)
′
are jointly Gaussian:

(3.3)

(
β

γ

)
∼ N (µ0,Σ0) .

Gaussian prior (3.3) combined with normal likelihood (3.2) yields Gaussian posterior (Judge,
Lee, and Hill, 1988), and so at each point in time the beliefs about unknown parameters
β and γ are conditionally normal and are completely characterized by mean vector µt and

2Omitting known constant term is without significant loss of generality as target state x∗ captures that
level effect already. Allowing unknown constant term, on the other hand, makes a problem much more
complex.
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covariance matrix Σt (sufficient statistics). Upon observing a realization of xt, these are
updated in accordance with the Bayes law:3

Σt+1 =

(
Σ−1

t +
1

σ2
ǫ

(
ut

xt−1

)(
ut

xt−1

)′
)−1

,

µt+1 = Σt+1

(
1

σ2
ǫ

(
ut

xt−1

)
xt + Σ−1

t µt

)
.

(3.4)

Note that the evolution of the covariance matrix is not deterministic. Not even a single
element of the matrix evolves deterministically. This matters for the approximating dual
control methods that try to exploit forecasts of future beliefs in order to achieve outcomes
that are closer to the optimal while trying to avoid difficult dynamic programming approach.
From (3.4), only one step ahead variance of beliefs could be forecasted deterministically, as
xt−1 is already known and ut is fully under control.

Under distributional assumptions (3.2) and (3.3), the imperfect information problem is
transformed into the state-space form by defining extended state containing both physical
and informational components:4

(3.5) St = (xt, µt, vech(Σt)).

3.1. Dynamic Programming Formulation. The stationary Bellman equation is given
by

V (St) = min
{ut+1}

{
L(St, ut+1)

+ δ

∫
V (B(St, βut+1 + γxt + ǫt+1, ut+1)) p(β, γ|St)q(ǫt+1)dβdγdǫt+1

}
,

(3.6)

where L(St, ut+1) is the expected one-period loss function:

L(St, ut+1) =

∫ (
(βut+1 + γxt + ǫt+1 − x∗)2 + ω(ut+1 − u∗)2

)
p(β, γ|St)q(ǫt+1)dβdγdǫt+1

=
(
Σ11

t+1 + µ2
1t+1 + ω

)
u2

t+1 + 2
(
(Σ12

t+1 + µ1t+1µ2t+1)xt − µ1t+1x
∗ − ωu∗

)
ut+1

+ ω(u∗)2 + (Σ22
t+1 + µ2

2t+1)x
2
t + (x∗)2 + σ2

ǫ − 2µ2t+1x
∗xt,

(3.7)

and p(β, γ|St), q(ǫt) represent posterior belief density and density of state shocks, respec-
tively.

Although the stochastic process under control is linear and the loss function is quadratic,
the belief updating equations are non-linear, and hence the dynamic optimization problem
is more difficult than those in the class of linear quadratic problems. Following Easley and
Kiefer (1988), it could be shown that Bellman functional operator is a contraction and a
stationary optimal policy exists such that corresponding value function is continuous and
satisfies the above Bellman equation. Accordingly, the optimal policy and value functions
can be obtained by numerical dynamic programming methods. In particular, we use a combi-
nation of the value and policy iterations on six-dimensional grid in the state-space, resulting
in the hybrid dynamic programming algorithm. Unlike the standard policy iteration where
a single policy improvement step (single value iteration) is alternated with a single policy
evaluation step (by performing policy iterations to convergence), we use multiple policy im-
provement steps to speed up convergence. Preliminary experimentation has indicated that
it is best in terms of computing time to use four policy improvement steps per one policy

3We use subscript t + 1 to denote beliefs after xt is realized but before the choice of ut+1 is made
at the beginning of period t + 1. This notational timing convention accords with that in Wieland (2000).
Technically, it means that ut+1 is measurable with respect to filtration Ft generated by histories of stochastic
process up until time t.

4vech is a half-vectorization operator, designed to extract non-redundant entries of symmetric matrix.

Here, vech(Σt) =
�
Σ11

t
, Σ12

t
,Σ22

t

�
′

.
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evaluation when δ = 0.75. Since the integration step in (3.6) cannot be carried out ana-
lytically, we resort to the help of Gauss-Hermite quadrature and multi-linear interpolation.
Actively optimal policy and cost-to-go functions are thus represented by means of linear
interpolation on the non-uniform tensor product grid in the state space. The non-uniform
grid is designed to place grid-points more densely in the areas of high curvature, namely in
the vicinity of x = x∗ and µ = 0. The grid is uniform along Σ dimension. Although, in
principle, the state space is unbounded, we restricted our attention to the six-dimensional
hyper-cube. The boundaries were chosen via experimentation to ensure that high curvature
regions are completely covered and that all simulated sequences originating sufficiently deep
inside the hyper-cube remain there for the entire time span of a simulation. The dynamic
programming algorithm was iterated to convergence with relative tolerance of 1e − 4.

3.2. Features of Actively Optimal Policy. Results of MacRae (1972) and MacRae
(1975), using adaptive covariance actively adaptive methods, suggest that when both the
policy impact and state persistence are both unknown the behavior of optimal dual control
could be rather complex with respect to parameter uncertainty, correlation of beliefs, and
current physical state, in comparison with finite impulse response models. Indeed, when the
autoregressive coefficient is not known, the impulse response dynamics can induce poten-
tially long-lasting effects. Not knowing persistence could lead to costly, nearly permanent
repercussions. At the same time, cost of experimentation could also be amplified. Also, if
the degree of correlation between parameters associated with current control and with lag
stages is high, there’s significant information to be gained about the two simultaneously
and hence experimentation is more advantageous even in the face of large uncertainty about
the two parameters by themselves. In this section we summarize the observations we made
about the actively optimal policy.

Figure 1 displays one of the (xt, µ1t) slices of the 6-dimensional optimal control function,
while figure 2 displays a representative slice in (xt, µ2t) plane. Both graphs clearly show
that active policy is close to discontinuous and takes irregular shapes with experimentation
regions

3.2.1. Activism and Gradualism. Nonlinearity of optimal monetary policy that we observed
is due to a form of informational endogeneity. As such, it is not limited to Bayesian dual
control. For example, it was also found in Tillmann (2008) under min-max strategy to deal
with uncertain slope of the Phillips curve. There, informational endogeneity arises through
reaction of the worst-case perception of the Phillips curve slope to deviations of inflation
away from target. As a result, while small inflation shocks induce cautious policy adjust-
ment, large deviations are combatted vigorously. Empirical studies by Dolado, Pedrero,
and Ruge-Murcia (2004); Dolado, Pedrero, and Naveira (2005); Kim, Osborne, and Sensier
(2005); Tillmann (2008) find some supporting evidence of nonlinearity in the policy rules.

3.3. Sensitivity to Model Parameters. The decision-maker’s problem is contains four
known parameters – the discount factor δ, the physical shock variance σ2

ǫ , the target value
of the endogenous process x∗ and the bliss value of control u∗. In this section we explore
the sensitivity of various solutions to these four variables.

3.3.1. Sensitivity to Discount Factor δ. Raising the discount factor δ enhances incentive
to experiment by making current losses due to experimentation seemingly less important.
Accordingly, we observed uniform increase in experimentation by bumping δ up slightly.

3.3.2. Sensitivity to Physical Shock Variance σ2
ǫ . Of the four parameters, the physical shock

variance is the most interesting at least for two reasons. First, its impact is intuitively
ambiguous because more violent shocks make learning faster but impede progression of
endogenous state toward the target. The ambiguity should more pronounced in the regions
of divergence between actively optimal and certainty equivalent policies. Second, σ2

ǫ is
the only parameter in the model not related to preferences. The assumption of perfect
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Figure 1: Actively optimal control as a function of xt and µ1t. Other state coordinates
µ1t = ρt = 0, Σ11

t = Σ22
t = 1.0. Parameters: δ = 0.75, ω = 1.6, u∗ = 0, x∗ = 1, σ2

ǫ = 0.04.

knowledge of state process variance could be questionable and thus the range of values need
to be explored. Making σ2

ǫ formally unknown to the policy maker is beyond the scope of
this paper.5

As with δ, we limit our exploration of sensitivity to σ2
ǫ to trying out small number of

alternative values. Here we found that the variance of the state shock tends to make the
optimal policy more cautious, except for some outlying regions in the state space.

4. Ensemble of Approximations

In this section we introduce a large number of approximate solutions. Some of these
are popular in extant dual control literature, some are more seldom seen, and some are
altogether new.

4.1. Myopic Certainty Equivalent Control. The simplest form of control is to disregard
altogether both model uncertainty and dynamic link between the present and the future
focusing instead on the minimization of immediate period loss function. Since immediate
period loss function involves expectation of target state xt+1 in response to the choice of
control ut+1, eschewing model uncertainty means replacing unknown coefficients with best
current estimates, i.e. the mean posterior beliefs. Resulting myopic certainty equivalent
policy is given by

(4.1) uMCE
t+1 = −

µ1t+1µ2t+1

µ2
1t+1 + ω

xt +
µ1t+1x

∗ + ωu∗

µ2
1t+1 + ω

.

5Sensitivity exploration could serve to calibrate the prior for the shock variance in a way to best match
’stylized facts’ (Canova, 2007), in an empirical Bayes spirit.
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Figure 2: Actively optimal control as a function of xt and µ1
t . Other state coordinates

µ2
t = ρt = 0, Σ11

t = Σ22
t = 1.0. Parameters: δ = 0.75, ω = 1.6, u∗ = 0, x∗ = 1, σ2

ǫ = 0.04.

Under certainty equivalent myopic policy

(4.2) E
MCE
t (xt+1) =

µ2t+1ω

µ2
1t+1 + ω

xt +
µ1t+1(µ1t+1x

∗ + ωu∗)

µ2
1t+1 + ω

.

If control itself is costless, i.e. ω = 0, myopic certainty equivalent policy displays no gradu-
alism and the state is expected to hit the target x∗ in one period.

4.2. Cautionary Myopic Control. The second type of myopic policy recognizes that the
state transition parameters are random variables distributed normally with mean and vari-
ance derived from Bayesian learning. We call such policy cautionary myopic, as is traditional
in the dual control literature. The rule is myopic in that it ignores the link between current
and future state and beliefs. Policy myopia has been extensively studied. In the context
of adaptive learning and control in economics, Prescott (1972) is an early example that
found little difference between the optimal and myopic policy. Cautionary myopic policy
also results as a first iterate of the value function iteration algorithm. Therefore, knowing
the myopic policy explicitly allows to skip one step.

Cautionary myopic control solves myopic control problem

(4.3) min
ut+1

{
Et (βut+1 + γxt − x∗ + ǫt+1)

2
+ ω(ut+1 − u∗)2

}
,

where vector (β, γ)′ is treated according to predictive distribution, i.e. as normally dis-
tributed random variate with mean µt+1|t and covariance matrix Σt+1|t. Straightforward
calculation shows that the solution is

(4.4) uMY OP
t+1 = −

(Σ12
t+1 + µ1t+1µ2t+1)

Σ11
t+1 + µ2

1t+1 + ω
xt +

µ1t+1x
∗ + ωu∗

Σ11
t+1 + µ2

1t+1 + ω
.
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Implied expected dynamics of the state under control (4.4) becomes

(4.5) E
MY OP
t (xt+1) =

µ2t+1Σ
11
t+1 − µ1t+1Σ

12
t+1 + ωµ2t+1

Σ11
t+1 + µ2

1t+1 + ω
xt +

µ1t+1(µ1t+1x
∗ + ωu∗)

Σ11
t+1 + µ2

1t+1 + ω
.

4.3. Certainty Equivalent Solution. The certainty equivalent solution corresponds to
a strategy of disregarding uncertainty embodied in the posterior distribution of regression
coefficients but instead solving intertemporal optimization problem with parameters set at
their mean values. After new state realization is observed the parameter estimates are
updated in accordance with the Bayes rule, and new certainty-equivalent policy will be
computed. The certainty-equivalent decision maker is therefore moderately schizophrenic
in the way uncertain parameters are treated. Parameters of the target state process are
treated as random variables when agents learn but as constants when they formulate de-
cisions. Looking backward, agents can see how their beliefs have evolved in the past, but
looking forward they act as if they have attained the ultimate beliefs already. Moreover, in
a certainty-equivalent world these beliefs collapse all of the probability density of the pa-
rameters into a single point – the current mean estimate of the parameters. It also doesn’t
matter if the additive noise is present or not – the certainty equivalent control is known to
be optimal in the case of constant coefficients with or without ǫt and is independent of the
shock variance. While it constitutes a useful benchmark, it is definitely suboptimal in the
case of multiplicative parameter uncertainty.

In a linear-quadratic Gaussian setting, the certainty equivalent control can be calculated
by guess-verifying quadratic form of the cost-to-go function. The control is then linear in
the physical state xt:

(4.6) uCE
t = −

µ1t+1µ2t+1(1 + δA)

µ2
1t+1 + ω + δAµ2

1t+1

xt−1 +
µ1t+1x

∗ + ωu∗ − δµ1t+1B

µ2
1t+1 + ω + δAµ2

1t+1

,

where A and B are the first two coefficients in the quadratic representation of the optimal
cost function:

(4.7) V CE(xt) = Ax2
t + 2Bxt + C.

Coefficient A solves one-dimensional version of algebraic Riccati equation (Hansen and Sar-
gent, 2004), which here is simply a larger positive root of the quadratic equation

(4.8) µ2
2t+1ω(1 + δA) − A

(
µ2

1t+1(1 + δA) + ω
)

= 0,

while B is related to A via the following equation:

(4.9) B =
ω (µ1t+1µ2t+1u

∗ + µ1t+1µ2t+1δAu∗ − µ2t+1x
∗)

µ2
1t+1 + ω + δAµ2

1t+1 − µ2t+1δω
.

If ω = 0, the certainty equivalent control results in expected stabilization in one period.
δ = 0 results in certainty equivalent myopic control (4.1). Given mean beliefs µ, coefficients
A, B and C are treated as constants (hence omission of time subscripts), yet these are
recalculated anew at all belief updates.

4.4. Anticipated Utility Policy. Anticipated utility decision-maker behaves similar to
the certainty equivalent agent in the way the choices are made and beliefs are updated.
The only distinction is recognition of uncertainty in formulation of decisions. Unknown
parameters are treated as random variables with distribution that is fixed over time.

It can be shown that anticipated utility policy remains linear in the observed state:

(4.10) uAU
t+1 = −

(Σ12
t+1 + µ1t+1µ2t+1)(1 + δA)

(Σ11
t+1 + µ2

1t+1)(1 + δA) + ω
xt +

µ1t+1x
∗ + ωu∗ − µ1t+1δB

(Σ11
t+1 + µ2

1t+1)(1 + δA) + ω
,

where A and B are the highest order coefficients in the quadratic representation of the
optimal cost function

(4.11) V AU (xt) = Ax2
t + 2Bxt + C.
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Coefficient A solves one-dimensional Bayesian linear regulator (Hansen and Sargent, 2004),
i.e. the largest positive root of the quadratic equation6

(1 + δA)2
(
(Σ11

t+1 + µ2
1t+1)(Σ

22
t+1 + µ2

2t+1) − (Σ12
t+1 + µ1t+1µ2t+1)

2
)

+(1 + δA)
(
ω(Σ22

t+1 + µ2
2t+1) − A(Σ11

t+1 + µ2
1t+1)

)
− Aω = 0,

(4.12)

while B is related to A via the following equation:

(4.13)
(Σ12

t+1 + µ1t+1µ2t+1)(1 + δA) (µ1t+1x
∗ + ωu∗ − µ1t+1δB)

(Σ11
t+1 + µ2

1t+1)(1 + δA) + ω
+δµ2t+1B−µ2t+1x

∗ = B.

Even with ω = 0 anticipated utility control no longer results in perfect one-period stabiliza-
tion in expectation. Setting δ = 0 reduces anticipated utility solution to its myopic special
case. Similarly, annihilating belief covariance Σt+1 = 0 reproduces the certainty equivalent
case.

Dynamically, the process unfolds as follows. In a period t, given current beliefs, the
anticipated utility agent applies control uAU

t+1 per equation (4.10). Following the choice of
control, next period state is realized according to (3.2), and the beliefs about the uncertain
parameters are updated via Bayes law (3.4). The process repeats itself in period t + 1.
The outcomes will be shown in more details in section 5 where we collate results of several
alternative policies to ease their comparison.

4.5. Direct Limited Lookahead with Prediction of Posterior Variance. Myopic
certainty equivalent policy and cautionary myopic rule are completely myopic in that only
immediate payoff is considered. In contrast, the dual optimal policy takes full account of
future payoffs and intertemporal links. Limited lookahead approaches intermediate between
these two extremes by considering only a small number of future periods (Bertsekas, 2005).
Limited lookahead can either be spelled out directly in terms of explicit finite sequence
of controls that optimize finite horizon criterion, or indirectly via cost-to-go function (i.e.
dynamic programming). We consider some direct limited lookahead approaches first.

The n-period limited lookahead control solves

min
ut+1,...,ut+n+1

{
Et (βut+1 + γxt + ǫt+1 − x∗)2

+

n∑

τ=1

δτ
Et

[
(xt+τ+1 − x∗)

2 ∣∣ut+1, . . . , ut+τ

]
+ ω

n∑

τ=0

δτ (ut+τ+1 − u∗)
2

}
,

(4.14)

subject to the state equation (3.2).
The constituents of the second sum could be expanded by recursive substitution which

shows the necessity to predict future moments: Et

[
γ2
∣∣ut+1, . . . , ut+τ

]
, Et

[
γ4
∣∣ut+1, . . . , ut+τ

]
,

. . . , Et

[
γ2(τ+1)

∣∣ut+1, . . . , ut+τ

]
, Et

[
γτ+1

∣∣ut+1, . . . , ut+τ

]
, Et

[
βγ
∣∣ut+1, . . . , ut+τ

]
,

. . . , Et

[
βγ2τ+1

∣∣ut+1, . . . , ut+τ

]
, Et

[
β
∣∣ut+1, . . . , ut+τ

]
, Et

[
β2
∣∣ut+1, . . . , ut+τ

]
, Et

[
β2γ

∣∣ut+1, . . . , ut+τ

]
,

. . . , Et

[
β2γ2τ

∣∣ut+1, . . . , ut+τ

]
, for all τ = 1, . . . , n. Considerable difficulty here is caused

by the fact that while the vector (β, γ)′ is jointly normal conditional on the past history
of both target states and control up to date τ , i.e. given {(xt+s, ut+s)}

τ

s=0, marginalizing
{xt+s}

τ

s=0 is hard. This is because integrating future target state observations {xt+s}
τ

s=0

out of τ -period ahead Bayesian updating equations is a nonlinear operation.
Instead of integrating future observations out, the first approximate solution that I dub

”limited lookahead prediction by mean values” (LLPMV) replaces future random xt+s values
by their expected values conditional on future control sequence {ut+s}

τ
s=1. In other words,

the nonlinear Bayesian updating of future information states is constrained to the conditional

6Positivity of the larger root is not guaranteed, in contrast to the certainty-equivalent case.
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nominal path:
(4.15)

x̂t+s = Et

(
β
∣∣ut+1, . . . , ut+τ

) s∑

j=1

ut+j+

s∑

j=1

(
Et

(
γ
∣∣ut+1, . . . , ut+τ

))j
x̂t+s−j , s = 1, . . . , τ−1.

For simplicity, we consider two special cases n = 1 and n = 2. In the former case, we need to
compute Et

(
β
∣∣ut+1

)
, Et

(
γ
∣∣ut+1

)
, Et

(
β2
∣∣ut+1

)
, Et

(
γ2
∣∣ut+1

)
, Et

(
βγ
∣∣ut+1

)
, Et

(
βγ2

∣∣ut+1

)
,

Et

(
β2γ

∣∣ut+1

)
, Et

(
β2γ2

∣∣ut+1

)
, Et

(
βγ3

∣∣ut+1

)
, Et

(
γ4
∣∣ut+1

)
. In turn, these are the mo-

ments (including higher order ones) of p(β, γ|ut+1) =
∫

xt

p(β, γ|ut+1, xt)dxt. Since xt is

known, integration is redundant. In the latter case, we also require Et

(
γ3
∣∣ut+1, ut+2

)
,

Et

(
β2γ3

∣∣ut+1, ut+2

)
, Et

(
βγ4

∣∣ut+1, ut+2

)
, Et

(
β2γ4

∣∣ut+1, ut+2

)
, after replacing random fu-

ture covariance Σt+3 with its nominal path value, and extending the first set of moments to
an analogous set conditional on both ut+1 and ut+2. These are all high order moments of
multivariate normal distribution whose analytic but tedious representations could be found
in (Pearson and Young, 1918; Kendall and Stuart, 1963; Holmquist, 1988, 1996; Kotz, Bal-
akrishnan, and Johnson, 2000; Triantafyllopoulos, 2002). It turns out that under LLPMV(1)
and LLPMV(2) formulations, the objective function could be non-convex and have multiple
local minima. Multiple optima of this kind are symptomatic of the non-convexity of the
dual control problem (Kendrick, 1978; Radner and Stiglitz, 1984; Mizrach, 1991) and call
for safeguarded optimization methods such as Nelder-Meade polytope method with multiple
random starts, direct search, genetic algorithms or simulated annealing. For robustness we
used several of these to ensure the correct optimum is selected at some significant compu-
tational expense. Multi-period limited lookahead policies with prediction by mean values
could also be developed. Unfortunately, the required algebra gets rather involved, even with
the help of computer algebra systems (Mathematica, Maple, etc.). Recursive algorithms to
generate high-order moments of bivariate normal distribution do exist (Triantafyllopoulos,
2002), yet coding quickly becomes tedious and error-prone. Complexity and fragility of
dense multi-dimensional optimization also grows rapidly with the number of periods under
control.7 Furthermore, it yields no more insight than comparing one-period limited looka-
head, two-period limited lookahead with prediction by mean values and fully optimal policy.
Instead, it is of more interest to study simplified rather than more complicated solutions.
This complexity consideration limits the size of the direct lookahead to no more than two.

The second approximate solution tries to be more accurate by using the second order
approximation to the future belief dynamics, i.e. using second order expansion for the mean
of the nonlinear function of a random variable. I call this method ”limited lookahead predic-
tion by variance” (LLPV). For the one-period lookahead this is not needed as the dynamics
of posterior variance could be predicted exactly. For the two-period lookahead we need to
compute the expectation of Σt+3 from a second order expansion of the two-fold application
of Bayes updating. The contribution of second order terms could be substantial in relative
terms. So substantial, in fact, that the resulting approximation to the covariance matrix
need not even be positive definite because our direct parametrization of posterior covariance
matrix in makes no use of positive definiteness property. While there are parameterizations
that enforce this property globally, they involve additional nonlinear transformations. Fig-
ure 3 explores the question of gradualism of the LLPV(2) policy. This policy is evidently

fairly aggressive in that E
LLPV (2)
t (xt+1) is closer to x∗ than many less forward-looking ap-

proximate policies for which expected target dynamics is closer to the diagonal as we’ll see
later . The expected profile takes particularly strange and aggressive shape when ω = 0.
Tracing out cobweb dynamics against that curve results in very rapid convergence in expec-
tation to the rest point (at the intersection with the diagonal) especially if xt is not near local
minimum around xt = −1. Overall, highly nonlinear shape of the expected state evolution

7It could be shown that solving general n-period lookahead is equivalent to minimizing multivariate
polynomial of degree 2(n + 1)2 + 2.
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Figure 3: Expected target evolution under modified two period limited lookahead control
with second order prediction of the two-step ahead posterior covariance matrix (LLPV(2)).
Beliefs: µt+1 = (−0.5, 0.9)′, Σ11

t+1 = 0.04, Σ12
t+1 = 0.0, Σ22

t+1 = 0.04. Parameter values:

δ = 0.75, x∗ = 1, u∗ = 0, σ2
ǫ = 0.04.

function reflects complicated tradeoffs involved in second order approximation of two-step
ahead posterior covariance matrix, learning and control. Indeed, note that minimizing the
loss criterion under the second order approximation to the two-step ahead posterior covari-
ance matrix could be reduced to minimization of trivariate polynomial of degree 71. This
suggests that developing higher order approximations or expanding the lookahead horizon
is not only will be extremely cumbersome but will also fall victim to the usual vagaries of
highly nonlinear numerical mathematics. For this reason, we do not attempt to explore
more accurate approximations here.

4.6. Indirect Limited Lookahead via Finite Horizon Dynamic Programming.

Next, we turn to limited lookahead formulations based on the dynamic programming. These
approaches require some form of the cost-to-go function to be evaluated at any permissible
state space vector. As such these approaches are indirect. Since we are looking for approx-
imate solutions here, we can use limited lookahead as a source of approximation ideas.

The most exact formulation is to consider value iteration used to find dual optimal policy
and restrict the number of iterations to a preset small value. With tensor product dis-
cretization of the state space, this approach is still subject to the curse of dimensionality
in terms of storage requirements although computing time may be substantially reduced by
performing far fewer cost-to-go function iterations than is needed to achieve convergence.

Figure 4 sheds some light on the impact of the lookahead horizon on the gradual appear-
ance of nonlinear and experimental features of actively optimal policy.

4.7. EKF-based Indirect Approximate Limited Lookahead. The finite horizon dy-
namic programming algorithm outlined in the previous subsection is still computationally
onerous due to massive storage requirements. Further simplifications and approximations
could be found by reducing the complexity of the cost-to-go function. We could then com-
pensate information loss by possibly increasing lookahead horizon.
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Figure 4: Expected target evolution under various exact limited lookahead controls. Be-
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t+1 = 0.0, Σ22

t+1 = 0.04. Parameter values:

δ = 0.75, ω = 0, x∗ = 1, u∗ = 0, σ2
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One specific idea how to simplify the cost-to-go function was developed in Kendrick
(1978) on the basis of Tse, Bar-Shalom, and Meier (1973); Bar-Shalom, Tse, and Larson
(1974); Bar-Shalom and Tse (1976) and others. In this approach, we first form a differ-
ent state space representation by tracking the target state xt and unobserved coefficients
β and γ (augmented state) instead of xt plus beliefs. Then we formulate a perturbation
problem around the certainty equivalent nominal path by substituting second order ex-
pansion of Bellman equation into the augmented state dynamics and dropping high order
terms. The perturbation problems is approximately from linear quadratic class and could
be solved conditional on future augmented state covariances. Specifically, perturbation form
of augmented state St = (xt, βt+1, γt+1)

′
transition around nominal path is

dSt+1 =




dxt+1

dβt+2

dγt+2





=




γt+1 ut+1 xt

0 1 0
0 0 1








dxt

dβt+1

dγt+1



+




βt+1

0
0



 dut+1 +




dβt+1dut+1

0
0



+




dγt+1dxt

0
0



+ ξt+1,

(4.16)

and second order expansion of the optimal cost-to-go function

(4.17) Jt(St) = JCE
t (St) + dJt(St),

where JCE
t is the cost-to-go function associated with a nominal path the perturbation cost-

to-go function is approximately quadratic:

(4.18) dJt(St) = c̃t + Et

(
B̃′

tdSt +
1

2
dS′

tÃtdSt

∣∣∣∣P
t

)
.

Recursive expressions for the coefficient matrix Ãt, vector B̃t and scalar c̃t are computed
following Kendrick (2002) assuming finite horizon setup with zero terminal conditions,
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again, conditional on future augmented state covariances. To make the method opera-
tional, Kendrick (2002) uses the second order extended Kalman filter whereby state space
equations are linearized first and then standard Kalman filter is applied.

Similar to direct lookahead approaches, the approximate optimal cost-to-go function can
be split into sum of convex and concave components that complicate its overall shape,
including multiple minima, and induce policy function with discontinuities.

4.8. UKF-based Indirect Approximate Limited Lookahead. This alternative is an
improvement of the preceding section that replaces second order extended Kalman filter with
unscented Kalman filter (UKF) of Julier and Uhlmann (1997). The idea of the unscented
Kalman filter is that approximation of the posterior density of the state by a Gaussian
density is better than linearizing the state transition. It achieves this by propagating deter-
ministic set of specially calibrated points through the true nonlinearity and reconstructing
posterior Gaussian density based on the propagated outcomes. In effect, the UKF approx-
imates the first two moments needed for the Kalman update and could be reinterpreted in
the direct lookahead framework as a particular integration scheme to integrate out future
observations that impact future beliefs. In general, it is accurate to the second order, and
to the third order if the prior density was Gaussian.8

5. Comparative Analyses

5.1. Comparing Objects Implied by Policy Functions.

5.1.1. Controls.

5.1.2. Expected States.

5.1.3. Expected Beliefs.

5.1.4. Speed of Learning.

5.2. Comparing objects Implied by Value Functions.

5.3. Comparing Simulated Outcomes. Priors for simulations are set subjectively.9

6. Comparative Sensitivity Analyses

Here we complement the sensitivity analysis of the actively optimal policy with respect
to the model parameters by studying impact of model parameters on the approximation
errors of various suboptimal alternatives.

7. Concluding Remarks

7.1. Novel Results. Compared to the results of Wieland (2000) the actively optimal policy
function becomes even more complex.

This results accords with the intuition of Kendrick (1979, 1982) predicting larger role for
the experimentation with more sources of uncertainty.

8Higher order accuracies for moderately sized lookaheads could be obtained with the Smolyak Kalman
filter (Winschel and Krätzig, 2008).

9Alternatively, one can use the least informative density consistent with available information from
a cross-section of earlier empirical studies in the spirit of El-Gamal (1993) and Canova (1995). I use
purely subjective approach to avoid issues of dependence, reliability and compatibility of various parameter
estimates available in the literature.
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7.2. Implications for Empirical Work. Regarding the focus on simultaneous learning
and control, our model carries both positive and normative implications for applied work.
For example, if the model could be phrased as a positive description of optimal monetary
policy process.

If the model is regarded to be a good approximation to the actual data generating pro-
cess, it can be fruitfully applied to evaluate policy options. Importantly, can actively optimal
monetary policy prescribe more or less intentional experimentation above and beyond ex-
perimentation embedded in passive learning options such as anticipated utility?

7.3. Related Research Directions. Our methods and findings prompt for additional
research in several related directions.
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