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Abstract

This paper evaluates the New Keynesian Phillips Curve (NKPC) and its
hybrid variant within a limited information framework for Germany. Our
main interest rests on the average frequency of price re-optimization of firms,
which can be estimated by nonlinear regression techniques. Therefore, we
use the labor income share as the driving variable and conduct a GMM es-
timation strategy as proposed by Gaĺı and Gertler (1999) and Gaĺı, Gertler
and López-Salido (2001). We also consider a source of real rigidity by al-
lowing for a fixed firm-specific capital stock. Furthermore, we expand the
basic empirical framework by several tests to check the robustness of the
NKPC specification. This also includes a procedure that is robust to weak
instruments. We find out that the German Phillips Curve is purely forward
looking. Moreover, our point estimates are consistent with the view that
firms re-optimize prices every two quarters. While these estimates seem
plausible from an economic point of view, the uncertainty around these esti-
mates are very large and also consistent with perfect nominal price rigidity
where firms never re-optimize their prices. In contrast to previous studies,
we do no detect problems with weak identification, but we do find some
evidence that the model might be misspecified.
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1 Introduction

Explaining the evolution of aggregate prices is one of the most prominent issues

in empirical macroeconomics. Nowadays, the canonical inflation model is the New

Keynesian Phillips Curve (NKPC). Similar to earlier Phillips Curve specifications

the NKPC relates price behavior to a measure of real economic activity. But, in

contrast to traditional ones the NKPC can be derived directly from optimizing be-

havior of households and firms and thus builds on a suitable micro-foundation. The

NKPC framework assumes monopolistically competitive firms that face nominal

prices rigidities. The standard model of staggered price adjustment Calvo (1983)

has the attractive property that the coefficients of the NKPC directly depend on

the average frequency with which prices are adjusted in the economy.

The aim of this paper is to determine the degree of nominal price rigidity in

the German economy. Therefore we estimate the NKPC and allow for different

specifications. A generalized version of the model proposed by Christiano, Eichen-

baum and Evans (2005) is employed as our benchmark model specification that

assumes a dynamic indexation scheme for those firms that do not re-optimize.

Furthermore, we also consider a model with ”rule-of-thumb” firms in the spirit

of Gaĺı and Gertler (1999) and Gaĺı et al. (2001). We follow Gaĺı et al. (2001)

and Sbordone (2002) and allow for some real rigidities through the assumption of

firm-specific capital.

Empirical studies that assess the degree of nominal price rigidity in the Ger-

man economy through estimations of the Phillips curve are still rare. The primary

evidence steams from cross country comparisons. Examples are Banerjee and Ba-

tini (2004), Leith and Malley (2007) or Rumler (2007). This evidence is in most
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cases based upon GMM estimation with additional aspects of an open economy.

While the open economy aspect seems to be unimportant for Germany (at least

according to Banerjee and Batini, 2004; Leith and Malley, 2007), their results vary

considerably with respect to the degree of nominal price rigidity. The estimated

average frequency of price re-optimization ranges form 2.5 quarters (Banerjee and

Batini, 2004) to 13 quarters (Leith and Malley, 2007). Additionally, there is also

disagreement on whether the inflation contains a lagged term (through backward

looking behavior) or whether it is purely forward looking. A more rigorous treat-

ment of nominal price rigidity in Germany is provided by Coenen, Levin and

Christoffel (2007) that focuses on the interaction of real and nominal rigidities.

Their estimation technique relies on indirect inference methods. Their results are

based on a generalized Calvo model and find a frequency of price reoptimization

of roughly two quarters.

Our empirical strategy is as follows. We apply a standard GMM method to

estimate the structural parameters of the Phillips Curve. Special attention is payed

to the selection of relevant instruments. We then evaluate the robustness of our

results with respect to several parameter restrictions, measures of real rigidity and

additional lags of inflation. Next, we conduct an identification robust procedure

based on a nonlinear Anderson-Rubin (AR) statistic (where we follow Ma, 2002;

Mavroeidis, 2006) and compare this results with those obtained from standard

GMM estimation. As long as there are weak instrument problems present, the

two procedures should display quite different results.

For a given reasonable degree of real rigidity, the estimates of the frequency of

price re-optimization point to about 2.5 quarters. But this estimate is surrounded

by a large degree of uncertainty, since the confidence intervals for this estimate are
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very large. Unless we do not restrict other parameter values, the estimated degree

of nominal rigidity is both consistent with a very low degree of price stickiness

and with a situation where prices are never re-optimized (perfect price rigidity).

This also casts doubt concerning the proxy of marginal cost, the labor share, as

driving variable of inflation (a finding that is also obtained by Mavroeidis, 2006,

for the US). Moreover, we find that backward looking behavior is unimportant

for explaining the German inflation process and thus find that a purely forward

looking specification is more appropriate. The identification robust procedure does

not indicate serve problems of weak instruments. However there is some evidence

of misspecification of the model (but not detected by the conventional J statistic).

This paper is organized as follows. We first present our basic model framework

in Section 2. Then we turn to the econometric strategy for estimating and testing

the different model specifications (Section 3). In section 4 we discuss our data set

and how we obtain the instrument set. Next, we present our econometric results

(Section 5). In Section 6 we test for an augmented inflation model. Then, we

compare the GMM results with an identification robust procedure (Section 7).

Finally, we draw some conclusions in Section 8.

2 The Modeling Framework

This section presents the basic theoretical framework that includes monopolis-

tically competitive goods markets and price stickiness. These are the two key

elements in modern macroeconomic models that are used to analyze monetary

policy. This model structure tries to ensure that it is consistent with the behav-

ior of optimizing economic agents. Here, we are mainly interested in the price
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setting behavior of firms in order to derive an expression for aggregate inflation.

Therefore, we assume random price contracts due to Calvo (1983) that is now stan-

dard in many macroeconomic models (i.e. Smets and Wouters, 2003; Christiano

et al., 2005). However, we deviate form the standard Calvo model and assume

that capital is firm-specific and is subject to a form of real rigidity, so that capital

cannot be instantaneously reallocated and is thus a predetermined factor.1

2.1 The Market Structure

As standard in New Keynesian models, we assume a monopolistic competitive

environment with a continuum of firms indexed by i ∈ [0, 1]. Each firm i produces

a differentiated good Yt(i) according to a Cobb-Douglas technology

Yt(i) = AtKt(i)
αNt(i)

1−α, (1)

where At is a common country wide technological factor, Kt(i) is the (fixed) firm-

specific capital stock and Nt(i) is the labor factor employed by firm i.

Each firm i is faced with a demand function with a constant elasticity of sub-

stitution that is given by

Yt(i) =

(
Pt(i)

Pt

)−ε
Yt, (2)

where Yt is aggregate output (which equals aggregate demand), Pt is the aggregate

price level in the economy and Pt(i) is the price that firm i charges for good Yt(i).

The price elasticity of demand for good i is equal to ε (with ε > 0).2

1Here we follow Gaĺı et al. (2001) and Sbordone (2002). See also Eichenbaum and Fisher
(2007) for a more rigorous treatment of real rigidities in the Calvo price setting framework

2According to Dixit and Stiglitz (1977) aggregate output Yt is a constant-elasticity-of-
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Without any price frictions the price of the differentiated good is set as a

constant mark-up over nominal marginal costs

Pt(i) = µ
Wt

(1− α)Yt(i)/Nt(i)
= µMCt(i), (3)

with µ = ε/(ε − 1). In a symmetric equilibrium, all firms produce the same

output, employ the same labor inputs and charge the same price. In this situation

pt(i) = pt (expressed in logs) and the optimal price under perfect price flexibility

is equal to pt = log(µ) +mct.

2.2 The Calvo Model

The second essential element of New Keynesian Macroeconomics are nominal

rigidities. Sticky price models are now frequently employed to study the mon-

etary transmission process. In the following analysis we concentrate solely on

time-dependent models where we use in particular a Calvo (1983) style model.3

This framework assumes that each firm optimizes its prices only from time to time.

This is motivated by costs associated with information gathering. The frequency

of price reoptimization is thus a stochastic process with a constant probability

that a firm sets its prices in an optimal way at each point in time. So, there is

always a fraction of firms 1 − θ in the economy that optimally adjust its prices.

The expected waiting time between these price changes is given by 1/(1− θ).

substitution aggregator Yt =
[∫ 1

0
Yt(i)(ε−1)/εdi

]ε/(ε−1)

. This expression abstracts from invest-
ment and foreign trade, so output Yt equals consumption Ct and Pt is the corresponding aggregate

price index Pt =
[∫ 1

0
Pt(i)1−εdi

]1/(1−ε)
.

3Another model class are state-dependent sticky prices models where the number of firms
that changes prices in a given period is determined endogenously (i.e. Dotsey, King and Wolman,
1999). Another popular model besides the one of Calvo (1983) was developed by Taylor (1980).
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A firm that reoptimizes, sets its price P ∗t (i) in order to maximizes the expected

discounted sum of profits

Et

∞∑
k=0

(βθ)kυt,t+k [P ∗t (i)Xt,t+k −MCt,t+k(i)]
Yt+k(i)

Pt+k
, (4)

subject to the demand constraints (2) and

Xt,t+k =


∏k−1

l=0 π
1−ξπξt+l for k > 0

1 for k = 0.

(5)

with β a constant discount factor, υt,t+k = U
′
(Ct)/U

′
(Ct+k) the time-varying por-

tion of the discount factor between t and t + k; with U
′
(Ct) the marginal utility

of consumption. π is the long-run average gross rate of inflation. When a firm

does not reoptimize its price, it is assumed that it resets it according to some sort

of indexation scheme. Our baseline specification is the partial indexation scheme

used in Smets and Wouters’s (2003) model and further discussed by Sahuc (2004)

with ξ ∈ [0, 1] that measures the degree of indexation to past inflation. This is

a further generalization of Christiano et al.’s (2005) dynamic indexation scheme

with ξ = 1, where prices are reset according to Pt(i) = πt−1Pt−1(i) during periods

where firms do not reoptimize.

After solving the maximization problem in (4) and some further manipula-

tions,4 an expression for aggregate inflation can be derived of the form

π̂t =
ξ

1 + βξ
π̂t−1 +

β

1 + βξ
Etπ̂t+1 +

(1− θβ)(1− θ)
(1− βξ)θ

Aŝt, (6)

4See i.e. Sahuc (2004) or Walsh (2003, Ch. 5) for a derivation.
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where ŝt is the percentage deviation of average marginal cost MCt/Pt from its

steady state. This type of equation is often referred to as the new Keynesian

Phillips curve.5 Note that a particular feature of this inflation equation is that it

has a sound microeconomic foundation in a sense that it depends on structural

parameters that have a direct economic interpretation. With ξ = 0 the expression

reduces to the pure forward looking Phillips curve that coincides with a static

indexation scheme.6

The parameter A measures the degree to which inflation responds to changes in

current and future values of real marginal costs. In contrast to a situation where

all firms face the same marginal cost (A = 1), firm specific marginal cost may

differ across firms due to differences in the output level. The differences in the

output level are generated through the assumption of a fixed stock of firm-specific

capital.7 As shown by Sbordone (2002) and Gaĺı et al. (2001) A also depends on

structural parameters with

A =
1− α

1 + α(ε− 1)

with ε the elasticity of substitution among diffent goods from eq(2) and α the

technology parameter form the Cobb-Douglas production function eq(1), whereas

ε > 1 and 0 < α < 1.

An additional way of modeling a smaller responds of prices to marginal cost

5This expression is an augmented version of a specific relation that does not include the lagged
inflation term. This version with an additional inflation lag is sometimes called hybrid Phillips
curve.

6A static indexation scheme implies that firms set prices according to Pit = πPit−1 during
periods where they do not reoptimize (i.e. Erceg, Henderson and Levin, 2000).

7A more comprehensive discussion for the role of firm-specific capital is given by Eichenbaum
and Fisher (2007) firms face convex capital adjustment costs. Our specification of A can be seen
as a special case of this framework where the adjustment costs are very high.
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is proposed by Eichenbaum and Fisher (2007) and Coenen et al. (2007). They

assume a varying elasticity of demand, but as shown by Coenen et al. (2007) this

assumption does not lead to a substantial reduction of the sensitivity of prices to

marginal cost for reasonable values of α. In order to keep thinks simple we do not

consider this type of additional friction.

2.3 A Variant with rule-of-thumb Firms

A variant of the above presented model (6) was presented by Gaĺı and Gertler

(1999). In this specification there a two types of firms; one fraction 1 − ω that

reoptimizes prices according to the model of Calvo (as discussed in sec (2.2)). In

periods where firms cannot reoptimize they set prices according to a static index-

ation scheme. The other fraction ω of non-reoptimizing firms set prices according

to a backward looking rule-of-thumb. With probability θ they set Pit = πPit−1.

Otherwise, with probability 1− θ, they apply

P
′

t = πt−1P t

with P t = (1− ω)P ∗t + ωP
′
t , where P ∗t is the optimized price that is chosen by the

fraction of firms that are forward looking.

In this setting an analog expression of (6) can be derived as

π̂t =
ω

φ
π̂t−1 +

βθ

φ
Etπ̂t+1 +

(1− ω)(1− θβ)(1− θ)
φ

Aŝt, (7)

with φ = θ + ω [1− θ(1− β)]. When ω = 0 this expression is equivalent to the

pure forward looking Phillips curve and thus equal to (6) as long as ξ = 0.

Finally, note that the explanatory variables are the same across the two Phillips
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curve specifications, the only difference is the way how the structural parameters

appear in the two equations. While the interpretation of θ is the same, the pa-

rameters ξ and ω have a different meaning depending on the particular model that

both try to rationalize a lagged inflation term in the Phillips curve.

3 Econometric Methodology

We now present our empirical model and discuss how we can conduct inference

about the structural parameters of the Phillips curve model discussed above. In

this analysis we take a limited information approach. This has the great advantage

that we do not have to fully specify a hole general equilibrium model including the

nature of the forcing variable. Instead, we can leave part of the model unspecified

and only have to consider a single equation. As it is known from traditional

simultaneous equation framework, full information methods may be more efficient,

but may also be more sensitive to specification errors since errors in one equation

spread over to other equations as well.8

Our empirical model is given by

π̂t = γbπ̂t−1 + γf π̂t+1 + λŝt + ut, (8)

where ut = ηt− γf (π̂t+1 − Etπ̂t+1). Note that expected future inflation Etπ̂t+1 has

been replaced by its realization π̂t+1, whereas the expectation error (π̂t+1 − Etπ̂t+1)

is part of the residual ut. The coefficients γb, γf and λ depend in nonlinear form

on the structural parameters (β, θ, ξ, α, ε) in the partial indexation model or on

8Examples for ML techniques to estimate hybrid Phillips curve specifications include Fuhrer
(1997), Lindé (2005) and Jondeau and Le Bihan (2006). See Jondeau and Le Bihan (2008) for
discussion of properties of different estimators.
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(β, θ, ω, α, ε) in the model with rule-of-thumb firms.

Since the residual ut is correlated with π̂t+1 (unless there exist forecast errors of

future inflation) an instrumental variables estimator is needed in order to guarantee

unbiased results. We employ a Generalized Method of Moments (GMM) estimator

proposed by Hansen (1982) that is suited for dynamic non-linear models in order to

estimate the structural model parameters. This approach is frequently applied to

estimate intertemporal asset pricing models.9 In our setting where non-linearity is

present via the parameters but not within the variables this procedure can be given

a 2SLS interpretation. First, regress the endogenous right-hand-side variables on

the instrument set. Second, use the predicted values and perform non-linear least

squares where the variables on the right-hand side are replace by their projections.

The GMM approach is now also very frequently applied to estimate the param-

eters of the Calvo model. Examples include Gaĺı and Gertler (1999), Gaĺı et al.

(2001) and Eichenbaum and Fisher (2007). First, we set up the orthogonality con-

ditions for the partial indexation model (6). We use two different specifications

that differ in the way how functions are normalized.10 These are given by

u1
t = π̂t −

ξ

1 + βξ
π̂t−1 −

β

1 + βξ
π̂t+1 −

(1− θβ)(1− θ)
(1 + βξ)θ

Aŝt, (9)

u2
t = (1 + βξ)π̂t − ξπ̂t−1 − βπ̂t+1 −

(1− θβ)(1− θ)
θ

Aŝt, (10)

9See Hansen and Singleton (1982) for an early example.
10It is well known that for finite samples the two-step GMM as well as the iterated GMM

estimator is sensitive to transformations of the orthogonality conditions (see i.e. Hall, 2005). Un-
less the model is not misspecified, the two different normalizations should lead to approximately
similar results.
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with the orthogonality conditions

Et−1

{
uit (β, θ, ξ) zt−1

}
= 0 (11)

for i = 1, 2. zt−1 is the vector of instruments that are assumed to be orthogonal

to the error term uit (under the rationality assumption). Note that zt−1 does only

include instruments dated t− 1 or earlier in order to rule out simultaneity issues.

This also guarantees that the information is already available at time t due to a

potential publication lag.

From (9) and (10) it follows that θ and A (and thus also α and ε) cannot

be separately identified. So we are only able to estimate θ, the parameter that

is of most interest, given reasonable values of α and ε which cannot be tested

explicitly. To identify the remaining parameters β, θ and ξ we need at least three

valid instruments.

For the model with rule-of-thumb firms, similar orthogonality conditions can be

formulated. They only differ with respect to the functional form of the parameters.

The two normalizations are given by

u
′1
t = π̂t −

ω

φ
π̂t−1 −

βθ

φ
π̂t+1 −

(1− ω)(1− θβ)(1− θ)
φ

Aŝt, (12)

u
′2
t = φπ̂t − ωπ̂t−1 − βθπ̂t+1 − (1− ω)(1− θβ)(1− θ)Aŝt. (13)

Again, the orthogonality conditions can be formulated as

Et−1

{
u

′i
t (β, θ, ω) zt−1

}
= 0 (14)
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for i = 1, 2 with φ = θ + ω [1− θ(1− β)]. Everything else is comparable with the

partial indexation model.

4 Data and empirical implementation

Our sample period is 1973.1 - 2004.4. While data before 1973 are principally

available, we take this date as starting point since it marks the end of the fixed

exchange rate regime of the Bretton Woods system. This is also associated with

a change in monetary policy that got more independent from external influences.

Inflation is measured as the quarterly annualized change in the GDP deflator. From

the production function (1) it follows that real marginal cost are proportional to

the labor income share in national income. The labor share is defined as the total

wage bill (WtNt) divided by nominal GDP (PtYt). The variable ŝt is constructed

as the percentage deviation of the labor share from its sample average (see figure

2).11

Since in our Phillips curve specification the term A cannot be separately iden-

tified, we have to calibrate α and ε in an economic reasonable way. We set α,

the output elasticity with respect to capital, equal to 0.3 that usually done for

the German economy (i.e. Dreger and Schumacher, 2000). More controversial is

the calibration of the elasticity of substitution among different goods. For the

definition of the steady state mark-up µ, it follows that the elasticity of substi-

tution can be redefined as ε = µ
µ−1

. We consider a steady-state mark-up of 10%

(µ = 1.1) as our baseline value (as it was done by Gaĺı et al., 2001; Eichenbaum

and Fisher, 2007). This corresponse to ε = 11.

11This is the measure proposed by Gaĺı and Gertler (1999), Gaĺı et al. (2001) and Sbordone
(2002).
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A next very crucial issue is concerned with the instrument vector zt−1. To be

a valid instrument, variables have to fulfill two important characteristics. First,

they have to be uncorrelated with the error term (which is the orthogonality condi-

tion). Second, they have to be correlated with the variable they have to instrument

(that is the relevance condition). Both conditions have to be fulfilled to obtain

reliable point estimates and confidence intervals of our model parameters. So the

first practical challenge is to decide which variables should be included into the

instrument set. In principle any variable dated t − 1 and earlier may be consid-

ered as instrument since under rational expectations it fulfills the orthogonality

conditions. This leaves us with a potentially infinite set of possible variables that

could be used as instruments. But as was early recognized by Tauchen (1986) and

Kocherlakota (1990) instruments should be used quite parsimonious.12

To deal with problems of redundant instruments we apply a two-step approach

where we try to cull out those variables that are really relevant. As a starting point

we consider a wide range of possible instruments that include important macroeco-

nomic indicators. This potential instrument list contains Gaĺı and Gertler’s (1999)

instrument set with inflation, real marginal cost, real-time detrended GDP, wage

inflation, commodity price inflation, and the long-short interest rate spread. Fur-

ther we include as an additional instrument the short interest rate (defined as the

three month bill). For the variables π̂t and ŝt we allow for a potential lag length of

five quarters; for the remaining candidate variables we use a maximal lag length

of 2. The first step of instrument selection contains a preselection of possible in-

struments within a VAR. Therefore, the two endogenous variables π̂t+1 and ŝt are

12Tauchen (1986) finds in a simulation study that the inclusion of additional instruments that
are not relevant or only marginally relevant leads to increasing bias of the parameter estimates.
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regressed on all potential instruments. This specification can be formalized as

 π̂t+1

ŝt

 = ν +

L1∑
i=1

Aiyt−i +

L2∑
j=1

Bixt−j + ut, (15)

with ν a deterministic term, yt−i = [π̂t−i ŝt−i]
′ and xt−i the vector of all other

predetermined variables with lag i. The maximal lag length is L1 = 5 and L2 = 2.

After estimating the full model we apply a model reduction procedure that

works through a sequential elimination of regressors in order to obtain a model

that lead to the smallest information criterion.13 We base the selection procedure

on two selection criteria (AIC and SC). Accordingly, we end up with restrictions

on Ai and Bi that determine our instrument sets zt−1(cAIC) and zt−1(cSC), where

cj denotes which elements of the candidate set are included in a particular moment

condition. Besides the two instrument sets based on the information criteria, we

also take Gaĺı et al.’s (2001) set as a benchmark.

Thus, we have three candidate instrument sets with the following size:

• AIC based instrument set: that includes 14 of 21 potential instruments (see

sec 1),

• SC based instrument set: that includes 11 instruments (see sec 1),

• Gaĺı et al.’s (2001) instrument set: that includes inflation with lags t− 1 to

t − 5, labor share, wage inflation and output gap from t − 1 to t − 2 (all

13The sequential elimination of regressors strategy works through sequentially delete those
regressors which lead to the largest reduction of the specified criterion until no further reduction
is possible. This procedure is implemented in the software package JMulTi (see Lütkepohl and
Krätzig, 2004; Brüggemann and Lütkepohl, 2000). Note, that the selection mode takes the
inflation term with one lag as given, since this term also enters as a predetermined variable into
our Phillips curve specification.
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together 11 instruments),

The sensitiveness of our results with respect to different instrument sets should

indicate whether there are problems with redundant instruments or weak instru-

ments.

As a second step we also apply a moment selection test after we performed the

GMM estimation to evaluate our preselection based on model reduction techniques.

This strategy is based upon the relevance condition. Therefore we use a moment

selection criterion proposed by Hall, Inoue, Jana and Shin (2007). This criteria is

defined as

RMSC(c) = ln
[∣∣∣V̂θ,T (c)

∣∣∣]+ (|c| − p) ln(T 1/3)/T 1/3 (16)

where V̂θ,T (c) is the covariance matrix of the model parameters conditional on

the instrument set c. The second term is a BIC-type penalty term with T the

sample size and p the number of parameters to be estimated. The idea is to select

the instrument vector that minimizes this criterion. Since the relevance condition

can be interpreted as statement about the asymptotic variance of the estimator,

the sample analog is the natural basis to construct an information criterion. Hall

et al. (2007) show that the natural logarithm of the determinant of the variance

can serve for this purpose. Note that this procedure only works when there are no

weak instrument problems present. Meaning that it is necessary to have at least

some variables that are considerably correlated with the endogenous variables they

have to instrument.
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5 Estimation Results

In this section we present the results of the structural model and their robustness

to several empirical aspects. First, we check for the sensitivity with respect to

different instrument sets and with respect to different orthogonality conditions.

As pointed out above the instrument relevance is essential for the reliability of

GMM point estimates and confidence intervals. So, we report estimation results

with the instrument set used by Gaĺı et al. (2001) and compare that with those

that are based on a preselection as discussed in section (4).

For the model with partial indexation (Table 2) the results do not differ much

across orthogonality conditions and instrument sets (an exception are the results

based on the second orthogonality condition with GGL’s instrument set with in-

flated standard errors). The RMSC criteria that is applied to evaluate the relevance

of the instrument set favors the SC based instrument set. With this particular in-

strument set the point estimate for θ varies from 0.61 to 0.69. These are different

form zero and different from one as well (this is necessary for the model to hold at

least from an economic perspective). The estimates display reasonable values for θ

which implies that firms re-optimize prices about every 3 quarters. In addition, the

J test does not indicate any problems for this specification. The point estimates

of the discount factor β are somewhere around one which is also plausible form

an economic point of view. We find little evidence for the full indexation scheme

(ξ = 1) as proposed by Christiano et al. (2005) since the coefficient tests reject

this hypothesis. Furthermore, we do not even find a significant role for partial

indexation in general impliing that ξ is not different from zero. This finding favors

a pure forward looking specification without a lagged inflation term.
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The evidence is more mixed by looking at the model with rule-of-thumb firms

(Table 3). Here, the results differ considerably with respect to the way how the

orthogonality condition is formulated. This is particularly true for point estimates

of θ where the first orthogonality condition produces similar results as the model

with partial indexation. But with orthogonality condition (2) the estimated values

for θ are much smaller. Additionally, the J test is significant for that specification.

This casts doubt on the estimation results based on condition (2), but also on the

model in general. Since this sensitivity to the normalization of the orthogonality

condition may indicate some form of model misspecification. The estimates for the

remaining parameters do not differ much from the ones obtained with the partial

indexation scheme. Again, the discount factor is close to one and the backward

looking inflation term (ω in this specification) seems to be unimportant.

We further check the sensitivity of our results for different assumption about

firm specific marginal cost. We first show how the estimates of θ change when we

assume a markup of 25% (µ = 1.25) instead of 10% as assumed in our baseline

specification (Table 4). As expected, the point estimates for θ rise slightly whereas

the remaining parameters are in principal uneffected. But again the estimates

of θ stay in an economic meaningful range and cannot be rejected on empirical

grounds. Next we give up the assumption of firm specific marginal cost and assume

equal marginal cost accross firms (A = 1) as in the baseline model of Gaĺı and

Gertler (1999). This leads to further rise of estimated parameter θ to about 0.8

in the partial indexation model and to 0.6 to 0.8 in the model with rule-of-thumb

firms (this implies an average frequency of price-reoptimization between 3 and 9

quarters). This specification still coincides with a sticky price framework which

manifests in a higher degree of price rigidity. From an empirical point of view we
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cannot favor one spefication over the other which only differs with respect to the

way how firm specific marginal cost from average marginal cost. Since the model

is compatible with different assumptions about firm specific marginal cost it also

introduces an additional source of uncertainty in estimating θ and the frequency

of re-optimization.

These findings also hold for the case when we restrict the different model speci-

fication to the pure forward looking specification and a discount factor of β = 0.99

(Table 7). Therefore we employ a likelihood ratio type test where we check whether

the imposed restrictions can be rejected (Table 5 and 6). The tests indicate that

the restrictions cannot be rejected and are thus imposed. With these restrictions

both model specifications (the partial indexation model as well as the model with

rule-of-thumb firms) are the same. This specification is purely forward-looking

(does not include a lagged inflation term) where the coefficients are non-linear

functions of the parameter θ. Again we can construct two different orthogonality

conditions that differ with respect to the particular normalization. As with the

rule-of-thumb specifications the estimation results for θ differ considerably. But

when we impose less real rigidity (A → 1) the values for θ converge slightly, but

the frequency of re-optimization of price changes is always twice as high as in the

orthogonality condition (2) compared to the first one.

Finally, we also have a look at the sensitivity of inflation to our marginal cost

variable. We denote the reduced form coefficient in front of the marginal cost

variable with λ (which is defined as λ = (1−0.99θ)(1−θ)
θ

A). To evaluate whether

λ is significant we use the point estimates for θ and its variance to construct

standard errors for λ with the delta method. The results are displayed in Table 8

and are quite heterogeneous with respect to parameter values as well as for their

19



significance level. For the first specification we find small values of λ that are not

significant at conventional levels. The opposite is true for the second orthogonality

condition. There we find larger values for λ that are always significant. These

result cast doubt whether marginal cost is indeed the driving variable for inflation

or whether the labor share is the correct measure of marginal cost.

6 Robustness Analysis

We now consider some kind of robustness analysis within our GMM framework.

Since it was sometimes argued that the New Keynesian Phillips curve omits fur-

ther inflation lags (i.e. Jondeau and Le Bihan, 2006), we check whether our basic

results hold when we put three more lags of inflation into our Phillips curve spec-

ifications. When the former specification is correct additional lags should not

be a determinant of actual inflation (they should be solely a predictor of future

inflation).

Tables 9 and 10 shows the results of these augmented specifications. Although

the general interpretation continues to hold, we find that in either case the estimate

of θ is higher than based on our baseline specification. The other parameters do

not considerably change and still lie inside a plausible range. Another important

feature, the differences between the orthogonality conditions (1) and (2) in the

rule-of-thumb model, is still present and is not overcome by the inclusion of the

additional variables. Some of these lags indeed turn out to be significant determi-

nates of inflation (specifically the fourth lag). Similarly to Gaĺı and Gertler (1999)

we also test whether the sum of these coefficients are different from zero. We use

a Wald test and find no evidence that the sum of additional lags are important.
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Overall, the inclusion of additional lags does not lead to a complete rejection

of our original specification. But it further shows how sensitive estimates of θ are

to small changes of the model. Particularly the significance of the fourth lag of

inflation calls for an extension of the baseline model that displays this pattern.

7 An identification robust alternative

So far our analysis rests on the assumption that our instrument set is sufficiently

correlated with the endogenous variables under consideration. This means we

have assumed that our regression analysis does not suffer from weak instrument

problems. But as shown by a vast literature, the presence of weak instruments

may cause serious distortions in standard IV point estimates, hypothesis tests

and confidence intervals (see Stock, Wright and Yogo, 2002, for an overview of

problems caused by weak instruments and some recommendations to deal with

it.). Several authours, including Ma (2002), Nason and Smith (2005), Dufour,

Khalaf and Kichian (2006) and Mavroeidis (2006) provide evidence that weak

instrument problems may be present in standard GMM estimations of the new

Keynesian Phillips curve.

That is why we have to highlight potential problems with weak instruments

or weak identification in our estimation strategy as well. This is done in more

detail in this section. In section 4 we have already tried to selection our instru-

ments on some kind of objective method in order to choose only instruments that

are really correlated with the endogenous regressors. But this does by no means

help to screen whether weak instrument problems may be present in our analysis.

As shown by Mavroeidis (2005) standard pre-tests of identification (or weak in-
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strument problems) are inappropriate in our setting. So we reevaluate our GMM

results with an identification robust method that is fully robust to problems in-

duced by weak instruments and weak identification. Therefore, we stick to a non-

linear variant of the Anderson-Rubin Statistic as suggested by Stock and Wright

(2000). They show that identification robust confidence sets can be obtained from

the continuous-updating GMM (CUE) objective function.14 In the linear simul-

taneous equations model these so called S-sets are asymptotically equivalent to

confidence sets constructed by inverting the Anderson-Rubin test statistic.

As shown by Dufour (2003) the AR statistic is well suited for validating a

structural model, since it is not only robust to the presence of weak instruments,

but it is also robust to model misspecifications like overidentification and thus

provides an alternative to the standard J test. S-sets also share the characteristic

of identification-robust procedures as described in Dufour (1997) which require that

whenever parameters are not identified, the results should lead to uninformative

and thus unbounded confidence sets. S-sets contains all parameter values for which

the joint hypothesis ϑ = ϑ0 and that the overidentifying conditions are valid. So,

whenever the model is misspecified and the overidentifying conditions are invalid,

the S-sets can be null. With weak instruments (or irrelevant instruments), the

S-sets can contain the entire parameter space. While this is a favored property of

this test because it ensures robustness to many pitfalls, it also needs some caution

in interpreting the results of the model. Particularly, when S-sets are small this

can be because the model is correctly specified or because it is misspecified but

14The continuous-updating GMM estimator was invented by Hansen, Heaton and Yaron
(1996). As opposed to the standard two-step GMM estimator, the CUE evaluates the weight
matrix at the same parameter value as the orthogonality conditions.
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does not lead to a full rejection.15

Now we turn back to our model specifications where the objective function of

the CUE is given by

S(ϑ) =

[
1

T

T∑
t=1

φt(ϑ)

]′

V (ϑ)−1

[
1

T

T∑
t=1

φt(ϑ)

]
(17)

with ϑ the parameter vector of interest; φt(ϑ) = ut (β, θ, ω) zt−1 with ut (β, θ, ω)

as defined in (9) and (12) and zt−1 the vector of instruments. Note that the CUE

is invariant to transformations of the orthogonality condition, so we do not have

to consider this differentiation. V (ϑ) is defined as a HAC estimator to allow for

serial correlation as well as heteroskedasticity in the residuals. This coincides with

the two-step estimator used above.

We now check whether our baseline GMM results hold when we use S-sets as

suggested by Stock and Wright (2000). First, we examine whether our GMM point

estimates are also included the S-sets. This should be the case when the model is

correctly specified and there are no weak instrument problems present. We start

with the pure forward looking specification where we test the null hypothesis of

whether β and θ are (0.99, 0.58) or (0.99, 0.18) which corresponds to the GMM

estimates of Table (7) with A = 0.175. According to Stock and Wright (2000)

S(β0, θ0)
D→ χ2

k, where S(β0, θ0) is the objective as defined above evaluated at the

true parameter values. Table (11) reports the results of this test type. The results

indicate that problems with the orthogonality conditions may be present since the

test rejects the the hypothesis for both GMM point estimates, at least at the 10%

15This may become relevant when there are many instruments. In this case the power of the
test might be too low to reject a potentially misspecified model.
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level.16 Now, we ask whether there exists a value of the parameter vector for which

the model is not rejected.17 Given this particular instrument set (based on the SC)

we find no parameter combination that lies inside the 90% S-set. That means that

the confidence interval is empty and we have to reject the model. As mentioned

above this indicates that the overidentifying conditions are invalid. So there may

be one or more variables in our instrument set that do not fulfill the orthogonality

condition. A natural candidate is a variable that is measured in t−1, so agents do

not use this kind of information. We exclude some of the instruments from period

t− 1 variable-by-variable and find out that the wage inflation is the variable that

causes the AR type test to reject the model. So we exclude that variable and redo

the analysis.

With our adjusted instrument set the S-sets are non-empty and can be used

for inference of our model. Figure 1 shows the 90% confidence regions obtained

with that method along with the standard GMM results and their 90% confidence

ellipsis for different model specifications. Generally, we find rather small S-sets

irrespectively which particular model is used or which restrictions are imposed.

For the partial indexation model, the computed S-set (only computed for economic

reasonable paramter values between 0 and 1) lies completly inside the two GMM

ellipses. The regions all include the null of parameter ξ, impliing that this value is

not significantly different from zero. The results based upon the S-sets also imply

a parameter value for θ of about 0.6 which translates into a frequency of price re-

optimization of 2.5 quarters. The GMM results are similar. This estimate is in line

16Although the test is more in favour of the first estimate, denoted by θ̂GMM1. But we follow
Stock and Wright and take the 90% S-set as our final decision criterium.

17The paramter space that we consider involves all possible values in the range of 0 to 1. In
the search process all values between this range are evaluated with increments of 0.01.
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Figure 1: Joint 90% S-sets and 90% GMM confidence ellipses for different speci-
fications
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with Coenen et al. (2007) who find an average frequency of price re-optimization of

2 quarters for the German economy, although with a different estimation strategy

and a higher degree of real rigidities. The results based upon the rule-of-thumb

model are in principle identical, even though the GMM estimates again differ quite

substancially with respect to the transformation of the orthogonality condition. As

mentioned above, S-sets are invariant to the normalization of the orthogonality

conditions because they are based upon the CUE. From an empirical point of view,

we cannot distinguish between the partial indexation model and the rule-of-thumb.

But, as shown throughout, the GMM estimates are sensitive to transformation of

the orthogonality condition. That becomes very obvious in the rule-of-thumb

model where the second specification leads to a large bias.

Since the hybrid version of the Phillips curve is rejected we concentrate once

more on the pure forward looking specification. While the S-set for this specifica-

tion is again quite small, it already includes values for θ between 0.45 up to 1. This

implies that the uncertainty about θ is quite high when no further restrictions on β

are imposed. This also translates into the sensitivity of inflation to marginal cost.

When θ = 1 prices are never re-optimized and thus do not respond to chances in

marginal cost. As long as we cannot rule out the case that θ is equal to one, the

model is economically meaning less and can be also seen as rejected.

Taken together, we do not find much evidence that the German NKPC is weakly

identified. But, we show that identification robust inference with the nonlinear

Anderson-Rubin Statistic may help to detect model misspecifications not indicated

by the standard J test. Another advantage to the more conventional two-step

GMM estimator is the fact, that the S-sets are based upon the CUE and thus not

sensitive to transformations of the orthogonality conditions.
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8 Conclusion

This paper evaluates standard New Keynesian Phillips Curve specifications for

Germany within a limited information framework. Besides the standard GMM es-

timation and test procedures, we also apply identification robust techniques. The

presented evidence clearly favors a purely forward looking inflation equation which

is in contrast to most other countries. The average frequency of price reoptimiza-

tion of firms is estimated to be about two and three quarters, given a plausible

degree of real rigidity in the German economy. While these estimates seem plau-

sible from an economic point of view, the uncertainty around these estimates are

very large and also consistent with perfect nominal price rigidity where firms never

reoptimize their prices. This also casts doubt concerning the labor share as driving

variable for inflation.

In contrast to previous studies, we do not detect problems with weak identifi-

cation, but we do find some evidence that the model might be misspecified.
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Appendix

Figure 2: Data series for Germany
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Table 1: Instrument selection based on Information Criteria

AIC SC
π̂t+1 ŝt π̂t+1 ŝt

π̂t−1 -0.012 0.060 -0.030 0.042
[-0.12] [1.34] [-0.29] [0.94]

ŝt−1 -0.008 0.825 -0.012 0.824
[-0.06] [14.14] [-0.09] [13.71]

π̂t−3 0.409 0.012 0.397 0.014
[5.09] [0.36] [4.86] [0.41]

π̂t−4 0.125 0.099 0.109 0.088
[1.53] [2.82] [1.33] [2.50]

ŝt−4 0.146 0.191 0.151 0.232
[0.76] [2.32] [0.78] [2.80]

π̂t−5 0.003 0.150 -0.006 0.139
[0.04] [4.12] [-0.07] [3.73]

ŝt−5 -0.120 -0.144 -0.102 -0.177
[-0.70] [-1.96] [-0.59] [-2.37]

ygapt−1 2.382 1.670 2.588 1.608
[2.62] [4.30] [3.13] [4.52]

(rl − rs)t−1 0.277 -0.687 -0.066 -0.163
[0.54] [-3.15] [-0.64] [-3.72]

∆wt−1 0.124 -0.031 0.137 -0.021
[2.21] [-1.30] [2.46] [-0.86]

rst−1 0.518 -0.479 0.147 -0.076
[1.16] [-2.52] [2.18] [-2.61]

∆pcommt−2 0.009 0.004
[1.85] [1.97]

(rl − rs)t−2 -0.324 0.515
[-0.66] [2.45]

rst−2 -0.397 0.391
[-0.90] [2.09]

AIC 1.1094 1.1168
SC 1.7429 1.6146
Notes: t-statistics in brackets.
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Table 2: Partial Indexation model (unrestricted)

Instruments β θ ξ J RMSC

GGL’s set (1) 0.996 0.632 0.309 8.877 -9.76
(0.084) (0.216) (0.153)
[0.000] [0.004] [0.044] [0.353]

(2) 1.047 0.980 -0.333 11.095 -1.63
(0.040) (54.43) (0.072)
[0.000] [0.986] [0.000] [0.196]

AIC based (1) 1.035 0.646 0.294 9.787 -9.18
(0.062) (0.217) (0.147)
[0.000] [0.003] [0.045] [0.550]

(2) 1.039 0.743 -0.178 12.125 -10.14
(0.038) (0.367) (0.094)
[0.000] [0.043] [0.059] [0.354]

SC based (1) 1.030 0.611 0.248 8.454 -10.51
(0.058) (0.181) (0.156)
[0.000] [0.001] [0.112] [0.390]

(2) 1.036 0.690 -0.182 10.820 -11.63
(0.038) (0.270) (0.097)
[0.000] [0.011] [0.059] [0.212]

Notes: Standard errors in round brackets and p-values in square brack-
ets. Rows (1) and (2) correspond to the two specifications of the two
specifications of the orthogonality conditions eqs (9) and (10) in the
text, respectively. A 5-lag Newey-West HAC estimate was used. Sample
period: 1973:1-2004:4.
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Table 3: Rule-of-Thumb model (unrestricted)

Instruments β θ ω J RMSC

GGL’s set (1) 0.997 0.601 0.186 8.877 -11.11
(0.072) (0.224) (0.097)
[0.000] [0.007] [0.056] [0.353]

(2) 0.836 0.121 -0.019 16.050 -17.05
(0.160) (0.027) (0.015)
[0.000] [0.000] [0.214] [0.042]

AIC based (1) 1.030 0.621 0.182 9.787 -10.47
(0.055) (0.223) (0.095)
[0.000] [0.005] [0.057] [0.550]

(2) 0.883 0.181 -0.018 17.971 -16.20
(0.102) (0.033) (0.020)
[0.000] [0.000] [0.353] [0.082]

SC based (1) 1.026 0.590 0.146 8.454 -11.87
(0.052) (0.184) (0.092)
[0.000] [0.001] [0.111] [0.390]

(2) 0.908 0.178 -0.019 16.945 -16.83
(0.104) (0.035) (0.020)
[0.000] [0.000] [0.340] [0.031]

Notes: Standard errors in round brackets and p-values in square brack-
ets. Rows (1) and (2) correspond to the two specifications of the two
specifications of the orthogonality conditions eqs (12) and (13) in the
text, respectively. A 5-lag Newey-West HAC estimate was used. Sample
period: 1973:1-2004:4.

Table 4: Sensitivity to different values of A

Partial indexation model Model with Rule-of-Thumb firms
β θ ξ J β θ ω J

α = 0.3, µ = 1.25 −→ ε = 5, A = 0.3182
(1) 1.030 0.690 0.248 8.454 1.027 0.669 0.165 8.454

(0.058) (0.151) (0.156) (0.053) (0.158) (0.101)
[0.000] [0.000] [0.112] [0.390] [0.000] [0.000] [0.101] [0.390]

(2) 1.036 0.755 -0.182 10.820 0.970 0.335 -0.033 15.695
(0.038) (0.151) (0.156) (0.080) (0.050) (0.037)
[0.000] [0.001] [0.097] [0.212] [0.000] [0.000] [0.377] [0.047]

A = 1
(1) 1.030 0.805 0.248 8.454 1.028 0.788 0.195 8.454

(0.058) (0.096) (0.156) (0.055) (0.106) (0.118)
[0.000] [0.000] [0.112] [0.390] [0.000] [0.000] [0.112] [0.390]

(2) 1.036 0.846 -0.182 10.820 1.030 0.635 -0.078 13.410
(0.038) (0.135) (0.156) (0.053) (0.051) (0.069)
[0.000] [0.000] [0.097] [0.212] [0.000] [0.000] [0.255] [0.099]

Notes: see above.
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Table 5: Restrictions in the Partial Indexation model

H0 : β = 0.99, ξ = 0
LR-Test p-value

(1) 0.0581 0.9714
(2) 4.3360 0.1144

Table 6: Restrictions in the Rule-of-Thumb model

H0 : β = 0.99, ω = 0
LR-Test p-value

(1) 5.9409 0.0513
(2) 2.1815 0.3360

Table 7: Frequency of Re-optimization (Restrictions: β = 0.99, ξ = 0, ω = 0)

A = 0.1750 A = 0.3182 A = 1
θ 1

1−θ θ 1
1−θ θ 1

1−θ

(1) 0.577 2.36 0.664 2.98 0.795 4.88
[0.34,0.81] [0.46,0.87] [0.65,0.94]

(2) 0.179 1.22 0.326 1.48 0.607 2.54
[0.11,0.24] [0.24,0.41] [0.52,0.69]

Notes: J test never rejects any model.

Table 8: Sensitivity to marginal cost (Restrictions: β = 0.99, ξ = 0, ω = 0)

λ = (1−0.99θ)(1−θ)
θ A

A = 0.1750 A = 0.3182 A = 1
λ J λ J λ J

(1) 0.055 11.236 0.055 11.236 0.055 11.236
(0.042) (0.042) (0.042)
[0.195] [0.339] [0.195] [0.339] [0.195] [0.390]

(2) 0.663 14.873 0.445 14.136 0.259 13.054
(0.178) (0.117) (0.072)
[0.000] [0.137] [0.000] [0.137] [0.001] [0.221]

Notes: Standard errors are computed with the delta method.
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Table 9: Partial Indexation model with additional Lags

β θ ξ φ2 φ3 φ4 H0 : φ2 + φ3 + φ4 = 0 J

(1) 0.793 0.846 0.141 0.0911 -0.196 0.275 2.227 5.609
(0.146) (0.428) (0.109) (0.093) (0.081) (0.069)
[0.000] [0.048] [0.193] [0.327] [0.015] [0.000] [0.527] [0.468]

(2) 0.825 0.868 0.046 0.113 -0.217 0.289 2.568 6.367
(0.131) (0.507) (0.099) (0.093) (0.089) (0.074)
[0.000] [0.087] [0.641] [0.226] [0.015] [0.000] [0.463] [0.383]

Notes: SC based instrument set used (plus inflation at the second lag).

Table 10: Rule-of-Thumb model with additional Lags

β θ ξ φ2 φ3 φ4 H0 : φ2 + φ3 + φ4 = 0 J

(1) 0.798 0.831 0.118 0.0911 -0.196 0.275 2.227 5.609
(0.146) (0.454) (0.094) (0.093) (0.081) (0.069)
[0.000] [0.067] [0.211] [0.327] [0.015] [0.000] [0.527] [0.468]

(2) 1.081 0.273 0.016 0.0120 -0.105 0.059 0.398 13.180
(0.186) (0.082) (0.039) (0.031) (0.033) (0.044)
[0.000] [0.001] [0.690] [0.526] [0.001] [0.177] [0.941] [0.059]

Notes: SC based instrument set used (plus inflation at the second lag).

Table 11: AR type test of the estimated parameters

Null Hypothesis Test Statistic p-value

H0 : β0 = 0.99, θ0 = θ̂GMM1 = 0.58 19.28 0.056
H0 : β0 = 0.99, θ0 = θ̂GMM2 = 0.18 33.10 0.001
Notes: The test is evaluated with the CUE objective function. The SC
based instrument set is used. A Newey-West HAC estimate with 5 lags
was used. Sample period: 1973:1-2004:4.
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