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Abstract

This paper proposes a test for parameter variation in the context of a dy-
namic time-series model that is stationary about a deterministic trend func-
tion. The trend function is taken under the null to be piecewise Lipschitz-
continuous, and the approach taken explicitly seeks an appropriately defined
semiparametric power bound against contiguous alternatives to the null of
parameter stability. This is done by deriving the efficient influence function
of a least dispersed regular estimator of the total variation of each compo-
nent of the trend parameter. This derivation is then used in the construction
of a Wald-type test for parameter variation based on an asymptotically linear
estimator of the vector of total variations whose influence function coincides
with the efficient influence function. The resulting testing procedure is ef-
fectively an omnibus specification test for the adequacy of a model involv-
ing stationary fluctuations about a deterministic trend that evolves smoothly
in intervals between the occurrences of an at most finite number of break
points. The utility of this procedure to detect discrete changes or continuous
variation in the trend parameter as well as unit-root alternatives is illustrated
in simulation experiments. This paper also includes an application exam-
ining the adequacy of a linear trend-stationary specification with infrequent
trend breaks for the historical evolution of U.S. real output.

JEL Classification: C12, C14, C22
KEYWORDS: Structural change, trend-stationary processes, nonparametric

regression, efficient influence function
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1 Introduction
A particularly important class of model in econometric time-series analysis in-
volves nonstationary processes characterized by stationary fluctuations about a
deterministic trend function. In particular, suppose that data Y1, . . . , YT are ob-
served from the model

Yt = d

(
t

T

)>
γ

(
t

T

)
+ ut, t = 1, . . . , T, (1)

where ut is a generated by a mean-zero stationary process. The deterministic com-
ponent in (1) involves both a known function d : [0, 1] → Rk and an unknown
parameter γ : [0, 1] → Rk. The specification of “trend-stationarity” in (1) has
generally been associated with a traditional “Keynesian” view of macroeconomic
fluctuations alleging that the dynamic behaviour of most macroeconomic series is
well described by stationary fluctuations about a smoothly evolving deterministic
trend.1 Beginning with the seminal study of Nelson and Plosser (1982), chal-
lenges to this traditional view have typically argued that the evolution of most
macroeconomic series is better described by “difference-stationarity”, or the be-
haviour of a unit-root process. In this paradigm, the trend function in (1) is ran-
dom, and one-off shocks to the system have permanent effects. This challenge to
the traditional conception of macroeconomic fluctuations has been influential in
theoretical macroeconomics, as well as serving to inspire the development of an
extensive empirical and methodological literature in econometrics.2

The “segmented trend” model of Gallant and Fuller (1973) provides a formula-
tion intermediate between the trend-stationary and difference-stationary paradigms.
In this case, the trend function is neither a smooth function of time as in the trend-
stationary view nor characterized by breaks every period, as would be the case if
the data were realizations of a unit-root process. In particular, a segmented trend
model involves dynamic behaviour similar to a trend-stationary model between

1Cf. e.g., Kydland and Prescott (1980); Blanchard (1981).
2Empirical studies essentially corroborating the results of Nelson and Plosser (1982) using the

same Dickey–Fuller methodology but different datasets include Stulz and Wasserfallen (1985);
Wasserfallen (1986) and Perron (1988). The notion of dynamic path dependence inherent in
the difference-stationarity paradigm features in the model proposed by Blanchard and Summers
(1986) to describe “hysteresis” in European unemployment in the 1980s as well as in real business
cycle models of macroeconomic fluctuations (e.g., King et al., 1991). The theoretical literature on
unit-root testing and the behaviour of statistical models involving integrated variables is vast. Re-
cent surveys on unit-root testing and cointegration analysis can be found in Haldrup and Jansson
(2006) and Johansen (2006), respectively.
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the occurrence of infrequent trend breaks, which in the context of (1) show up as
discontinuities in one or more components of d (·). Segmented trend-stationarity
may be a more realistic reflection of the actual evolution of macroeconomic series
than what one would get with a unit-root process when trend breaks are inter-
preted as the consequence of infrequent permanent shocks.3 The statistical ques-
tion treated in this paper is the development of a procedure to test whether the
trend-function parameter γ in (1) is in fact time-varying when the deterministic
component d exhibits at most a finite number of breaks at time periods selected
by the researcher. As such, this paper develops a lack-of-fit test for the adequacy
of a given segmented-trend model.

In this connection, the parameter of interest is taken to be the k-vector χ(γ),
whose jth component is given by

χj(γ) ≡
∫ 1

0

∣∣γ′j(s)
∣∣ ds,

i.e., the total variation of the jth component of γ over the unit interval.4 Note
that unit-root behaviour in the dependent variable is associated with unpredictable
changes each period in one or more components of the trend parameter, which
translates into a value of

∑k
j=1 χj(γ) = ∞. On the other hand, the existence of

both a finite number of discrete breaks or smooth continuous change in one or
more components of γ would naturally be associated with

∑k
j=1 χj(γ) ∈ (0,∞).

Under the null of parameter stability, on the other hand, each of the additive com-
ponents dj

(
t
T

)
γj0 (j ∈ {1, . . . , k}) of the trend function evolves smoothly as a

function of time between any two consecutive breakpoints in dj , if in fact such
breakpoints have been “built-in” by the researcher as the presumed reflection of a
belief in the occurrence at certain periods of significant exogenous shocks having
permanent effects.

The approach taken in this paper involves the development from first principles
of a method for testing the hypothesis that χ(γ) = 0 for all γ in the space of Rk-
valued functions on the unit interval. The resulting test is effectively an omnibus

3Potential examples of such infrequent shocks having permanent effects include natural dis-
asters, abrupt policy changes and large sudden movements in asset prices. Cf. Perron (1989);
Rappoport and Reichlin (1989); Perron (1990) and Perron and Wada (2006).

4The vector consisting of the L2(Leb[0, 1])-norm of each component of γ may also be used.
(Here Leb[0, 1] denotes Lebesgue measure on the unit interval.) Total variation is used here be-
cause it imposes less of a penalty on regions of the unit inerval where

∣∣γ′j(s)
∣∣ is large, thus allowing

for a commensurately greater degree of “roughness” in γ that is still compatible with a decision in
favour of a segmented trend-stationary specification in (1).
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lack-of-fit test for segmented trend stationarity with power against alternatives
involving single or multiple unmodelled breaks in the trend function, as well as
alternatives involving continuous unmodelled structural change or the presence of
unit roots. The test proposed here will also be shown to be efficient in the sense
of asymptotically attaining a localized uniform power bound against contiguous
alternatives to the null of parameter stability.

The literature on detecting time variation in the trend-function parameters is
vast, and is comprehensively surveyed in Perron (2006).5 The proposal presented
in this paper is distinguished by the fact that it is explicitly designed—in the ab-
sence of strong assumptions imposed on the data-generating mechanism for the
stochastic component—to attain a relevant semiparametric efficiency bound for
local alternatives to the null of trend-parameter stability belonging to an appropri-
ately defined tangent space.

In what follows, an efficient semiparametric detection procedure for time vari-
ation in the trend-function parameter is described. The test is based on the asymp-
totic behaviour of an efficient semiparametric estimator of the total variation of
the components of the trend parameter γ(·) over the unit interval. In particular,
this Wald-type test statistic is shown to be both regular over the parameter space
as well as asymptotically linear with influence function equal to the efficient in-
fluence function. A description of this basic idea in the specific context of the
model given in (1) appears in Section 3. This description is preceded in Section 2
by a more general discussion of the semiparametric efficiency criterion used in
this paper. Details on constructing a feasible efficient test statistic are provided in
Section 4. Simulation evidence regarding how the feasible testing procedure de-
scribed in Section 4 performs in small samples is provided in Section 5, while
Section 6 gives the results of applications of the technique developed here to
assessing the adequacy of a linear trend-stationary specification with infrequent
trend breaks to the historical evolution of real GDP in the United States. Section 7
concludes. Proofs of most of the theoretical results given in Sections 3 and 4 are
collected in the appendix.

Notation and terminology
This section summarizes for convenience certain notational conventions and definitions that are
used extensively in the remainder of this paper.

5Recent proposals for detecting structural change in trend functions include those of Chu and
White (1992); Kuan and Hornik (1995); Bai (1996); Ploberger and Kramer (1996); Vogelsang
(1997); Kuan (1998); Vogelsang (1998, 1999); Juhl and Xiao (2005) and Wu and Zhao (2007).
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1. For a vector x ∈ Rk, ‖x‖ denotes the Euclidean norm of x. For a random vector X taking

values in Rk, ‖X‖ ≡
(
E

[
‖X‖2

]) 1
2

.

2. Consider a measurable space (X,B). Let {P0, P1, P2, . . .} be a collection of probability
measures defined on (X,B) dominated by some σ-finite measure µ, and let {p0, p1, p2, . . .}
denote the corresponding collection of densities with respect to µ. For P ∈ {P0, P1, P2, . . .},
define Ṗ ≡ {

h ∈ L2(P ) :
∫

hdP = 0
}

.

For each n ≥ 1, consider the mapping Pn → s
(

1√
n

)
, where s

(
1√
n

)
≡ √

pn. Also define
s(0) ≡ √

p0. Suppose that s(·) is Fréchet-differentiable in L2(µ) at s(0), i.e., that there
exists a linear operator ṡ0 : [0, 1] → R such that for every sequence of positive numbers
{εn} → 0 and a sequence {dn} with each |dn| < ∞ with

∥∥∥∥
s(εndn)− s(0)

εn
− ṡ0(dn)

∥∥∥∥ =
∫ (

s(εndn)− s(0)
εn

− ṡ0(dn)
)2

dµ

→ 0.

It follows that for εn ≡ 1√
n

, dn ≡ 1 we have the conventional formulation of differentia-
bility in quadratic mean, i.e.,

∫ [√
n (
√

pn −√p0)− ṡ0(1)
]2

dµ → 0.

By Bickel et al. (1993, Example 3.2.1), ṡ0(1) = 1
2h
√

p0 for some h ∈ Ṗ , and in this case
the sequence {Pn : n ≥ 1} has a tangent h at P0.

3. Now consider a linear operator T between Banach spaces (V, ‖ · ‖V ) and (W, ‖ · ‖W ). First
suppose that A is a subset of V and that A has an associated tangent space Ȧ, i.e., that for
every d ∈ Ȧ there is a corresponding local sequence {dn} with ‖dn − d‖V → 0 and a
real-valued sequence {εn} → 0 such that a + εndn ∈ A for every n ≥ 1 and every a ∈ A.
If for some a ∈ A there is a linear operator Ṫa : A → W such that for every {εn} → 0 and
d ∈ Ȧ with corresponding local sequence {dn} → d we have

∥∥∥∥
T (a + εndn)− T (a)

εn
− Ṫa(dn)

∥∥∥∥
W

→ 0, (2)

then the linear operator T is said to be pathwise- (or Hadamard-) differentiable along Ȧ at
a.
In what follows, consideration is focused on a slightly simpler situation implied by (2),
namely the special case where εn = 1√

n
in (2).

4. A function g defined on an interval I of the real line is said to be of bounded variation if

sup

{∑

i

|g(ti)− g(ti−1)|
}

< ∞,

where the supremum is taken over all partitions {· · · < ti−1 < ti < · · ·} of I .
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2 Efficient semiparametric estimation and testing
The detection procedure proposed in this paper for time variation in the trend-
function parameter is derived explicitly from an efficient estimator of the total
variation of the trend parameter over the unit interval. This section is expository
in nature and presents in general terms the efficiency criterion adopted in this
paper, which is associated with minimum dispersion of regular estimators of a
parameter of interest. The theoretical results stated here are fairly well-known,
and as such are presented without proof.6

Let (X,B) again denote a measurable space. letP ≡ {Pθ : θ ∈ Θ} be a family
of probability measures defined on (X,B). Let κ be a functional between Θ and
Rm. The initial statistical question concerns how well one can estimate κ(θ0) for
some θ0 ∈ Θ given sequences of observations generated by {Pθn : n ≥ 1} ⊂ P .

Assume that the parameter space Θ is a subset of a Banach space (H, ‖ · ‖H).
Let Θ̇ be the tangent space corresponding to Θ. The following two basic assump-
tions are made:

Assumption 1. For every δ ∈ Θ̇ with associated local sequence {δn}, the collec-
tion

{
Pθ0+ 1√

n
δn

}
has tangent Ṗθ0 [δ] at θ0, where Ṗθ0 [·] denotes a linear operator

on H into the the space

Ṗθ0 ≡
{

h ∈ L2(Pθ0) :

∫
hdPθ0 = 0

}
.

Assumption 2. The functional κ is pathwise-differentiable along Θ̇ at θ0, i.e.,
there exists a linear operator κ̇θ0 : H → Rm such that for every δ ∈ Θ̇,

∥∥∥∥
√

n

(
κ

(
θ0 +

1√
n

δ

)
− κ(θ0)

)
− κ̇θ0(δ)

∥∥∥∥
H
→ 0 (3)

as n →∞.

Note the following definitions for convenience:

Definition 1. 1. The closed linear span of
{

Ṗθ0 [δ] : δ ∈ Θ̇
}

is called the tan-
gent space of P and will be denoted by T .

6Further details can be obtained in Pfanzagl and Wefelmeyer (1982); Begun et al. (1983) and
in the monograph of Bickel et al. (1993).

7



2. An estimator is a sequence {κn : n ≥ 1} such that for every n ≥ 1, κn is
a measurable function on Xn into Rm.

3. An estimator {κn} is said to be (locally) regular at θ0 if there is a distribu-
tion Q0 such that for every δ ∈ Θ̇,

L
(√

n

(
κn − κ

(
θ0 +

1√
n

δ

))∣∣∣∣ P n
θ0+ 1√

n
δ

)
→ Q0,

where Q0 does not depend on δ.

4. An estimator {κn} is said to be asymptotically linear at θ0 with influence
function ψ0 : X → Rm if

|ψ0(·)| ∈ L2 (Pθ0) ; (4)∫
ψ0dPθ0 = 0; (5)

κn = κ(θ0) +
1

n

n∑
i=1

ψ0(Xi) + op

(
n−

1
2

)
; (6)

and
√

n

(
κn − κ(θ0)− 1

n

n∑
i=1

ψ0(Xi)

)
p→ 0, (7)

where the convergences in (6) and (7) are with respect to (Pθ0)
n-probability.

We are led to the following fundamental result:

Theorem 1 (Convolution Theorem; e.g., Bickel et al. (1993, Thm. 3.3.2)). Sup-
pose that Assumptions 1 and 2 hold and that there exists an element ψθ0 ∈ T m

such that ∫
ψθ0Ṗθ0 [δ]dPθ0 = κ̇θ0(δ) (8)

for every δ ∈ Θ̇ and {
α>ψθ0 : α ∈ Rm

}
(9)

is a subset of the closure of the tangent space T of P , i.e.,
{

Ṗθ0 [δ] : δ ∈ Θ̇
}

.

Then for Ψ0 ≡
∫

ψθ0ψ
>
θ0

dPθ0 ,
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1. The limiting distribution Q0 of a locally regular estimator at θ0 is a convo-
lution of N (0,Ψ0) and some other distribution M , i.e.,

Q0 = N (0,Ψ0) ∗M.

2. An estimator {κn} is locally regular at θ0 with limiting distribution N (0,Ψ0)
iff {κn} is asymptotically linear and has influence function ψθ0 at θ0.

Remark 1. The condition (8) of Theorem 1 essentially imposes the requirement of
local regularity at θ = θ0 on the underlying statistical model P ≡ {Pθ : θ ∈ Θ}.7

If the parameter of interest κ(θ) is represented as a functional ν (Pθ) on P , a
necessary condition of (8) is the pathwise differentiability of both κ(θ) and its
equivalent representation ν (Pθ) along Θ̇ at θ0 and along Ṗ at Pθ0 , respectively.
Regular estimators of an interest parameter κ(θ) are not possible if κ(θ) is path-
wise differentiable but the underlying model P is irregular.8

The Convolution Theorem gives rise to a notion of estimator efficiency con-
tained in the following:

Definition 2. 1. The map ψθ0 : X → Rm in Theorem 1 is called the efficient
influence function for κ(θ0).

2. An asymptotically linear estimator {κn} is said to be efficient for κ(θ0) if
its influence function at θ = θ0 is equal to the efficient influence function
ψθ0 .

The notion of asymptotic efficiency contained in Definition 2 for (locally)
regular and asymptotically linear estimators of a parameter κ(θ0) can be linked
closely to a notion of optimality for tests of hypotheses regarding κ(θ0). In partic-
ular, testing procedures that are asymptotically optimal in an appropriately defined
sense can be constructed from asymptotically efficient estimators of κ(θ0). In this
connection, suppose that the interest parameter κ(θ0) is scalar-valued, and con-
sider the problem of testing the hypothesis H0 : κ(θ0) ≤ 0 against the alternative
H1 : κ(θ0) > 0. Following the usual convention, let zα denote the (1−α)-quantile
of a standard normal distribution, and also suppose the existence of a functional
ν : P → R that enables an alternative representation of the parameter of interest,
i.e.,

κ(θ0) ≡ ν (Pθ0) .

7Cf. Bickel et al. (1993, Theorem 3.3.1 and surrounding discussion.)
8Cf. van der Vaart (1991) and van der Vaart (1998, Theorem 25.32).
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We consider the power of an arbitrary test of H0 against arbitrary sequence of
local alternatives given by

{
Pθ0+ 1√

n
δ

}
, where δ ∈ Θ̇. The regularity requirement

at θ0 of the Convolution Theorem (i.e., (8)) is assumed to be satisfied at each
element of the sequence

{
Pθ0+ 1√

n
δ

}
. This ensures that for every element δ of the

tangent set Θ̇ such that
∫

ψθ0Ṗθ0 [δ]dPθ0 = κ̇θ0(δ) > 0, (10)

the corresponding local alternative Pθ0+ 1√
n

δ is in fact contained in H1, since the
implication of pathwise differentiability of κ(θ) = ν (Pθ) at θ = θ0 gives

ν
(
Pθ0+ 1√

n
δ

)
=

1√
n

∫
ψθ0Ṗθ0 [δ]dPθ0 + o

(
1√
n

)

if in fact κ(θ0) = ν (Pθ0) = 0. The power envelope of an arbitrary test of H0

against sequences
{

Pθ0+ 1√
n

δ

}
satisfying (10) is analyzed in the following theo-

rem:

Theorem 2 (e.g., van der Vaart (1998, Thm. 25.44)). Suppose the conditions of
Theorem 1 are satisfied, and suppose κ(θ0) = 0. Consider the sequence of power
functions {πn (Pθ) : n ≥ 1} (θ ∈ θ) corresponding to an arbitrary sequence of
level-α tests of H0 : ψ̃ (Pθ0) ≤ 0. Then for every δ ∈ Θ̇ satisfying

∫
ψθ0Ṗθ0 [δ] dPθ0 = κ̇θ0(δ) > 0,

we have

lim sup
n→∞

πn

(
Pθ0+ 1√

n
δ

)
≤ 1− Φ

(
zα −

∫
ψθ0Ṗθ0 [δ] dPθ0√

Ψ0

)
, (11)

where Ψ0 ≡
∫

ψ2
θ0

dPθ0 .

An immediate consequence of Theorem 2 is that a “Wald-type” test based
on an efficient estimator of κ(θ0) will be “asymptotically locally uniformly most
powerful” in the sense that its power function will asymptotically attain the upper
bound given in (11):

10



Corollary 1 (e.g., van der Vaart (1998, Thm. 25.45)). Suppose that the estimator
{κn} is (locally) regular at θ = θ0 with a limiting distribution given by Q0 ∼
N (0, Ψ0). Let {τ 2

n} be a consistent sequence of estimators for the asymptotic
variance of κn, i.e.,

τ 2
n

p→ Ψ(θ)

where the convergence is in Pθ0-probability. Then for every δ ∈ Θ̇,

lim
n→∞

Pθ0+ 1√
n

δ

(√
nκn

τn

≥ zα

)
= 1− Φ

(
zα −

∫
ψθ0Ṗθ0 [δ] dPθ0√

Ψ0

)
.

As such, a test that rejects H0 whenever
√

nκn

τn
≥ zα has size α and attains the

power bound given in Theorem 2. In what follows, it is shown that conditions (8)
and (9) hold for the parameter of interest in the setting considered here, namely
the basic model given above in (1). As shown in Section 4, this leads naturally
to a feasible Wald-type testing procedure for the hypothesis of stability applied to
either a scalar-valued trend-function parameter or to a linear combination of the
elements of a vector-valued trend parameter—in both cases the power functions of
these procedures will asymptotically attain the corresponding bound spelled out
in general terms in Corollary 1. The testing procedure proposed in Section 4 will
presumably also possess asymptotic invariance properties in the case of vector-
valued hypotheses involving the components of a multivariate trend parameter,
which in turn lends itself to an analysis of its asymptotic optimality from the point
of view of a maximin approach. Although this is presumed to be of interest in cer-
tain situations, it does not seem likely that a test satisfying a generally convincing
asymptotic optimality criterion exists when constructing tests of nonscalar restric-
tions on a multidimensional trend parameter.

3 Efficient estimation of the trend parameter
As presented in the introduction, the basic assumption is that a stretch YT ≡
(Y1, . . . , YT )> of observations is generated by the model

Yt = d

(
t

T

)>
γ

(
t

T

)
+ ut, t = 1, . . . , T,

where d (·) is a known Rk-valued function on [0, 1], γ (·) is an unknown Rk-
valued function on [0, 1] and ut is a stochastic component assumed to belong to a
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mean-zero stationary process {ut}.9 The deterministic component d of the trend
function is assumed to satisfy the conditions of Assumption 3, to wit:

Assumption 3. Each component of the deterministic portion d of the trend func-
tion is bounded and belongs to the set PL[0, 1] of piecewise-Lipschitz continuous
functions on [0, 1] with a finite number of jumps, i.e., if dj (j ∈ {1, . . . , k}) is
the jth component of d, then for some δ ∈ [0,∞) ∩ Z, there exists a partition
0 = t0 < t1 < · · · < tδ < tδ+1 = 1 such that dj is Lipschitz-continuous on each
of the intervals [ti, ti+1) (i = 0, . . . , δ) and the jumps dj(ti)− dj(ti−) 6= 0 for all
1 ≤ i ≤ δ. Here dj(ti−) ≡ lims↑ti dj(s).

Remark 2. Assumption 3 is effectively designed to allow for indicator functions
to be incorporated into d.

The stochastic component of the model is assumed to be generated according
to the mechanism

ut = H (. . . , εt−1, εt) , (12)

where {εt : t ∈ Z} is an iid process and H(·) is unspecified but measurable. A
deliberately weak short-range dependence condition on the error process {ut} is
assumed, and is set out as follows:

Assumption 4. 1. For an iid sequence {εt : t ∈ Z}, we have

ut = H (. . . , εt−1, εt) ,

for a measurable function H such that ut is a well-defined random variable
with mean zero and finite variance.

2. E
[|ut|4

]
< ∞.

3. For an iid copy ε′t of εt, define

u∗t ≡ H (. . . , ε−1, ε
′
0, ε1, . . . , εt−1, εt) .

Then ∞∑
t=1

t
(
E

[|ut − u∗t |4
]) 1

4 < ∞ (13)

9The “weak-trend” scaling by t
T adopted here follows a common approach in the econometric

literature when dealing with models having nonlinear time trends. Cf. e.g., Phillips and Hansen
(1990); Park and Hahn (1999); Ripatti and Saikkonen (2001); Saikkonen (2001a,b); Juhl and Xiao
(2005); Wu and Zhao (2007).
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From part 1 of Assumption 4 it follows that {ut} is strictly stationary and er-
godic.10 It is also causal in the sense that ut does not depend on future values εs

of the innovation process, where s > t. The class of error processes subsumed
by the specification given in Assumption 4 is obviously large and includes both
linear and nonlinear time-series processes commonly adopted in applied work.
The generality of the specification of the error process covered by the conditions
of Assumption 4 is made tractable by means of the strong invariance principle
recently established by Wu (2007). In this connection, define the partial-sum pro-
cess of regression errors {St : t = 1, 2, . . .}, where St ≡

∑t
s=1 us. Wu (2007)

established that under the short-range dependence condition given in part 3 of
Assumption 4,11 there exists a standard Brownian motion B that uniformly ap-
proximates St. In particular,

max
t≤T

|St − σB(t)| = oa.s.

(
T

1
4 log T

)
, (14)

where σ2 ≡ ∑∞
t=−∞ E [u0ut] denotes the long-run variance.12

Combining the provisions of Assumption 4 and the strong invariance principle
of Wu (2007) allows one to approximate the large-sample behaviour of suitably

10Cf. e.g., Taniguchi and Kakizawa (2000, Thm. 1.3.3.).
11Note that the expression on the left-hand side of condition (13) can be interpreted as a measure

of the extent to which the innovation at time t = 0 is capable of predicting future expected values
of the regression error ut. Cf. Wu (2005).

12It was shown by Wu and Shao (2004) that for some r ∈ (0, 1), the condition ‖ut − u∗t ‖ =
O

(
rT

)
holds for many nonlinear error processes, which implies the short-range dependence con-

dition (13) for these processes. In the perhaps most familiar case where the errors are drawn from
an ARMA process, i.e.,

ut −
p∑

i=1

ψiut−i =
q∑

j=1

θjεt−j ,

for (ψ1, . . . , ψp, θ1, . . . , θq)
> ∈ Rp+q , we have the well-known fact that if each root of the poly-

nomial

zp −
p∑

i=1

ψiz
p−i = 0

has modulus less than one, then

ut =
∞∑

i=0

αiεt−i,

where each αi satisfies |αi| = O(ri) for some r ∈ (0, 1). The condition (13) is accordingly easy
to verify for the case of stationary ARMA processes.

13



weighted partial sums of the regression errors, i.e., statistics of the form

T∑
t=1

ωt,T ut,

with that of the analogous statistic

T∑
t=1

ωt,T Zt,

where {Zt} is an iid sequence of N(0, σ2) random variables, with σ2 the long-run
variance σ2 ≡ ∑∞

t=−∞ E [u0ut]. It is in this sense that the original regression
model given above in (1) can be reduced to the rather more prosaic model

Ỹt = d

(
t

T

)>
γ

(
t

T

)
+ Zt (15)

with iid N(0, σ2) errors. This idea is used to analyze the asymptotic behaviour of
the efficient test statistic described in Section 4.

The parameter space for the model generating the observations YT is given
by the set Θ ≡ Γ × G × F , where Γ is the space of Rk-valued functions on the
unit interval, G is the model for the joint distribution of the “initial condition”
(. . . , ut−2, ut−1) and F is the model for the conditional distribution of ut given
σ {. . . , ut−2, ut−1}, i.e., the σ-algebra generated by the history of the regression
error process viewed from time t. Denote a fixed point θ in the parameter space
by θ ≡ (γ, G(t), F (t|t−1)), and let P(γ,G(t),F (t|t−1)) denote the joint distribution
of (. . . , ut−2, ut−1, Yt). The parameter of interest is the vector each of whose
components is the total variation of the corresponding component of γ, i.e., a
functional of the form

κ(θ) ≡ χ(γ) ≡
(∫ 1

0

|γ′1(s)| ds, . . . ,

∫ 1

0

|γ′k(s)| ds

)>
. (16)

The statistical question of interest in this paper is the development of a sensible
procedure for inferring whether or not χ(γ) = 0 under the sequence

{
P(γ,G(T ),F (T |T−1)) : T ≥ 1

}
.

14



Let θ0 ≡
(
γ0, G

(t)
0 , F

(t|t−1)
0

)
denote a point in Θ where χ(γ) = 0, and let Γ̇, Ġ and

Ḟ denote the tangent spaces of Γ, G and F , respectively. Note that the parameter
of interest χ(γ), viewed as a functional on Γ into Rk, is pathwise differentiable
along Γ̇ at γ0 with derivative

χ̇(a) =

(∫ 1

0

|γ′1(s)| a1(s)ds, . . . ,

∫ 1

0

|γ′k(s)| ak(s)ds

)>
,

where a(s) ≡ (a1(s), . . . , ak(s))
> is a point in Γ̇ ⊂ (L2 (Leb[0, 1]))k, where

Leb[0, 1] denotes Lebesgue measure on the unit interval. As such, Assumption 2
is easily seen to be satisfied.

The conditional distribution F
(t|t−1)
0 is assumed to have zero mean, finite vari-

ance and finite Fisher information for location:

Assumption 5. F
(t|t−1)
0 is absolutely continuous with respect to Lebesgue mea-

sure with corresponding density

f
(t|t−1)
0 (ut) ≡ f0 (ut|σ {. . . , εt−2, εt−1}) .

F
(t|t−1)
0 satisfies

∫
udF

(t|t−1)
0 (u) = 0 and σ2

0 ≡
∫

u2dF
(t|t−1)
0 (u) < ∞.

In addition, for

l ≡ −f
(t|t−1)′
0

f
(t|t−1)
0

1{
f
(t|t−1)
0 >0

},

we have
J ≡

∫
l2dF

(t|t−1)
0 < ∞.

Assumption 5 enables the straightforward verification of Assumption 1 using
methods similar to those given in for example Hájek and Sidák (1967, pp. 210–
214) or Bickel et al. (1993, Section 3.2):

Lemma 1. Suppose that
{

F
(t|t−1)
η

}
is a curve in F with tangent c at F0 and that{

G
(t)
η

}
is a curve in G with tangent b at G

(t)
0 . Then if a ∈ Γ̇ has a corresponding

local sequence {γη} → γ0, the curve
{

P(
γη ,G

(t)
η ,F

(t|t−1)
η

)
}

has tangent

d(s)>a(s)l(u) + b(u0) + c(u),

with respect to
{

P(
γ0,G

(t)
0 ,F

(t|t−1)
0

)
}

, for each s ∈ [0, 1], u0 ∼ G0, u ∼ F
(t|t−1)
0 .
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The verification of Assumption 1 is straightforward from Lemma 1, and it is
easily seen that for δ ≡ (δ1, δ2, δ3) ∈ Γ̇×Ġ×Ḟ , the operator Ṗθ0 in Assumption 1
is given by

Ṗθ0 [δ] = d(s)>δ1(s) + δ2(u0) + δ3(u),

and the tangent space T ofP =
{

P(γ,G(t),F (t|t−1)) : γ ∈ Γ, G(t) ∈ G, F (t|t−1) ∈ F
}

is the closed linear span of
{

Ṗθ0 [δ] : δ ∈ Γ̇× Ġ × Ḟ
}

.
In order to reduce the notational complexity involved in deriving the efficient

influence function for κ(θ0), let

l∗(ut) ≡ ut

σ2
0

(17)

J∗ ≡ 1

σ2
0

, (18)

where σ2
0 ≡

∫
u2

t dF
(t|t−1)
0 (ut), the variance of F

(t|t−1)
0 . Let

γ0(·) ≡ (γ01(·), . . . , γ0k(·))>,

and also define

v(·) ≡ (|γ′01(·)| , . . . , |γ′0k(·)|)> ;

v̄ ≡
(∫ 1

0

|γ′01(s)| ds, . . . ,

∫ 1

0

|γ′0k(s)| ds

)>
;

v0(·) ≡ v(·)− v̄;

∆ ≡ J − J∗
J∗

;

w(·) ≡ 1

J
(v(·) + ∆v̄) ;

w̄ ≡ 1

J

∫ 1

0

(v(s) + ∆v̄) ds;

w0(·) ≡ w(·)− w̄.

Note that

w̄ =
1

J
(v̄ + ∆v̄) =

(
1 + ∆

J

)
v̄,

and that
w0(·) =

1

J
(v(·)− v̄) .
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Note that J∗ as given in (18) is guaranteed to be positive by virtue of Assump-
tion 5. This in turn guarantees the existence of the efficient influence function for
κ(θ0) given in the following:

Theorem 3. Given Assumption 5, the efficient influence function for κ(θ0) is given
by

ψ∗
θ0

≡ v0(s)
l(ut)

J
+ v̄

l∗(ut)

J∗
= w0(s)l(ut) + w̄l∗(ut)

for s ∈ [0, 1] and ut ∼ F
(t|t−1)
0 .

Proof. Let a ∈ Γ̇, b ∈ Ġ and c ∈ Ḟ . We have
∫ 1

0

E
[
ψ∗

θ0

(
b(u0) + d(s)>a(s)l(ut) + c(ut)

)]
ds

=

∫ 1

0

E
[
w0(s)l(ut)b(u0) + w0(s)d(s)>a(s)l2(ut) + w0(s)c(ut)l(ut)

+w̄l∗(ut)b(u0) + w̄l∗(ut)d(s)>a(s)l(ut) + w̄l∗(ut)c(ut)
]
ds

=

∫ 1

0

(
w0(s)E [l(ut)b(u0)] + w0(s)d(s)>a(s)E

[
l2(ut)

]
+ w0(s)E [c(ut)l(ut)]

+w̄E [l∗(ut)b(u0)] + w̄d(s)>a(s)E [l∗(ut)l(ut)] + w̄E [l∗(ut)c(ut)]
)
ds

=

∫ 1

0

(
w0(s)d(s)>a(s)E

[
l2(ut)

]
+ w̄E [l∗(ut)c(ut)]

)
ds,

where the expectation is with respect to the product of the joint distribution of
(. . . , ut−2, ut−1)

> and the conditional distribution of ut with respect to σ {. . . , ut−2, ut−1}.
When θ = θ0, we have w̄ =

(
1+∆

J

)
v̄ = 0 and w0(s) = 1

J
v(s), so

∫ 1

0

(
w0(s)d(s)>a(s)E

[
l2(ut)

]
+ w̄E [l∗(ut)c(ut)]

)
ds

=

∫ 1

0

w0(s)d(s)>a(s)E
[
l2(ut)

]
ds

=

∫ 1

0

v(s)d(s)>a(s)ds

= χ̇(a),
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which verifies condition (8) in the statement of Theorem 1. For λ ∈ Rk, λ>ψ∗
θ0

is
clearly in the closed linear span of T , and it follows that ψ∗

θ0
is indeed the efficient

influence function for κ(θ0) = χ(γ0).

Efficient inference regarding the parameter of interest χ(γ) can be conducted
by way of the following reformulation of the convolution theorem.13

Theorem 4. 1. The limiting distribution Q0 of any estimator of χ(γ0) regular
at γ0 ∈ Γ is a convolution of N

(
0, E

[
ψ∗

θ0
ψ∗>

θ0

])
and some other distribu-

tion M , i.e.,
Q0 = N

(
0, E

[
ψ∗

θ0
ψ∗>

θ0

]) ∗M.

2. An estimator {χ̂T} of χ(γ0) is regular at γ0 with limiting distribution
Q0 = N

(
0, E

[
ψ∗

θ0
ψ∗>

θ0

])
iff the sequence {χ̂T} has influence function ψ∗

θ0

at θ0 =
(
γ0, G

(t)
0 , F

(t|t−1)
0

)
.

In particular, an estimator of χ(γ0) is said to be efficient at γ0 ∈ Γ iff it
is asymptotically linear with influence function ψ∗

θ0
at θ0, as given above in the

statement of Theorem 3. In this paper it is proposed to test the hypothesis of time
invariance of the trend parameter γ via an efficient estimator χ̂T of the interest
parameter χ(γ0) as given above in (16). Rejection is associated with

√
T ι>k χ̂T

being significantly greater than zero, where ιk ≡ (1, . . . , 1)>, the unit vector in
Rk. The next section describes the construction of an efficient estimator of the
parameter of interest.

13Adaptive estimation of χ(γ0) in the presence of G
(t)
0 and F

(t|t−1)
0 is also possible. This

follows from
∫ 1

0

E
[
ψ∗

θ0
(b(u0) + c(ut))

]
ds

=
∫ 1

0

E [w0(s)l(ut)b(u0) + w0(s)l(ut)c(ut) + w̄l∗(ut)b(u0) + w̄l∗(ut)c(ut)] ds

=
∫ 1

0

(w0(s)E [l(ut)b(u0)] + w0(s)E [l(ut)c(ut)]) ds

= 0

and Bickel et al. (1993, Corollary 3.4.3).
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4 Construction of an efficient test statistic
This section of the paper is concerned with the problem of constructing an efficient
estimator of parameter of interest χ(γ0) as given above in (16). As indicated
above, this approach is largely concerned with constructing an estimate of the
efficient influence function ψ∗

θ0
as given in the statement of Theorem 3. In this

connection, the general approach developed by Schick (1986), Klaassen (1987)
and Schick (1987) will be followed.

Consider the “Priestley-Chao” estimator γ̂T of the trend-function parameter γ
given by

γ̂T (s) ≡ (
d(s)d(s)>

)−1
d(s)

T∑
t=1

wl,t,T (s)Yt, (s ∈ (0, 1)), (19)

where for a positive sequence {hl} such that hl = hlT → 0 with ThlT → ∞ as
T →∞,

wl,t,T (s) ≡ 1

Thl

K

(
1

hl

(
t

T
− s

))
. (20)

The estimator γ̂T (s) is accordingly obtained by a rescaling of the familiar Priestley-
Chao estimate of the value of the trend function d(s)>γ(s) at s ∈ (0, 1).14

The vector of derivatives γ ′(s) ≡ (γ′1(s), . . . , γ
′
k(s))

> of the trend parameter
can also be estimated using the “Priestley-Chao” approach. In particular, for a
sequence of bandwidths {hd} possibly different from {hl} and satisfying hd =
hdT → 0 with Th3

dT → ∞ as T → ∞, we may estimate γ ′(s) with what is
essentially the derivative with respect to s ∈ (0, 1) of the expression in (19), to
wit,

γ̂ ′T (s) (21)

≡
[
−2

(
d(s)d(s)>

)−2
d(s)d ′(s)>d(s) +

(
d(s)d(s)>

)−1
d ′(s)

] T∑
t=1

wd,t,T (s)Yt

+
(
d(s)d(s)>

)−1
d(s)

T∑
t=1

w′
d,t,T (s)Yt, (22)

where d ′(s) denotes the vector whose components are the derivatives of the cor-
responding components of d(s), and where for wd,t,T (s) denoting the expression

14Cf. Priestley and Chao (1972).

19



in (20) with hd in place of hl,

w′
d,t,T (s) ≡ d

ds
wd,t,T (s).

The asymptotic properties of the estimators given in (19) and (22) are derived
under various conditions regarding d, hl, hd and K(·), as well as under the various
general conditions imposed on the regression error process {ut} in Assumption 4.

It is noted that the estimators of γ and of γ ′ given above in (19) and (22),
respectively, are major ingredients in the construction of the efficient test statistic
described here. As such, assumptions regarding the deterministic trend compo-
nent d, the bandwidth sequences {hlT} and {hdT} as well as the smoothing kernel
K(·) are stated:

Assumption 6. 1. hlT → 0 and ThlT →∞ as T →∞.

2. hdT → 0 and Th3
dT →∞ as T →∞.

Assumption 7. The smoothing kernel K : R→ R used in the construction of the
estimators in (19) and (22) is Borel-measurable, possesses a first-order derivative
of bounded variation over the real line, and satisfies

1. K(z) ≥ 0 for every z ∈ R;

2.
∫

K(z)dz = 1;

3.
∫

K2(z)dz < ∞.

Assumptions 4, 3, 6 and 7 lead to results set out in Appendix A.1 regarding
the uniform rate of convergence of γ̂T (·) and of γ̂ ′T (·) over the unit interval. These
results are in turn used in the proof of the main result of this section.

Given the estimators γ̂T (·) and γ̂ ′T (·) given in (19) and (22), respectively, de-
fine the following:

ût,T ≡ Yt − d

(
t

T

)>
γ̂T

(
t

T

)
; (23)

v̂T (s) ≡ (|γ̂′T1(s)| , . . . , |γ̂′Tk(s)|)> ; (24)

v̄T ≡ 1

T

T∑
t=1

v̂T

(
t

T

)
; (25)
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δt,T ≡ d

(
t

T

)> (
γ̂T

(
t

T

)
− γ

(
t

T

))
; (26)

f̂UT (u) ≡ 1

T

T∑
t=1

1

aT

k

(
u− ût,T

aT

)
; (27)

l̂UT (u) ≡ − f̂ ′UT (u)

f̂UT (u) + bT

; (28)

ĴT ≡ 1

T

T∑
t=1

l̂′UT (ût,T ); (29)

where {aT}, {bT} are positive sequences tending to zero as T → ∞. The kernel
function k(·) employed in f̂UT (u) and f̂ ′UT (u) is assumed to satisfy the following
condition:

Assumption 8. k is symmetric, three times continuously differentiable, satisfies∫
u2k(u)du < ∞ and ∣∣k(i)(u)

∣∣ ≤ Ck(u)

for some positive constant C, and any u ∈ R and i ∈ {1, 2, 3}.

Remark 3. The logistic density and the Epanechnikov (1969) kernel both satisfy
Assumption 8.

The quantities in (23)–(29) are used to construct the estimator

χ̂T ≡ 1

T

T∑
t=1

[
v̂T

(
t

T

)
+ Ĵ−1

T

(
v̂T

(
t

T

)
− v̄T

)
l̂UT (ût,T ) + v̄T ût,T

]
. (30)

In what follows, it is shown that χ̂T is asymptotically linear with influence func-
tion ψ∗

θ0
at θ = θ0 and is therefore efficient for χ(γ0). In particular, we give

conditions such that

χ̂T =
1

T

T∑
t=1

[
v

(
t

T

)
+ J−1

(
v

(
t

T

)
− v̄

)
lU(ut) + v̄ut

]
+ oθT

(
T− 1

2

)
,

(31)
where the notation CT = oθT

(rT ) indicates that r−1
T CT converges to zero in PθT

-
probability, for {θT} a sequence in Θ and {rT} a sequence of positive numbers.
In particular, {θT} will be taken to be a local sequence about the point θ0 =

(γ0, G
(t)
0 , F

(t|t−1)
0 ) ∈ Θ.
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A central feature of the proof of (31) involves showing in a number of different
cases that suitable estimates L̂T of a functional LT satisfy

√
T

T∑
t=1

(
L̂T (ut)−LT (ut)

)
= oθT

(1). (32)

In particular, the preliminary results given below as Lemmas 2–5 involve showing
(32) for several different settings of L̂T and LT . It is assumed throughout that the
stochastic component of the model given in (1) satisfies Assumption 4. The proofs
of Lemmas 2–5 involve combining the strong invariance principle of Wu (2007)
with the machinery of Schick (1987, Lemma 3.1). In this connection, suppose
that L̃T is a suitable estimate of the functional of interest LT .15 Then for {Zt}
denoting as before an iid N(0, σ2) process discussed earlier, we can write

√
T

T∑
t=1

(
L̂T (ut)−LT (ut)

)

=
√

T

T∑
t=1

(
L̂T (ut)− L̃T (Zt)

)
+
√

T

T∑
t=1

(
L̃T (Zt)−LT (Zt)

)

+
√

T

T∑
t=1

(LT (Zt)−LT (ut))

≡ ∆T1 + ∆T2 + ∆T3. (33)

In the context of Lemmas 2–5, the ∆T1 and ∆T3 quantities will be analyzed
using the invariance principle of Wu (2007), while the behaviour of ∆T2, given
that it involves the iid process {Zt}, will be analyzed using the approach of Schick
(1987, Lemma 3.1).16

For some constant rl ∈ (0, 1), set hl ≡ hlT ∝ T−rl to be the bandwidth
used in the construction γ̂T given above in (19), and for some rd ∈ (0, 1) set
hd ≡ hdT ∝ T−rd to be the corresponding quantity used in the construction of γ̂ ′T
in (22). Let r ≡ min {rl, rd}.

Also let
AT ≡ max

0≤s≤1
‖v̂T (s)‖+ 1, (34)

15The estimate L̃T may coincide with L̂T .
16The modification of Schick (1987, Lemma 3.1) suitable for the purpose of analyzing the

convergence of ∆T2 appears as Lemma 11 in Appendix A.2.
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and let FU denote the marginal distribution of ut. Lemmas 2–5 are preliminary
results required to show (31). Their proofs appear in Appendix B.

Lemma 2. Suppose Assumptions 3, 4, 6, 7 and 8 hold. Then the following hold:

1. If a−2
T T− 3

2
−2r → 0, then

1

T

T∑
t=1

∫ (
l̂′UT (u− δt,T )− l̂′UT (u)

)
dFU(u) = oθT

(
T− 1

2

)
.

2. If AT a−2
T T− 3

2
−2r → 0, then

1

T

T∑
t=1

v̂T

(
t

T

) ∫ (
l̂UT (u− δt,T )− l̂UT (u) + l̂′UT (u)δt,T

)
dFU(u)

= oθT

(
T− 1

2

)
.

Lemma 3. Suppose Assumptions 3, 4, 6, 7 and 8 hold. Then if a−4
T T−1−2r → 0

and A2
T

(
T−1a−4

T b−2
T + T−2−ra−5

T b−1
T

) → 0,

1

T

T∑
t=1

v̂T

(
t

T

){
l̂UT (ût,T )−

∫
l̂UT (u− δt,T )dFU(u)− l̂UT (ut)

}
= oθT

(
T− 1

2

)
.

Lemma 4. Suppose Assumptions 3, 4, 6, 7 and 8 hold. If T−3−3ra−6
T → 0,

T−2αa−4
T → 0, T−4−4ra−7

T b−1
T → 0 and T−3−2ra−6

T b−2
T → 0,

1

T

T∑
t=1

(
l̂′UT (ût,T )−

∫
l̂′UT (u− δt,T ) dFU(u)

)
= oθT

(
T r+ 1

2

)
.

Lemma 5. Suppose Assumptions 3, 4, 6, 7 and 8 hold. Then

1

T

T∑
t=1

v̄T ût,T = v̄
1

T

T∑
t=1

ut + oθT

(
T− 1

2

)
.

Lemmas 2–5 imply the central result of this section.
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Theorem 5. Suppose Assumptions 3, 4, 5, 6, 7 and 8 hold. If the conditions

a−4
T T−1−2r → 0 (35)

AT a−2
T T− 3

2
−2r → 0 (36)

A2
T T−1a−4

T b−2
T → 0 (37)

A2
T T−2−2ra−5

T b−1
T → 0 (38)

are satisfied, then the estimator χ̂T given in (30) satisfies (31).

Proof. Lemmas 2 and 4 yield

ĴT ≡
T∑

t=1

l̂′UT (ût,T )

=
1

T

T∑
t=1

∫
l̂′UT (u− δt,T ) dFU(u) + oθT

(
T r+ 1

2

)

=
1

T

T∑
t=1

∫
l̂′UT (u) dFU(u) + oθT

(
T r+ 1

2

)

=

∫
l̂′UT (u)dFU(u) + oθT

(
T r+ 1

2

)
.

This result, along with Lemmas 2 and 3, can be used to show

1

T

T∑
t=1

v̂T

(
t

T

){
l̂UT (ût,T )−

∫
l̂UT dFU − ĴT δt,T

}

=
1

T

T∑
t=1

v̂T

(
t

T

){
l̂UT (ût,T )−

∫
l̂UT dFU − δt,T

∫
l̂′UT dFU

}
+ oθT

(
T− 1

2

)

=
1

T

T∑
t=1

v̂T

(
t

T

){∫
l̂UT (u− δt,T )dFU + lU(ut)

}

− 1

T

T∑
t=1

v̂T

(
t

T

) ∫ (
l̂UT + δt,T l̂′UT

)
dFU + oθT

(
T− 1

2

)

=
1

T

T∑
t=1

v̂T

(
t

T

)
lU(ut) + oθT

(
T− 1

2

)
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This result, along with the uniform
√

Th3
d = T

1
2
− 3rd

2 -consistency of v̂T (·) to
v(·),17 yields

1

T

T∑
t=1

1

ĴT

(
v̂T

(
t

T

)
− v̄T

) (
l̂UT (ût,T ) + ĴT δt,T

)

=
1

T

T∑
t=1

1

J
v̂T

(
t

T

) {
l̂UT (ût,T ) + ĴT δt,T

}
− 1

T

T∑
t=1

1

J
v̄T

{
l̂UT (ût,T ) + ĴT δt,T

}

+oθT
(1)

=
1

T

T∑
t=1

1

J
v̂T

(
t

T

)
lU(ut) +

1

T

T∑
t=1

1

J
v̂T

(
t

T

) ∫
l̂UT dFU − 1

T

T∑
t=1

1

J
v̄T lU(ut)

− 1

T

T∑
t=1

1

J
v̄T

∫
l̂UT dFU + oθT

(
T− 1

2

)

=
1

T

T∑
t=1

1

J

{
v̂T

(
t

T

)
− v̄T

}
lU(ut) + oθT

(
T− 1

2

)

=
1

T

T∑
t=1

1

J

{
v

(
t

T

)
− v̄

}
lU(ut) + oθT

(
T− 1

2

)
.

Appealing to Lemmas 5 and 9, we have that

χ̂T − 1

T

T∑
t=1

[
v

(
t

T

)
+

1

J

(
v

(
t

T

)
− v̄

)
lU(ut) + v̄ut

]

=
1

T

T∑
t=1

[
v̂T

(
t

T

)
− v

(
t

T

)]
+

1

T

T∑
t=1

{
1

ĴT

[
v̂T

(
t

T

)
− v̄T

]
l̂UT (ût,T )

}

− 1

T

T∑
t=1

{
1

J

[
v

(
t

T

)
− v̄

]
lU(ut)

}
+

1

T

T∑
t=1

[v̄T ût,T − v̄ut]

=
1

T

T∑
t=1

{
v̂T

(
t

T

)
− v

(
t

T

)
+

[
v̂T

(
t

T

)
− v̄

]
δt,T

}
+ oθT

(
T− 1

2

)

= oθT

(
T− 1

2

)
.

17Cf. Lemma 8 in Appendix A.1.
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Combining Theorem 4 with Corollary 1, an efficient testing procedure for the
null of parameter stability follows straightforwardly from Theorem 5. Setting

Ψ̂T ≡ 1

T

T∑
t=1

ψ̂t,T ψ̂>
t,T

where

ψ̂t,T ≡ Ĵ−1
T

(
v̂T

(
t

T

)
− v̄T

)
l̂UT (ût,T ) + v̄T ût,T ,

we have that for ιk ≡ (1, . . . , 1)> ∈ Rk, a reasonable asymptotically level-α test
of H0 : ι>k χ(γ0) = 0 against H1 : ι>k χ(γ0) > 0 can be obtained by rejecting the
hypothesis whenever

1√
T
ι>k

∑T
t=1 ψ̂t,T√

ι>k Ψ̂T ιk

(39)

exceeds the (1 − α)-quantile of a N(0, 1)-random variate. By Corollary 1 this
procedure is uniformly most powerful against contiguous alternatives.

The next section examines the finite-sample performance of the Wald-type test
given in (39).

5 Numerical evidence
This section presents the results of a modest simulation exercise examining the
size and power performance in small samples of the efficient test for trend stability
based on the asymptotically normal statistic in (39). Simulated observations were
drawn from the process given by

Yt = γ
(

t
T

)
+ ut

ut = ρut−1 + εt,

}
t = 1, . . . , T ; (40)

where {εt} is set to be iid N(0, 1) throughout. In each experiment conducted, the
kernel function k(·) in (27) was taken to be the logistic density, while the Priestley-
Chao estimates of the trend parameter and its derivative were constructed using a
standard normal kernel. Sample sizes of T ∈ {100, 200, 300} were employed for
the purposes of comparing size and power performance in a series of Monte Carlo
experiments. Each experiment involved 1000 replications.

Table 1 contains the results of the first set of experiments, which were intended
to examine the empirical size of the proposed testing procedure when the model
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given in (40) was simulated under the null of a time-invariant trend. In each of the
experiments summarized in Table 1, the autoregressive coefficient was set to ρ ≡
1
2
, while the trend parameter was set to be identically zero, i.e., γ (·) ≡ 0. Various

settings for the three bandwidths used in the construction of the test statistic were
experimented with, subject to the rate constraints imposed by Theorem 5. In
particular, the bandwidths used were of the form hlT = hdT = hT ≡ chT

− 2
5 ,

aT = caT
− 2

9 and bT = cbT
− 2

9 , where the leading constants ch, ca and cb range
over the set {0.5, 1.0, 1.5} as indicated in Table 1.18 A glance at Table 1 reveals the
sensitivity of the empirical size of the test to bandwidth choice, although setting
the leading constants to ch = ca = cb = .5 seems to deliver a proportion of
incorrect rejections over the range of sample sizes considered that is fairly close
to the level desired.

The small-sample power of the proposed testing procedure is examined in a
series of four simulations. Like the series of experiments reported in Table 1,
each of these simulations also involved 1000 replications and a nominal level of
5%. The sample sizes employed were each fixed at T = 200. Based on the
results reported in Table 1, the bandwidths used in each experiment were set to
hdT = hlT = hT .5T− 2

5 and aT = bT = .5T− 2
9 , which correspond roughly to the

row of Table 1 having the most accurate empirical sizes for the nominal level of
5%.

The first experiment examining finite-sample power involves data that were
generated using the specification given in (40) with ρ = 1

2
, but where the trend

parameter was set to have a one-time break halfway through the sampling interval,
i.e.,

γ

(
t

T

)
= 1

(
t

T
> .5

)
γ0, (41)

for γ0 ≥ 0. The break magnitude γ0 is taken to be a constant ranging over a grid
of 50 equally-spaced points in the interval [0, 1]. A glance at the curve plotted
in Figure 1 indicates that the power performance of the test appears to be quite
satisfactory.

18It should be clear that the conditions of Theorem 5 are fairly loose with respect to the per-
missible rates of decay of bandwidths that one might consider reasonable for constructing the test
statistic. The rates of decay used in hT , aT were simply set to be twice the optimal rates from
the point of view of minimizing the mean integrated squared error of pointwise estimates of a
regression function and the derivative of a density, respectively. Note that the “asymptotic un-
dersmoothing” engaged in here reflects the role of the nonparametric estimators as preliminary
ingredients in estimates of nonparametric functionals. Cf. the unifying theory of Goldstein and
Messer (1992).
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The power performance of the proposed testing procedure in small samples
also appears to be quite satisfactory in three further experiments. Figure 2 sum-
marizes the results of an experiment involving two breaks in the trend function.
In particular, the trend used is that given by

γ

(
t

T

)
=

(
1

2
× 1

(
.25 <

t

T
< .75

)
+ 1

(
t

T
≥ .75

))
γ0,

where as in (41), the parameter γ0 ranges over a grid of 50 equally-spaced points
in the unit interval. In this experiment, as in the next experiment summarized in
Figure 3, the data-generating process for the errors is that given above in (40) with
ρ = 1

2
.

The simulations summarized by Figure 3 investigate the power performance
of the test when the trend function undergoes a continuous linear change in the
middle half of the sampling interval. In particular, the trend function used is given
by

γ

(
t

T

)
=

{
1

(
.25 <

t

T
< .75

)[
2

(
t

T
− 1

4

)]
+ 1

(
t

T
≥ .75

)}
γ0,

where as before γ0 ranges across a lattice of 50 equally-spaced points in [0, 1].
The last experiment examining the power performance of the proposed test

involves using the test to detect the existence of a stochastic trend. As such, the
specification given above in (40) was used, but with γ

(
t
T

) ≡ 0 and the autoregres-
sive coefficient ρ taking successive values in a grid of 50 equally-spaced points in
the interval

[
1
2
, 1

]
. As indicated in Figure 4, power performance is satisfactory

until the point where ρ reaches a value of about .80. Power is subject to nonmono-
tonicities for ρ lying approximately between .80 and .97, but increases sharply as
ρ increases beyond .97.

Figures 1-4 suggest that the proposed testing procedure has generally satisfac-
tory power against a large class of alternatives.

6 Empirical example: Models of U.S. real output
This section serves both to illustrate the practical applicability of the efficient
testing procedure proposed in this paper and to provide further casual evidence
concerning the sensitivity of the test’s performance to the implementation of the
Priestley-Chao estimates of the trend parameter and its derivative. In this con-
nection data describing the dynamic behaviour of the level of U.S. real output
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will be analyzed. The hypothesis considered will be the adequacy of a linear
trend-stationary specification with a single break in mean. In particular, the break
relates to one of two “stylized facts”, the validity of which will essentially be ex-
amined using the methodology proposed here. These stylized facts involve the
persistent effects on trend of the onset of the Great Depression in 1929, which is
widely held to have led to a dramatic reduction in the level of economic activity,
and the start of the OPEC oil embargo in 1973, which is believed to have led to
a somewhat less dramatic reduction in the growth rate of economic activity from
its previous trend path.19

In this connection, two time series will be analyzed. The first series considered
is the annual series of real Gross National Product from 1909 to 1970 appearing in
the dataset used by Nelson and Plosser (1982).20 The test proposed in this paper
will be used to assess the adequacy of a linear trend-stationary specification with
a single break in level just after 1929, i.e., the model given by

Yt = γ01 + d2

(
t

T

)
γ02 +

t

T
γ03 + ut,

where d2 (·) is unity for all observations corresponding to 1930 or later and zero
for all observations corresponding to years 1909 through 1929. The standard nor-
mal kernel was used to construct the estimates of γ(·) and γ ′(·) given above in
(19) and (22), respectively, while the function k(·) appearing in (27) was set to
be the Epanechnikov (1969) kernel. As was done in the simulations summa-
rized in Figures 1–4, the bandwidths aT and bT used in (27) and (28) were set
to aT = bT = .5T− 2

9 .
Various settings of bandwidth were tried out when implementing the Priestley-

Chao estimates given in (19) and (22). In particular, the estimate of γ given
in (19) was implemented with a bandwidth given by hl = clT

− 2
5 , where cl ∈

{.125, 1.0, 8.0}. Similarly, the estimate of γ ′ given in (22) used the bandwidth
hd = cdT

− 2
7 , where cd ∈ {.125, 1.0, 8.0}. As indicated in Figures 5 and 6, the

quality of the fit provided by the Priestley-Chao estimates to their respective esti-
mands is very sensitive to the particular bandwidth used.

The Priestley-Chao estimates are of course ingredients in the construction of
the proposed test statistic given above in (39). The effect of the bandwidths used

19Cf. e.g., Perron (1989); Perron and Wada (2006).
20The data are in the form of natural logarithms of the measurements appearing in the

source indicated in Nelson and Plosser (1982, note 10). All fourteen historical macroeco-
nomic time series analyzed by Nelson and Plosser (1982) may be downloaded from http:
//www.spatial-econometrics.com/data/contents.html.
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in their implementation on the proposed test is summarized in Table 2, which dis-
plays the value of the Wald statistic in (39) as a function of the bandwidth scaling
constants cl and cd. It is clear that the test is highly sensitive to the bandwidth used
to construct the estimate of γ(·), while the particular bandwidth used to construct
γ̂ ′T (·) as given in (22) appears to have little effect on the conclusion of the pro-
posed test. Of the various combinations tried, the setting hl = .125T− 2

5 appears
to provide the best nonparametric fit to the data, as is clear from Figure 5. Using
hl = .125T− 2

5 also leads to the same conclusion obtained by Perron (1989) using
a different method, namely, that real U.S. GNP is stationary about a linear trend
when one allows for a one-time break in level just after 1929.

The second series considered consists of seasonally adjusted quarterly Gross
Domestic Product from 1947 through to the end of 2007 in billions of chained
2000 dollars.21 In this case the model being validated involves linear trend-
stationarity with a single break in slope just after the fourth quarter of 1973, i.e.,

Yt = γ01 +
t

T

(
γ02 + d3

(
t

T

)
γ03

)
+ ut,

where d3 (·) is unity for all observations corresponding to the fourth quarter of
1973 or later and zero for all observations corresponding to the first quarter of
1947 through to third-quarter 1973, inclusive. The test statistic in (39) was con-
structed using the same combinations of bandwidths and choices of kernels as
was described above in relation to the Nelson and Plosser (1982) real GNP series.
Table 3 indicates that in the case of the postwar real GDP series, the conclusion
of the test based on the Wald statistic given in (39) continues to be highly sensi-
tive to the bandwidth used to implement the Priestley-Chao estimate of the trend
parameter, while remaining quite insensitive to the bandwidth used to estimate
γ ′(·). A glance at Figure 7 indicates that as was the case for annual real GNP, the
bandwidth hl = .125T− 2

5 provides a good nonparametric fit for the evolution of
quarterly postwar real GDP. Its use in the construction of the test statistic in (39),
however, does not lead one to conclude that postwar real GDP is well described by
linear trend-stationarity with a single break in slope around the onset of the 1973
oil crisis.22 That said, it seems plausible from the pattern of the results displayed
in Figure 5–Table 2 and Figure 7–Table 3 that further “undersmoothing” of the
Priestley-Chao estimate of γ will have the effect of pushing the realized value of

21The data used are the natural logarithms of the measurements downloaded from http://
www.bea.gov.

22This is at odds with the conclusions of Perron (1989) and Perron and Wada (2006).
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the proposed test statistic below the .95-quantile of the standard normal distribu-
tion. It seems clear that further research on bandwidth selection in this context is
needed.

7 Conclusion
This paper has presented a lack-of-fit test for segmented-trend stationarity based
on an efficient estimator of the vector whose components are the total variation
norms of the corresponding components of the trend-function parameter. The
data-generating process of the stochastic disturbances under the null is largely
unspecified. The proposed testing procedure is shown to be locally uniformly
most powerful in large samples against deviations from the null of stability of
the trend parameter. As such, the test is capable of detecting all manner of con-
ceivable breaks in trend that have not already been explicitly modelled by the
researcher. Monte Carlo simulations reported in Section 5 show that the proposed
test is potentially correctly sized and powerful against discrete breaks and contin-
uous changes in trend, as well as against the alternative of a unit root process. As
underscored by the empirical results presented in Section 6, however, these good
qualities appear to be particularly dependent on a suitable choice of bandwidth
used to implement the preliminary nonparametric estimate of the trend parameter
given in (19). A practical rule for the selection of the bandwidth to be used in this
context is clearly worthy of further research.

Another potential topic for further investigation involves the conversion of the
test for trend stationarity proposed here into a test of the unit-root hypothesis. In
particular, this would entail deriving the limiting distribution of the statistic given
in (39) under the assumption that the data are drawn from an I(1) process. Ev-
idence against the unit-root hypothesis would naturally be associated with small
realized values of the statistic given in (39). A unit-root test of this nature would
complement the specification test for segmented-trend stationarity proposed in
this paper by providing the researcher with yet another method of distinguish-
ing between processes characterized by what are effectively unpredictable trend
breaks every period from those where the trend changes only infrequently.
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A Further preliminary results
This appendix gathers together various preliminary results needed in the proofs of Lemmas 2–5
and of Theorem 5.

A.1 Rates of convergence of the Priestley-Chao estimator
This appendix section is concerned with the uniform rates of convergence over the unit interval of
the estimators of γ(·) and of γ′(·) given in (19) and (22), respectively.

For µ
(

t
T

) ≡ d
(

t
T

)>
γ

(
t
T

)
with d satisfying the conditions of Assumption 3, let

Yt = µ

(
t

T

)
+ ut (42)

denote the basic model under consideration. Assuming that {ut} satisfies the conditions of As-
sumption 4, the strong invariance principle of Wu (2007) applies, and it is possible to approximate
the original dependent variables {Yt} with

{
Ỹt

}
drawn from the model

Ỹt ≡ µ

(
t

T

)
+ Zt, (43)

where {Zt} be an iid N(0, σ2) process with σ2 ≡ ∑∞
t=−∞E [u0ut].

Consider the estimator of Priestley and Chao (1972) applied to the model given in (43), to wit:

µ̃T (s) ≡
T∑

t=1

w1,t,T (s)Ỹt (s ∈ (0, 1)) (44)

where wl,t,T (·) is as in (20) above. Similarly, for s ∈ (0, 1), let

µ̃′T (s) ≡
T∑

t=1

w′d,t,T (s)Ỹt, (45)

denote the Priestley-Chao estimator of the derivative of µ (s) where w′d,t,T (s) denotes the deriva-
tive of the expression given in (20) but with bandwidth hd in place of hl. The following result
under the conditions of Assumptions 3, 6 and 7 is an easy consequence of the sort of arguments
appearing in e.g., Priestley and Chao (1972, Section 4):

Lemma 6. Under the conditions of Assumptions 3, 6 and 7 we have for s ∈ (0, 1) that

1. µ̃T (s) is consistent for µ(s) in (43) at a
√

Thl rate;

2. µ̃′T (s) is consistent for the derivative µ′(s) of µ(s) in (43) at a
√

Th3
d rate.

Now consider the Priestley-Chao procedure applied to the original model (42). In particular,
suppose that for s ∈ (0, 1), µ(s) and µ′(s) are estimated by

µ̂T (s) ≡
T∑

t=1

wl,t,T (s)Yt (46)
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and

µ̂′T (s) ≡
T∑

t=1

w′d,t,T (s)Yt, (47)

respectively. Assumption 4 and the strong invariance principle of Wu (2007) allow the asymptotic
behaviour of µ̂T and µ̂′T to be uniformly almost surely approximated on the unit interval by that
of µ̃T and µ̃′T , respectively:

Lemma 7. Under the conditions of Assumptions 3, 4, 6 and 7 we have

1. max0≤s≤1 |µ̂T (s)− µ̃T (s)| = oa.s.

(
T−

3
4 h−1

l log T
)

;

2. max0≤s≤1 |µ̂′T (s)− µ̃′T (s)| = oa.s.

(
T−

3
4 h−2

d log T
)

.

Proof. 1. The bounded variation of K(·) gives

ΩlT (s) ≡ |wl,1,T (s)|+
T∑

j=2

|wl,j,T (s)− wl,j−1,T (s)|

= O

(
1

Thl

)
,

while the embedding of (14) above yields the bound

|µ̂T (s)− µ̃T (s)| = oa.s.

(
ΩlT (s)T

1
4 log T

)
= oa.s.

(
T−

3
4 h−1

l log T
)

,

which can be extended to a uniform approximation:

max
0≤s≤1

|µ̂T (s)− µ̃T (s)| = oa.s.

(
T−

3
4 h−1

l log T
)

.

2. Setting Ω′dT (s) ≡
∣∣∣w′d,1,T (s)

∣∣∣ +
∑T

j=2

∣∣∣w′d,j,T (s)− w′d,j−1,T (s)
∣∣∣, the bounded variation

of K ′(·) yields the bound

Ω′dT (s) = O

(
1

Th2
d

)
.

As such, (14) can be exploited to yield the uniform approximation

max
0≤s≤1

|µ̂′T (s)− µ̃′T (s)| = oa.s.

(
T−

3
4 h−2

d log T
)

.

In this paper interest is of course centred more on the trend-function parameter γ(·) and the
derivatives of its components. Let

v(·) ≡ (|γ′1(·)| , . . . , |γ′k(·)|)> , (48)

i.e., the vector whose components are the magnitudes of the derivatives of the corresponding com-
ponents of γ(·). For γ̂T (·) as given above in (19) and v̂T (·) as given in (24), we have the following
uniform rates of convergence:
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Lemma 8. Under the conditions of Assumptions 3, 4, 6 and 7 we have

1. max0≤s≤1 ‖γ̂T (s)− γ(s)‖ = Op

(
T−

1
2 h
− 1

2
l

)
;

2. max0≤s≤1 ‖v̂T (s)− v(s)‖ = Op

(
T−

3
2 h
− 3

2
d

)
.

Proof. Note that the pointwise rates of convergence in Lemma 6 can be made to hold uniformly
over s ∈ (0, 1) by virtue of the bounded variation of K(·) and of its derivative K ′(·). As such,

max
0≤s≤1

|µ̃T (s)− µ(s)| = Op

(
T−

1
2 h
− 1

2
l

)
(49)

and
max

0≤s≤1
|µ̃′T (s)− µ′(s)| = Op

(
T−

1
2 h
− 3

2
d

)
. (50)

Combining (49) and (50) with the conclusions of Lemma 7 yields the desired conclusion.

A.2 Further lemmas
This appendix section collects various preliminary results needed in the proofs of Lemmas 2–5 and
of Theorem 5. In what follows, given a generic statistic ŴT obtained from the basic model given
above in (1), the statistic of the form W̃T will denote the procedure implied by ŴT , but applied to
the iid normal-error model given in (15). As such, ṽT (s) ≡ |γ̃′T (s)|, ũt,T ≡ Yt−d

(
t
T

)>
γ̃T

(
t
T

)
,

etc. Also let

δ̃t,T ≡ d

(
t

T

)>(
γ̃T

(
t

T

)
− γ

(
t

T

))
,

and let
FZ(z) ≡ Φ

( z

σ

)

and
fZ(z) ≡ 1

σ
φ

( z

σ

)

denote the distribution and density functions, respectively, of the regression error appearing in
(15).

Lemma 9. Suppose Assumptions 3, 4, 6, 7 and 8 hold. Then for v(·) as given in (48),

1
T

[
v̂T

(
t

T

)
− v

(
t

T

)
+

(
v̂T

(
t

T

)
− v̄

)
δt,T

]
= oθT

(
T−

1
2

)
.

Proof. We have

1
T

T∑
t=1

[
v̂T

(
t

T

)
− v

(
t

T

)
+

(
v̂T

(
t

T

)
− v̄

)
δt,T

]

≤ max
0≤s≤1

∣∣d(s)> (γ̂T (s)− γ(s))
∣∣
∥∥∥∥∥

1
T

T∑
t=1

v̂T

(
t

T

)
− v̄

∥∥∥∥∥ +

∥∥∥∥∥
1
T

T∑
t=1

[
v̂T

(
t

T

)
− v

(
t

T

)]∥∥∥∥∥ .

34



Appealing to Lemma 8, note that

1
T

T∑
t=1

v̂T

(
t

T

)
− v̄

=
1
T

T∑
t=1

[
v̂T

(
t

T

)
− v

(
t

T

)]
+

1
T

T∑
t=1

v

(
t

T

)
− v̄

= oθT

(
T−

3
2 h−

3
2

)
+ O

(
T−

1
2

)

= OθT

(
T−

1
2

)
.

The result follows from a further appeal to Lemma 8.

For x ∈ R and z ≡ (z1, . . . , zT )>, write

l̃ZT (x) ≡ l̃ZT (x,z) ≡ −
a−2

T

∑T
T=1 k′

(
x−zt

aT

)

bT + a−1
T

∑T
t=1 k

(
x−zt

aT

) ,

Let

l̃
(i)
ZT (x, z) ≡ ∂i

∂xi
l̃ZT (x, z). (51)

We have the following.

Lemma 10. Given Assumption 8, there exists a positive constant c0 such that for every x ∈ R and
z, z′ ∈ RT and i ∈ {0, 1, 2}, the following bounds hold:

∣∣∣l̃(i)ZT (x, z)
∣∣∣ ≤ c0

ai+1
T

(52)

∣∣∣l̃(i)ZT (x, z)− l̃
(i)
ZT (x, z′)

∣∣∣ ≤ c0

a3+i
T bT

T∑
t=1

min {aT , ‖z′t − zt‖} (53)

∣∣∣l̃(i)ZT (x, z)− l̃
(i)
ZT (x, z′)

∣∣∣
2

≤ c0

a5+2i
T bT

T∑
t=1

‖z′t − zt‖2 . (54)

Proof. Follows directly from the definitions.

The following modification of Schick (1987, Lemma 3.1) is needed in order to prove Lem-
mas 3–5.

Lemma 11. Let Z(T ) ≡ (Z1, . . . , ZT )>. For each pair (t, T ) of positive integers with 1 ≤ t ≤ T ,
let Lt,T : R× RT → Rk be a measurable function. Let

L̃t,T (·) ≡ λt,T

(
·, Z(T )

)
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be an estimate of Lt,T

(·,Z(T )
)
, where λt,T : R× RT → Rk is a measurable function. Also let

L̄t,T (z) ≡ E
[
L̃t,T (z)

∣∣∣ Z1, . . . , Zt−1, Zt+1, . . . , ZT

]
.

Suppose that the following conditions hold:

1√
T

T∑
t=1

∫
L̃t,T (z)dFZ(z) = op(1) (55)

1
T

T∑
t=1

E

[∫ ∥∥∥L̃t,T (z)−Lt,T (z, Z(T ))
∥∥∥

2

dFZ(z)
]

= o(1) (56)

1√
T

T∑
t=1

(
L̃t,T (Zt)− L̄t,T (Zt)

)
= op(1) (57)

T∑
t=1

E

[∫ ∥∥∥L̃t,T (z)− L̄t,T (z)
∥∥∥

2

dFZ(z)
]

= o(1). (58)

Then
1√
T

T∑
t=1

(
L̃t,T (Zt)−Lt,T (Zt, Z

(T ))
)

= op(1).

Proof. We write

1√
T

T∑
t=1

(
L̃t,T (Zt)−Lt,T (Zt, Z

(T ))
)

=
1√
T

T∑
t=1

(Bt1 + Bt2 + Bt3) ,

where

Bt3 ≡
∫

L̄t,T (z)dFZ(z)

Bt1 ≡ L̃t,T (Zt)− L̄t,T (Zt)

Bt2 ≡ L̄t,T (Zt)−Lt,T (Zt,Z
(T ))−Bt3.

By (57), we have
1√
T

T∑
t=1

Bt1 = op(1).

By (55) and (58), we have
1√
T

T∑
t=1

Bt3 = op(1).

As such, it remains to show that

E




(
1√
T

T∑
t=1

Bt2

)(
1√
T

T∑
t=1

Bt2

)>
 =

1
T

T∑
t=1

E
[
Bt2B

>
t2

]
+

1
T

∑

t 6=s

E
[
Bt2B

>
s2

] → 0.
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By (56) and (58) and the nature of conditional variances, we have
∥∥∥∥∥

1
T

T∑
t=1

E
[
Bt2B

>
t2

]
∥∥∥∥∥ ≤ 1

T

T∑
t=1

∥∥∥∥E

[(
L̄t,T (Zt)−Lt,T (Zt,Z

(T ))
) (

L̄t,T (Zt)−Lt,T (Zt, Z
(T ))

)>]∥∥∥∥
→ 0.

Let
B̄

(s)
t2 ≡ E [Bt2|Z1, . . . , Zs−1, Zs+1, . . . , ZT ] .

(Clearly, B̄
(s)
s2 = 0 with probability one.)

It is possible to show that for t 6= s,

E
[
B̄

(s)
t2 B>

s2

]
= E

[
Bt2B̄

(t)>
s2

]
= E

[
B̄

(s)
t2 B̄

(t)>
s2

]
= 0.

This, along with the Cauchy-Schwarz inequality, the nature of conditional variances and (58)
yields

1
T

∑

t 6=s

∥∥E
[
Bt2B

>
s2

]∥∥

=
1
T

∑

t 6=s

∥∥∥∥E

[(
Bt2 − B̄

(s)
t2

) (
Bs2 − B̄

(t)
s2

)>]∥∥∥∥

≤ 1
T

∑

t 6=s

∥∥∥∥E

[(
Bt2 − B̄

(s)
t2

) (
Bt2 − B̄

(s)
t2

)>]∥∥∥∥

≤ 1
T

∑

t 6=s

E

[∫ ∥∥∥L̃t,T (z)− L̄s,T (z)
∥∥∥

2

dFZ(z)
]

→ 0.

This concludes the proof.

The next preliminary result requires the use of the following quantities. For s ∈ (0, 1), let
µ̃T,−k(s) denote the Priestley-Chao estimator applied to µ(s) in (43) without the use of the kth
observation, i.e.,

µ̃T (s) ≡
∑

t 6=k

wl,t,T (s)Ỹt,

where as before

wl,t,T (s) ≡ 1
Thl

K

(
1
hl

(
t

T
− s

))
.

Define

NT1 ≡ 1
T

T∑
t=1

E

[(
µ̃T

(
t

T

)
− µ

(
t

T

))2
]

;

NT2 ≡
T∑

t=1

E

[(
µ̃T

(
t

T

)
− µ̃T,−t

(
t

T

))2
]

;
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NT3 ≡ 1
T

T∑
t=1

∑

k 6=t

E

[(
µ̃T

(
t

T

)
− µ̃T,−k

(
t

T

))2
]

.

Note that

NT1 = O
(
T−(1+r)

)
(59)

NT2 = O
(
T−(1+2r)

)
(60)

NT3 = O
(
T−(1+2r)

)
. (61)

Conditions (59)–(61) are used in the lemma that follows. For brevity, let α ≡ 1+r and α∗ ≡ 1+2r,
and let

Ỹ−t,T ≡ (Ỹ1, . . . , Ỹt−1, Ỹt+1, . . . , ỸT )>.

Lemma 12. Suppose that Ta4
T b2

T →∞. Then for i ∈ {0, 1}, define

L
(i)
T1 ≡ 1

T

T∑
t=1

E

[
sup
y∈R

(
l̃
(i)
ZT

(
y − µ̃T

(
t

T

))
− l̃

(i)
ZT

(
y − µ̃T,−t

(
t

T

)))2
]

;

LT2 ≡ 1
T 2

T∑
t=1

E

[
sup
z∈R

(
l̃ZT

(
z + µ

(
t

T

)
− µ̃T,−t

(
t

T

))
− l̃ZT (z)

)2
]

;

L
(i)
T3 ≡ 1

T 2

T∑
t=1

∑

k 6=t

E

[(
l̃
(i)
ZT

(
Ỹt − µ̃T,−t

(
t

T

))
− l̃

(i)
ZT

(
Ỹt − E

[
µ̃T,−t

(
t

T

)∣∣∣∣ Ỹ−t,T

]))2
]

;

LT4 ≡ E

[∫ (
l̃ZT (z)− lZ(z)

)2

dFZ(z)
]

;

where l̃
(i)
ZT is as given above in (51).

Then

L
(i)
T1 = T−1a−2i

T Op

(
a−4

T T−α∗ + T−1a−4
T b−2

T + a−5
T b−1

T T−2α
)

(62)

LT2 = T−1Op

(
T−2a−4

T b−2
T + a−5

T b−1
T T−2α

)
(63)

L
(i)
T3 = T−1a−2i

T Op

(
T−1a−4

T b−2
T + a−5

T b−1
T T−2α

)
(64)

LT4 = O
(
a−5

T b−1
T T−2α

)
. (65)

Proof. The proof is given in detail in the following appendix section, i.e., Appendix A.3.

A.3 Proof of Lemma 12
The proof of Lemma 12 requires the following two lemmas, the first of which is a result of Schick
(1987).
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Lemma 13. Under Assumption 8 on a kernel function k(·), if for z ∈ R we have

fT (z) ≡
∫

f (z − aT t) k(t)dt,

then

ΣT1 ≡ E

[∫ (
l̃ZT (z) +

f ′T (z)
fT (z) + bT

)2

dFZ(z)

]
= O

(
T−1a−4

T b−2
T

)
;

ΣT2 ≡
∫ (

f ′T (z)
bT + fT (z)

− f ′Z(t)
fZ(t)

)2

fZ(t)dt → 0.

The next lemma is an easy consequence of conditions (59)–(61).

Lemma 14. Define

MT1 ≡ 1
T 2

T∑
t=1

∑

k 6=t

E
[
(Zt − ũt,T,−k)2

]
;

MT2 ≡ 1
T

T∑
t=1

∑

k 6=t

E
[
(ũt,T − ũt,T,−k)2

]
;

MT3 ≡ 1
T 2

T∑
t=1

∑

k 6=t

∑

l 6=t

∑

k 6=l

E
[
(ũl,T,−k − E [ ũl,T,−k|Z1, . . . , Zt−1, Zt+1, . . . , ZT ])2

]
.

Then

MT1 = O
(
T−2α

)
;

MT2 = O
(
T−α∗

)
;

MT3 = O
(
T−α∗

)
.

Proof. We have

MT1 ≤ 1
T

T∑
t=1

E
[
(Zt − ũt,T )2

]
≤ NT1,

while
MT3 ≤ MT2 = NT3.

Returning to the argument of Lemma 12 proper, appeal to results (52)–(54) in Lemma 10 to
deduce that there exists a positive constant C such that

L
(i)
T1 ≤ Ca−2i

T

(
T−1a−4

T NT2 + T−2a−4
T b−2

T + T−1a−5
T b−1

T MT2

)
; (66)

LT2 ≤ C
(
T−1a−4

T NT1 + T−3a−4
T b−2

T + T−1a−5
T b−1

T MT1

)
; (67)

L
(i)
T3 ≤ Ca−2i

T

(
T−1a−4

T NT3 + T−2a−4
T b−2

T + T−1a−5
T b−1

T MT3

)
; (68)

LT4 ≤ C
(
a−5

T b−1
T NT1 + ΣT1 + ΣT2

)
. (69)

Conclusions (62)–(65) follow from (66)–(69), Lemma 13, Lemma 14 and conditions (59)–(61).
This concludes the proof of Lemma 12.
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B Proofs of Lemmas 2–5

B.1 Proof of Lemma 2
Note the following.

1
T

T∑
t=1

∫ (
l̂′UT (u− δt,T )− l̂′UT (u)

)
dFU (u)

=
1
T

T∑
t=1

[∫ (
l̂′UT (u− δt,T )− l̂′UT (u)

)
dFU (u)−

∫ (
l̃′ZT

(
z − δ̃t,T

)
− l̃′ZT (z)

)
dFZ(z)

]

+
1
T

T∑
t=1

∫ (
l̃′ZT

(
z − δ̃t,T

)
− l̃′ZT (z)

)
dFZ(z). (70)

The first term in (70) is seen to be bounded above by

max
1≤t≤T

∣∣∣δt,T − δ̃t,T

∣∣∣
∣∣∣∣
∫

l̂′UT (u)f ′U (u)du−
∫

l̃′ZT f ′Z(z)dz

∣∣∣∣

= oa.s.

(
T−

3
4+2r log T

)
· oa.s.

(
T−

3
4 log T · T−1a−2

T

)

= oa.s.

(
T−

1
2

)
.

Now consider the second term in (70). We note that for

ÃT ≡ max
0≤s≤1

‖ṽT (s)‖+ 1,

we have

max
1≤t≤T

∥∥∥∥ṽT

(
t

T

)∥∥∥∥ = Op

(
ÃT

)
.

Let JZ denote the Fisher information for location corresponding to FZ . Note that it is finite, and
therefore that ∫

|fZ(z + d)− fZ(z)| dz ≤ |d|
√

JZ .

Combining this with (52) in Lemma 10, we have
∣∣∣∣
∫ (

l̃′ZT (z − d)− l̃′ZT (z)
)

fZ(z)dz

∣∣∣∣

≤
∫ ∣∣∣l̃′ZT (z)

∣∣∣ |fZ(z + d)− fZ(z)| dz

≤ c0a
−2
T |d|

√
JZ .

The second term in (70) is accordingly oθT

(
T−

1
2

)
.
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∣∣∣∣
∫ (

l̃ZT (z − d)− l̃ZT (z) + dl̃′ZT (z)
)

fZ(z)dz

∣∣∣∣

≤ |d|
∫ 1

0

∣∣∣∣
∫ (

l̃′ZT (z − λd)− l̃′ZT (z)
)

fZ(z)dz

∣∣∣∣ dλ

≤ |d|
∫ 1

0

∫ ∣∣∣l̃′ZT (z) (fZ(z + λd)− fZ(z))
∣∣∣ dzdλ

≤ c0a
−2
T d2

√
JZ .

The demonstration of the second part of Lemma 2 is similar.

B.2 Proof of Lemma 3
The proof is organized along the lines of showing the convergence of the quantities corresponding
to ∆T1, ∆T2 and ∆T3 in (33) above. The focus here is on showing the convergence of ∆T2, since
the convergence of ∆T1 and ∆T3 is easily shown. In particular, we show that ∆T2 converges by
applying Lemma 11 with

L̃t,T (z) ≡ ṽT

(
t

T

){
l̃ZT (z)−

∫
l̃ZT

(
z − δ̃t,T

)
dFZ(z)

}
;

Lt,T (z) ≡ ṽT

(
t

T

)
lZ(z).

It follows that conditions (55)–(58) need to be shown. This is done in sequence.

B.2.1 Verification of condition (55):
Applying Lemma 8 to the model in (15) at the appropriate location, and recalling the definition of
LT2 in Lemma 12, we have

∥∥∥∥∥E

[
1√
T

T∑
t=1

∫
L̃t,T (z)dFZ(z)

]∥∥∥∥∥

2

≤
∥∥∥∥∥

1√
T

T∑
t=1

E

[
ṽT

(
t

T

){
l̃ZT (z)dFZ(z)−

∫
l̃ZT

(
z − δ̃t,T

)
dFZ(z)

}]∥∥∥∥∥

2

≤ 2
T

{
T∑

t=1

E

[∥∥∥∥ṽT

(
t

T

)
− v

(
t

T

)∥∥∥∥
2
]

+
T∑

t=1

∥∥∥∥v

(
t

T

)∥∥∥∥
2
}
× T 2LT2

= 2T
{
O

(
T 3r

)
+ O (T )

}× T−1O
(
T−2a−4

T b−2
T + a−5

T b−1
T T−2−2r

)

= O (T )×O
(
T−2a−4

T b−2
T + a−5

T b−1
T T−2−2r

)

= O
(
T−1a−4

T b−2
T + a−5

T b−1
T T−1−2r

)

= o(1).
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B.2.2 Verification of condition (56):
We have

1
T

T∑
t=1

E

[∫ ∥∥∥L̃t,T (z)−Lt,T (z)
∥∥∥

2

dFZ(z)
]

≤ 1
T

{
T∑

t=1

E

[∥∥∥∥ṽT

(
t

T

)
− v

(
t

T

)∥∥∥∥
2
]

+
T∑

t=1

∥∥∥∥v

(
t

T

)∥∥∥∥
2
}

×
T∑

t=1

E

[(∫
l̃ZT (z)dFZ(z)−

∫
l̃ZT

(
z − δ̃t,T

)
dFZ(z)−

∫
lZ(z)dFZ(z)

)2
]

.

Note that
l̃ZT

(
z − δ̃t,T

)
= l̃ZT (z)− δ̃t,T l̃′ZT (z) + Op

(
δ̃2
t,T

)
.

As such,
∫ (

l̃ZT (z)− lZ(z)
)

dFZ(z)−
∫

l̃ZT

(
z − δ̃t,T

)
dFZ(z)

≈ δ̃t,T

∫
l̃′ZT (z)dFZ(z)−

∫
lZ(z)dFZ(z)

= δ̃t,T

∫
l̃′ZT (z)dFZ(z).

Therefore with an appeal to Lemma 8 applied to the model in (15) we have

1
T

T∑
t=1

E

[∫ ∥∥∥L̃t,T (z)−Lt,T (z)
∥∥∥

2

dFZ(z)
]

≤ T−1
{
O

(
T 2−3r

)
+ O(T )

}×
T∑

t=1

E

[
δ̃2
t,T

(∫
l̃′ZT (z)dFZ(z)

)2
]

= O
(
T 1−3r + 1

)×O
(
T−1+r

)

= O
(
T−2r + T−1+r

)

= o(1).

B.2.3 Verification of condition (57):
Noting that

Zt = Ỹt − µ

(
t

T

)
= Ỹt − µ̃T,−t

(
t

T

)
+ Op

(
T−1+r

)
,

we have
∥∥∥∥∥E

[
1√
T

T∑
t=1

(
L̃t,T (Zt)− L̄t,T (Zt)

)]∥∥∥∥∥

2
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≤ 2
T∑

t=1

E

[∥∥∥∥ṽT

(
t

T

)
− E

[
ṽT

(
t

T

)∣∣∣∣ Ỹ1, . . . , Ỹt−1, Ỹt+1, . . . , ỸT

]∥∥∥∥
2
]

× 1
T

T∑
t=1

E

[
l̃2ZT

(
Ỹt − µ

(
t

T

))]
+ 2T 2L

(0)
T3 ×

1
T

T∑
t=1

E

[∥∥∥∥ṽT

(
t

T

)∥∥∥∥
2
]

= o(1) + T × T−1O
(
T−1a−4

T b−2
T + a−5

T b−1
T T−2−2r

)
O

(
T 3r

)

= O
(
T−1+3ra−4

T b−2
T + a−5

T b−1
T T−2+r

)

= o(1),

where L
(0)
T3 is as in Lemma 12 and the conclusion of Lemma 8 as applied to the model in (15) is

used in the appropriate location.

B.2.4 Verification of condition (58):
This follows the same approach as was used to show condition (57).

The conditions of Lemma 11 hold. This concludes the proof.

B.3 Proof of Lemma 4
The proof follows the same pattern as was used in the proof of Lemma 3. In particular, the
convergence of the quantities corresponding to ∆T1, ∆T2 and ∆T3 in (33) above is shown.
The focus here, as in the proof of Lemma 3, is on showing the convergence of ∆T2, since the
convergence of ∆T1 and of ∆T3 is straightforward.

As such, we show that ∆T2 converges by applying Lemma 11 with

L̃t,T (z) ≡ 1√
T

(
l̃′ZT (z)−

∫
l̃′ZT

(
z − δ̃t,T

)
dFZ(z)

)
;

Lt,T (z) ≡ 0.

Conditions (55)–(58) will be shown in sequence.

B.3.1 Verification of condition (55):

Recalling the definition of L
(1)
T1 in Lemma 12, we have

(
E

[
1√
T

∣∣∣∣∣
T∑

t=1

∫
L̃t,T (z)dFZ(z)

∣∣∣∣∣

])2

≤ 2
T

L
(1)
T1

= O
(
T−2a−2

T

{
a−4

T T−1−2r + T−1a−4
T b−2

T + a−5
T b−1

T T−2−2r
})

= O
(
a−6

T T−3−2r + T−3a−6
T b−2

T + a−7
T b−1

T T−4−2r
)

= o(1).
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B.3.2 Verification of condition (56):
This is similar to the verification of condition (55).

B.3.3 Verification of condition (57):
As was done above we note that

Zt = Ỹt − µ

(
t

T

)
= Ỹt − µ̃T,−t

(
t

T

)
+ Op

(
T−1+r

)
,

and get

(
E

[
1√
T

∣∣∣∣∣
T∑

t=1

(
L̃t,T (Zt)− L̄t,T (Zt)

)∣∣∣∣∣

])2

≤ L
(1)
T3

= O
(
T−1a−2

T

{
T−1a−4

T b−2
T + a−5

T b−1
T T−2−2r

})

= O
(
T−2a−6

T b−2
T + a−7

T b−1
T T−3−2r

)

= o(1),

where L
(1)
T3 is as given in the statement of Lemma 12.

B.3.4 Verification of condition (58):
This is similar to the verification of condition (57).

The conditions of Lemma 11 have been shown to hold. This concludes the proof.

B.4 Proof of Lemma 5
We again use the framework of (33) above and focus on showing the convergence of ∆T2. In
order to do this, we apply Lemma 11 with

L̃t,T (z) ≡ z√
T

v̄T ;

Lt,T (z) ≡ zv̄,

where

v̄ ≡
(∫ 1

0

|γ′1(s)| ds, . . . , |γ′k(s)| ds

)>
.

The four conditions of Lemma 11 are shown in sequence.
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B.4.1 Verification of condition (55):
We have

∥∥∥∥∥E

[
1√
T

T∑
t=1

∫
L̃t,T (z)dFZ(z)

]∥∥∥∥∥

2

≤ 2
T

{
E

[
‖v̄T − v̄‖2

]
+ ‖v̄‖2

} ∫
z2dFZ(z)

= o(1),

where use was made of Lemma 8 as applied to the model given in (15).

B.4.2 Verification of condition (56):
This is similar to the verification of condition (55).

B.4.3 Verification of conditions (57) and (58):

Easy. This concludes the proof.
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Table 1: Empirical size at a nominal level of 5%
Bandwidth Sample size

ch ca cb T = 100 T = 200 T = 300

0.5 0.5 0.5 0.076 0.043 0.062
1.0 1.0 1.0 0.176 0.085 0.022
1.5 1.5 1.5 0.014 0.167 0.036
1.0 0.5 0.5 0.169 0.054 0.010
0.5 1.0 0.5 0.099 0.094 0.068
0.5 0.5 1.0 0.051 0.138 0.027
1.5 0.5 0.5 0.009 0.044 0.089
0.5 1.5 0.5 0.029 0.061 0.180
0.5 0.5 1.5 0.243 0.171 0.023
0.5 1.0 1.0 0.124 0.126 0.094
0.5 1.0 0.5 0.125 0.171 0.076
1.0 1.0 0.5 0.165 0.099 0.059
1.5 1.0 1.0 0.031 0.361 0.146
1.0 1.5 1.0 0.090 0.039 0.075
1.0 1.0 1.5 0.002 0.195 0.007
0.5 1.5 1.5 0.014 0.096 0.060
1.5 0.5 1.5 0.100 0.249 0.319
1.5 1.5 0.5 0.052 0.006 0.049
1.0 1.5 1.5 0.032 0.039 0.069
1.5 1.0 1.5 0.108 0.056 0.222
1.5 1.5 1.0 0.011 0.007 0.128
0.5 1.0 1.5 0.109 0.094 0.107
0.5 1.5 1.0 0.105 0.073 0.033
1.0 0.5 1.5 0.058 0.003 0.063
1.0 1.5 0.5 0 0.018 0.084
1.5 0.5 1.0 0.118 0 0
1.5 1.0 0.5 0.105 0.069 0.066

Notes to Table 1:

1. Normal AR(1)-error design in (40) with γ
(

t
T

) ≡ 0, ρ = 1
2 and 1000 replications.

2. Bandwidths hT , aT and bT are scaled by constants ch, ca and cb, respectively. In particular,

hT = chT−
2
5 ;

aT = caT−
2
9 ;

bT = cbT
− 2

9 .
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Figure 1: Power performance at a nominal level of 5% against a one-time break
in trend
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Notes to Figure 1:

1. Normal AR(1)-error design in (40) with ρ = 1
2 , T = 200 and 1000 replications.

2. The trend function is given by

γ

(
t

T

)
= 1

(
t

T
> .5

)
γ0,

where the break size γ0 takes values in a grid of 50 equally-spaced points in the interval
[0, 1].

3. The bandwidths used are hT = .5T−
2
5 , aT = bT = .5T−

2
9 , where T = 200.

47



Figure 2: Power performance at a nominal level of 5% against two breaks in trend
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Notes to Figure 2:

1. Normal AR(1)-error design in (40) with ρ = 1
2 , T = 200 and 1000 replications.

2. The trend function is given by

γ

(
t

T

)
=

(
1
2
× 1

(
.25 <

t

T
< .75

)
+ 1

(
t

T
≥ .75

))
γ0,

where γ0 takes values in a grid of 50 equally-spaced points in the interval [0, 1].

3. The bandwidths used are hT = .5T−
2
5 , aT = bT = .5T−

2
9 , where T = 200.
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Figure 3: Power performance at a nominal level of 5% against a continuous linear
change in mean
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Notes to Figure 3:

1. Normal AR(1)-error design in (40) with ρ = 1
2 , T = 200 and 1000 replications.

2. The trend function is given by

γ

(
t

T

)
=

{
1

(
.25 <

t

T
< .75

)[
2

(
t

T
− 1

4

)]
+ 1

(
t

T
≥ .75

)}
γ0,

where γ0 takes values in a grid of 50 equally-spaced points in the interval [0, 1].

3. The bandwidths used are hT = .5T−
2
5 , aT = bT = .5T−

2
9 , where T = 200.
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Figure 4: Power performance at a nominal level of 5% against increasing persis-
tence in the data-generating process
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Notes to Figure 4:

1. Normal AR(1)-error design in (40) with γ
(

t
T

) ≡ 0, T = 200 and 1000 replications.

2. The autoregressive coefficient in the error process takes values in a grid of 50 equally-
spaced points in the interval [.5, 1].

3. The bandwidths used are hT = .5T−
2
5 , aT = bT = .5T−

2
9 , where T = 200.
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Figure 5: Nonparametric fits of the Nelson and Plosser (1982) real GNP series
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Notes to Figure 5:

1. The data used were annual measurements of natural logarithms of real GNP for the United
States from 1909 to 1970. The source of the data is indicated in Nelson and Plosser (1982,
note 10).

2. The broken lines indicate various implementations of the basic Priestley and Chao (1972)
estimator given in (46) applied to the real GNP series with different bandwidth settings. In
particular, the bandwidth used is given by hl = clT

− 2
5 , where cl ∈ {.125, 1.0, 8.0}. The

standard normal kernel was used throughout.
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Figure 6: Nonparametric fits of the first differences of the Nelson and Plosser
(1982) real GNP series
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Notes to Figure 6:

1. The broken lines indicate various implementations of the Priestley-Chao estimator given in
(47) applied to the first differences of the log real GNP series used by Nelson and Plosser
(1982).

2. The bandwidth used is given by hd = cdT
− 2

7 , where cd ∈ {.125, 1.0, 8.0}. The standard
normal kernel was used throughout.
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Table 2: Empirical results for the Nelson and Plosser (1982) real GNP series
Bandwidth
cl cd

Wald statistic

.125 .125 1.5572

.125 1.0 1.5586

.125 8.0 1.5571
1.0 .125 3.3145
1.0 1.0 3.3142
1.0 8.0 3.3145
8.0 .125 6.2229
8.0 1.0 6.2228
8.0 8.0 6.2229

Notes to Table 2:

1. The model being validated is that of linear trend-stationarity with a single break in level
just after 1929, i.e.,

Yt = γ01 + d2

(
t

T

)
γ02 +

t

T
γ03 + ut,

where d2 (·) is unity for all observations corresponding to 1930 or later and zero for all
observations corresponding to years 1909 through 1929. Cf. Perron (1989, §5).

2. The bandwidths used are given by hl = clT
− 2

5 , hd = cdT
− 2

7 with cl, cd ∈
{.125, 1.0, 8.0}, and aT = bT = .5T−

2
9 .

3. The standard normal kernel was used to construct the Priestley-Chao estimates of the trend
parameters and their derivatives, while the Epanechnikov (1969) kernel was used to con-
struct the estimate given in (27).
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Figure 7: Nonparametric fits of quarterly postwar real GDP
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Notes to Figure 7:

1. The data used were quarterly measurements of natural logarithms of GDP in billions of
chained 2000 dollars for the United States between 1947 and 2007, inclusive. The original
observations were seasonally adjusted at annual rates. The data were obtained from http:
//www.bea.gov.

2. The broken lines indicate various implementations of the basic Priestley and Chao (1972)
estimator given in (46) applied to the real GDP series with different bandwidth settings. In
particular, the bandwidth used is given by hl = clT

− 2
5 , where cl ∈ {.125, 1.0, 8.0}. The

standard normal kernel was used throughout.
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Figure 8: Nonparametric fits of the first differences of quarterly postwar GDP
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Notes to Figure 8:

1. The broken lines indicate various implementations of the Priestley-Chao estimator given
in (47) applied to the first differences of the logarithms of quarterly postwar GDP series
considered in Figure 7.

2. The bandwidth used is given by hd = cdT
− 2

7 , where cd ∈ {.125, 1.0, 8.0}. The standard
normal kernel was used throughout.
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Table 3: Empirical results for quarterly postwar real GDP
Bandwidth
cl cd

Wald statistic

.125 .125 2.8356

.125 1.0 2.7976

.125 8.0 2.8739
1.0 .125 8.3581
1.0 1.0 8.2383
1.0 8.0 8.1927
8.0 .125 15.5274
8.0 1.0 15.5279
8.0 8.0 15.5251

Notes to Table 3:

1. The model being validated is that of linear trend-stationarity with a single break in slope
just after the first quarter of 1973, i.e.,

Yt = γ01 +
t

T

(
γ02 + d3

(
t

T

)
γ03

)
+ ut,

where d3 (·) is unity for all observations corresponding to 1973:1 or later and zero for all
observations corresponding to quarters between 1947:1 and 1973:1, inclusive. Cf. Perron
(1989, §5).

2. The bandwidths used are given by hl = clT
− 2

5 , hd = cdT
− 2

7 with cl, cd ∈
{.125, 1.0, 8.0}, and aT = bT = .5T−

2
9 .

3. The standard normal kernel was used to construct the Priestley-Chao estimates of the trend
parameters and their derivatives, while the Epanechnikov (1969) kernel was used to con-
struct the estimate given in (27).
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