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Abstract

A decision scheme (Gibbard (1977)) is a function mapping profiles of strict
preferences over a set of social alternatives to lotteries over the social al-
ternatives. Motivated by conditions typically prevailing in elections with
many voters, we say that a decision scheme is weakly strategy-proof if it is
never possible for a voter to increase expected utility (for some vNM utility
function consistent with her true preferences) by misrepresenting her prefer-
ences when her belief about the preferences of other voters is generated by
a model in which the other voters are i.i.d. draws from a distribution over
possible preferences. We show that if there are at least three alternatives, a
decision scheme is necessarily a random dictatorship if it is weakly strategy-
proof, never assigns positive probability to Pareto dominated alternatives,
and is anonymous in the sense of being unaffected by permutations of the
components of the profile. This result is established in two settings: a) a
model with a fixed set of voters; b) the Poisson voting model of Meyerson
(1998a,b, 2000, 2002).
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1 Introduction

Suppose we are given a finite set V of social alternatives and n voters. A
preference profile is an n-tuple of strict individual preferences over V . A
social choice function is a function whose domain is the set of preference
profiles and whose range is V . The Gibbard-Satterthwaite theorem (Gib-
bard (1973), Satterthwaite (1975)) asserts that a social choice function must
be dictatorial if there are at least three alternatives, the social alternative
selected at a profile of preferences is never Pareto dominated for that profile,
and the function is strategy-proof, which means that it is never possible for
a voter to achieve a preferred outcome by reporting something other than
her actual preference ordering.

When the electorate is large, voters typically have quite limited informa-
tion about the preferences of other voters, so one should consider the possi-
bility that a social choice function might be strategy-proof “in effect” if, in
practice, voters are never able to manipulate because they lack sufficiently
precise information. This paper develops a weakened notion of strategy-
proofness that expresses this perspective. Our main results show that this
weaker notion is still strong enough to imply a dictatorial conclusion.

Any mechanism combining the agents’ preferences in a nontrivial man-
ner must depart from the framework of the Gibbard-Satterthwaite theorem
in some respect, and for this reason the result is fundamental in the theory
of mechanism design. The Gibbard-Satterthwaite theorem allows voters to
have any strict preferences, but, for example, in the theory of matching (e.g.,
Roth and Sotomayor (1990)) agents are typically assumed to care only about
whether they are matched and, if so, with whom. A domain restriction spec-
ifies a subset of the set of preference profiles. In the theory of voting the
seminal concept of this sort is the notion of single peaked preferences, which
leads to the median voter theorem (e.g., Black (1958)). Allowing the voters
(but not the mechanism designer) to know each others’ preferences, and to
behave with greater strategic sophistication, leads to the theory of Nash im-
plementation pioneered by Maskin (1999). In Bayesian implementation the
given information, for both the agents and the mechanism designer, includes
a prior distribution on the space of n-tuples of agent types, a mechanism
determines a Bayesian game, and Bayesian Nash equilibrium, rather than
equilibrium in dominant strategies, is the preferred solution concept.

Another relaxation of the Gibbard-Satterthwaite framework, that is more
closely related to the work presented here, is to allow a random outcome.
Indeed, tied elections are commonly resolved by coin flips, so this extension
is very natural, and the Gibbard-Satterthwaite theorem would lose much of
its force if there were electoral systems employing randomization that em-
bodied democratic values. Gibbard (1977) defines a decision scheme to be
a function whose domain is the set of preference profiles and whose range
is the set of probability distributions over V . Gibbard’s result (a precise
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explanation is given in Section 2) reinforces the negative conclusion of the
Gibbard-Satterthwaite theorem: if a decision scheme is strategy-proof in
the sense that manipulation is never beneficial (when evaluated in terms of
any von Neumann-Morgenstern utility consistent with the actual preference)
and Pareto dominated alternatives never receive any probability, then the
scheme must be a random dictatorship.

The main idea studied here might be thought of as a domain restriction,
except that instead of imposing restrictions on the profiles that can occur,
we impose restrictions on the voters’ beliefs about the profile. Specifically,
we assume that each voter’s belief about the preferences of the other vot-
ers can be described by a model in which the other voters’ preferences are
i.i.d. draws from a common distribution. We are particularly motivated by
elections with many voters and more than two candidates such as the pri-
maries used to select the parties’ candidates in the U.S. electoral system.
Of course voters’ beliefs in such a context are never exactly described by an
i.i.d. model for various reasons, e.g., the preferences of members of married
couples are believed to be correlated. A voter who is contemplating manipu-
lation, but is uncertain about the profile, must average over different ways in
which her vote might be pivotal, and our guiding intuition is that the averag-
ing entailed by the i.i.d. assumption is a reasonably accurate approximation
of the averaging resulting from the uncertainty voters face in practice. If
this is correct, a decision scheme that never rewarded manipulation by vot-
ers with i.i.d. beliefs, and was not otherwise flawed, would merit serious
consideration, and the existence of such decision schemes would challenge
the pertinence of the Gibbard-Satterthwaite theorem.

Conversely, our finding that there are no satisfactory decision schemes of
this sort would seem to be a significant strengthening of Gibbard’s theorem.
Insofar as this is a negative result, it is strengthened by any restriction
imposed on the voters beliefs, and in this sense there is no need for us
to defend the “realism” of the i.i.d. assumption. In principle attacks on
its relevance should take the form of arguments to the effect that certain
i.i.d. beliefs do not need to be considered.

Formally, a decision scheme is weakly strategy-proof if there is no voter,
preference for that voter, von Neumann-Morgenstern utility consistent with
that preference, and distribution over orderings of the alternatives, such that
the voter can achieve a higher expected utility by manipulating when she
regards the other voters’ preferences as i.i.d. draws from that distribution.
To illustrate this idea concretely, suppose that there are three voters, that
from voter 1’s point of view the preferences of the other two voters are
i.i.d. random variables, and that voter 1 can do better by manipulating
when voter 2 has preference P and voter 3 has preference ordering Q. The
assumption that the preferences are i.i.d. implies that it is equally likely
that voter 2 has preference Q and voter 3 has preference P . In addition, if
these two events are much more likely than both voters having preference
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P , then in turn both voters having preference Q must be much more likely
than either of these events. The fact that there is a profile at which voter
1 can profitably manipulate does not necessarily imply that there is a belief
for voter 1 satisfying our assumption at which profitable manipulation is
possible.

In fact it is easy to see that there are decision schemes that never as-
sign positive probability to Pareto dominated alternatives and are weakly
strategy-proof, but not strategy-proof. For any particular voter with the
sorts of beliefs we are allowing, and any particular profile, the voter regards
all profiles obtained by permuting the preferences of the other voters as
equally likely. For such a voter two decision schemes are effectively equiva-
lent, if, for each profile, the two lotteries obtained by averaging the results
of the two decision schemes over all permutations of the other voters’ pref-
erences are the same. Since the number (n − 1)! of permutations of the
other voters grows rapidly with n, one can easily show, simply by counting
equations and unknowns, that the set of decision schemes yielding a given
system of averages can have high dimension. The anonymous random dic-

tatorship is the decision scheme in which the probability of choosing a par-
ticular alternative is the fraction of the electorate that have that alternative
as their favorite; in effect, a voter is selected according to an equiprobable
lottery, and that voter’s favorite alternative is the social choice. Starting
with this decision scheme, it is not hard to construct examples that are
weakly strategy-proof by virtue of giving the same averages, but are not
strategy-proof.

These considerations suggest that we should restrict attention to deci-
sion schemes that are anonymous in the sense that permuting the voter’s
preferences does not affect the outcome. It is not easy to imagine how an
electoral system might be regarded as democratic if it was not anonymous,
and anonymity is certainly consistent with the spirit of our assumption con-
cerning agents’ beliefs. For any decision scheme there is a derived anony-
mous decision scheme, which we will call its anonymization, in which the
lottery assigned to a profile is the average of the lotteries assigned by the
given decision scheme to the profiles obtained by permuting the compo-
nents of the profile. The anonymization of an anonymous decision scheme
is the scheme itself, so the process of anonymization partitions the decision
schemes into equivalence classes, each of which has an anonymous central
element that is the anonymization of every element of the class. A deci-
sion scheme never assigns probability to Pareto dominated alternatives if
and only if its anonymization also has this property. If a decision scheme is
weakly strategy-proof, then so is its anonymization.

We can now state our first main result, which is proved in Section 3: if

a decision scheme is anonymous and weakly strategy-proof, and never as-

signs positive probability to Pareto dominated alternatives, and there are at

least three alternatives, then it is the anonymous random dictatorship. Since
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there is the additional hypothesis of anonymity, this is not, strictly speak-
ing, a derivation of Gibbard’s conclusion from weaker assumptions, but it
seems correct to regard it as such conceptually because the additional pos-
sibilities allowed by dropping anonymity are trivial. In particular, there is
the following corollary: if there are at least three alternatives and a deci-

sion scheme is weakly strategy-proof and never assigns positive probability

to Pareto dominated alternatives, then its anonymization is the anonymous

random dictatorship.
In the discussion to this point we have assumed that the set of voters is

fixed. More precisely, we have assumed that each voter has no uncertainty
about who the other voters are, even if their preferences are uncertain. In
actual elections voters often have quite imprecise knowledge concerning the
pool of eligible voters, and in addition there is uncertainty about which ones
will actually turn out. Thus it is very natural to consider models in which
the size of the electorate is uncertain.

From the point of view of the sort of result described above, what quali-
ties are desirable in a random model of the electorate? Since the conclusion
is negative—an “impossibility theorem”—the result is more forceful if the
conclusion is shown to hold even when voter’s beliefs are restricted to a
relatively small set, since then the conclusion also holds when the voters’
beliefs are less restricted. A bit more subtly, the result is more forceful if the
model of beliefs is a natural limit of other models, since the conclusion for
the other models can be derived from continuity. Finally, tractable models
are preferred, of course. All these considerations strongly recommend the
Poisson voting model developed by Meyerson (1998a,b, 2000, 2002) in which
the number of voters with each preference is distributed according to a Pois-
son distribution, and these random variables are statistically independent.
Section 4 extends the result described above to that setting.

2 Gibbard’s Theorem

Our analysis builds on several lemmas proved in Gibbard (1977), and the
reader must refer to that source if she wishes to obtain a complete under-
standing of the proof. In order to create a package that is as seamless as
possible we follow the notation and terminology of that paper quite closely.
This sections recapitulates the basic framework, and additional concepts
from that paper are introduced in Section 3.

There is a nonempty finite set of alternatives V whose elements are
denoted by x, y, and z. A (strict) preference over V is a complete transitive
asymmetric binary relation on V . Such relations are denoted by P , Q, Pk,
etc. A utility scale is a function U : V → R. The utility scale U is said to
fit the preference P if more highly ranked alternatives give greater utility:
for all x, y ∈ V , U(x) > U(y) if and only if xPy. For any finite or countable
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set A, ∆(A) denotes the space of probability measures on A. A lottery is
a probability measure on V . A utility is automatically interpreted (in the
sense of von Neumann and Morgenstern) as extending linearly to ∆(V ), so
that U(µ) :=

∑

x∈V U(x)µ(x) whenever µ ∈ ∆(V ).
Society consists of n voters, who are indexed by the integers 1, . . . , n. A

profile is an n-tuple P = 〈P1, . . . , Pn〉 assigning a preference to each voter.
Let P be the set of profiles. For each k = 1, . . . , n let P−k be the set
of (n − 1)-tuples of preferences 〈P1, . . . , Pk−1, Pk+1, . . . , Pn〉, thought of as
configurations of preferences of the voters other than k. If P ∈ P is given,
P−k will denote the (n − 1)-tuple obtained by dropping Pk. If P−k ∈ P−k

and P ′
k are given,

〈P−k, P
′
k〉 = 〈P1, . . . , Pk−1, P

′
k, Pk+1, . . . , Pn〉

is the profile obtained by combining these objects. If P ∈ P and P ′
k are

given,
P/kP ′

k := 〈P−k, P ′
k〉

is the profile obtained from P by replacing Pk with P ′
k.

A decision scheme is a function

d : P → ∆(V ).

We denote the probability assigned to alternative x by the decision scheme
at profile P by d(x,P), and for any X ⊂ V we let d(X,P) :=

∑

x∈X d(x,P).
We say that d is a probability mixture of schemes d1, . . . , dm if there are
positive numbers α1, . . . , αm with α1 + · · · + αm = 1 such that

d(x,P) = α1d1(x,P) + · · · + αmdm(x,P)

for all alternatives x and profiles P.
The decision scheme d is potentially manipulable by k at a profile P

if there is a utility scale U that fits Pk and a preference P ′
k such that

U(d(P/kP ′
k)) > U(d(P)). We say that d is manipulable if it is potentially

manipulable by some voter at some profile, and otherwise it is strategy-

proof. Note that a probability mixture of strategy-proof decision schemes is
strategy-proof.

A lottery ρ is Pareto optimal ex post for profile P if ρ(x) = 0 for any
alternative x that is Pareto dominated insofar as there is another alternative
y such that yPix for all i. The decision scheme d is Pareto optimific ex post if,
for each profile P, d(P) is Pareto optimal ex post for P. If d is a probability
mixture of schemes d1, . . . , dm, then d is Pareto optimific ex post if and only
if each dj is Pareto optimific ex post.

For a preference P , let ϕ(P ) be the top ranked alternative or favorite. A
decision scheme d is dictatorial, or a dictatorship, if there is a voter k such
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that d(ϕ(Pk),P) = 1 for all P ∈ P. A random dictatorship is a probability
mixture of dictatorships.

Gibbard’s most general result asserts that a strategy proof decision
scheme is a probability mixture of finitely many decision schemes, each of
which is nonperverse (this concept is defined in the next section) and either
duple, meaning that there are two alternatives that are the only alternatives
receiving positive probability at any preference profile, or unilateral, mean-
ing that it depends only on the preferences of a single voter. Gibbard credits
Sonnenschein with the observation that, insofar as a duple decision scheme
cannot be Pareto optimific ex post if there are three or more alternatives,
and a unilateral decision scheme is Pareto optimific ex post if and only if it
is dictatorial, it follows that:

Theorem 1 (Gibbard (1977)). If there are three or more alternatives

and the decision scheme d is strategy-proof and Pareto optimific ex post,

then it is a random dictatorship.

3 The I.I.D. Model

A model of the electorate for voter k is a probability measure β ∈ ∆(P−k).
The decision scheme d is potentially manipulable by k at a model β if there
is a utility scale U that fits Pk and a preference P ′

k such that

U
(

∑

P−k∈P−k

d(P−k, P ′
k)β(P−k)

)

> U
(

∑

P−k∈P−k

d(P−k, Pk)β(P−k)
)

. (∗)

Let O be the set of all strict orderings of V . The model β is identically

and independently distributed (i.i.d.) if there is a σ ∈ ∆(O) such that
β(P−k) =

∏

i6=k σ(Pi) for all P−k ∈ P−k. The decision scheme d is strongly

manipulable if there is a voter k such that d is potentially manipulable at
some i.i.d. model of the electorate for k, and if this is not the case we say
that d is weakly strategy-proof.

Let N := {0, 1, 2, . . . } be the nonnegative integers, and let A := N
O. An

element of A is called an anonymous profile because it specifies the number
of voters with each preference ordering without attributing those preferences
to specific individuals. For a ∈ A let |a| =

∑

P∈O aP be the total number of
voters, and for n = 0, 1, 2, . . . let An := { a ∈ A : |a| = n }. Let πn : P → An

be the function defined by letting the component πn,P (P) be the number of
k such that Pk = P . The decision scheme d is anonymous if d(P) depends
only on πn(P), so that there is a function Dn : An → ∆(V ) such that
d = Dn ◦πn. The anonymous random dictatorship is the decision scheme d∗

given by
d∗(x,P) := 1

n
#{ k : ϕ(Pk) = x }.
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Theorem 2. If there are three or more alternatives and the decision scheme

d is anonymous, weakly strategy-proof, and Pareto optimific ex post, then it

is the anonymous random dictatorship.

The proof is developed in a sequence of lemmas. Fix a decision scheme
d. A set X ⊂ V heads a preference P if xPy for all x ∈ X and y ∈ V \X. If
d(X,P) = d(X,P/kP ′

k) for all k, P, and P ′
k such that X heads both Pk and

P ′
k, then d is said to be localized. The most innovative step in our argument

is:

Lemma 1. If d is weakly strategy proof and anonymous, then it is localized.

Proof. Fix a voter k, and let π−k be πn−1 reinterpreted as a function with
domain P−k: π−k,P (P−k) is the number of j such that Pj = P . Fixing a set
X ⊂ V and Pk and P ′

k such that X heads both Pk and P ′
k, let M be the set

of a ∈ An−1 such that

d(X, 〈P−k , P ′
k〉) > d(X, 〈P−k , Pk〉)

for some (hence all, because d is anonymous) P−k such that π−k(P−k) = a.
Our goal is to show that M = ∅.

Supposing otherwise, let C ⊂ R
O be the convex hull of M . Then C is

the convex hull of its extreme points, each of which is an element of M .
Let b be an extreme point. Then b is not an element of the convex hull of
M \ {b}, so the separating hyperplane theorem gives a vector ℓ ∈ R

O such
that 〈ℓ, b〉 < 〈ℓ, a〉 for all a ∈ M \ {b}.

For some α > 0 let σ ∈ ∆(O) be the probability distribution in which the
probability of P is proportional to αℓP , so that σ(P ) := αℓP /

∑

P ′∈O αℓP ′ .
Let β be the derived i.i.d. model of the electorate for k: β(P−k) =

∏

i6=k σ(Pi).
Then the probability of P−k is proportional to

αℓP1 · · ·αℓPk−1 · αℓPk+1 · · ·αℓPn = α〈ℓ,π−k(P−k)〉,

so that

β(P−k) =
α〈ℓ,π−k(P−k)〉

∑

P
′
−k

∈P−k
α〈ℓ,π−k(P′

−k
)〉

.

Note that if π−k(P−k) = b and π−k(P
′
−k) = a ∈ M \ {b}, then

β(P−k)

β(P′
−k)

= α〈ℓ,b−a〉 → ∞ as α → 0.

Therefore

∑

P−k∈P−k

d(X, 〈P−k , P ′
k〉)β(P−k) >

∑

P−k∈P−k

d(X, 〈P−k , Pk〉)β(P−k)
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when α is sufficiently small. In this circumstance there is a utility scale U
that fits Pk, and which emphasizes the difference between X and V \X while
nearly disregarding differences between elements of X and between elements
of V \ X, to such an extent that inequality (∗) holds. This contradiction of
the assumption that d is weakly strategy-proof completes the proof.

The remainder of the argument is a matter of marshalling tools developed
in Gibbard (1977). We write xP !y to indicate that xPy and that x and y
are adjacent in the ranking, so that for all z /∈ {x, y}, zPx if and only if zPy.
If this is the case, then P y denotes the ranking obtained by interchanging
x and y without changing the ranking of either in relation to any third
alternative z, and we say that P y is obtained from P by switching x and y.
Given a profile P and a voter k with xPk!y, let

Pky := 〈P1, . . . , Pk−1, P
y
k , Pk+1, . . . , Pn〉.

We say that d is pairwise responsive if d(z,Pky) = d(z,P) for all distinct
alternatives x, y, and z, all voters k, and all profiles P such that xPk!y. Of
course if this is the case, then d({x, y},Pky) = d({x, y},P) for all x, y, P,
and k such that xPk!y.

Lemma 2. d is localized if and only if it is pairwise responsive.

Proof. This follows from Lemma 1 (p. 672) of Gibbard (1977).

Given a profile P and a voter k with xPk!y, the effect under d of k’s
switching y upward is

εy
k(d,P) := d(y,Pky) − d(y,P).

The decision scheme d is nonperverse if εy
k(d,P) ≥ 0 for every P, k, and

y 6= ϕ(Pk). If P is an ordering and x, y ∈ V , P ↑{x, y} is the ordering of
{x, y} obtained by restricting P to this set. For P ∈ P the derived profile
of preferences over {x, y} is

P↑{x, y} := 〈P1↑{x, y}, . . . , Pn↑{x, y}〉.

We say that d is pairwise isolated if

εy
k(d,P) = εy

k(d,P′)

for all P, P′, x, and y such that P↑{x, y} = P′↑{x, y} and all k such that
Pk = P ′

k and xPk!y. The decision scheme d is decomposable if, for any fixed
k, x, and y with x 6= y, there are functions γ and δ such that for all P with
xPk!y,

εy
k(d,P) = γ(P↑{x, y}) + δ(Pk).

Lemma 3. If d is localized, then it is pairwise isolated and decomposable.
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Proof. This is Lemma 3 (p. 673) of Gibbard (1977).

For a profile P, ϕ(P) := 〈ϕ(P1), . . . , ϕ(Pn)〉. We say that d depends only

on favorites if d(P′) = d(P) for all profiles P and P′ such that ϕ(P′) = ϕ(P).

Lemma 4. If d is localized and Pareto optimific ex post, and there are three

or more alternatives, then d depends only on favorites. If, in addition, d is

anonymous, then it is the anonymous random dictatorship.

Proof. First consider particular k, x, and y with x 6= y. Since d is localized,
it is decomposable; let γ and δ be the functions given by the definition
of decomposability. Since there are three distinct alternatives, for some
z /∈ {x, y} there are profiles P with ϕ(Pi) = z for all i. Since d is Pareto
optimific ex post, d(z,P) = 1 for any such P. By allowing P to vary in
the set of such profiles we can deduce that γ is identically zero, and that
δ(Pk) = 0 whenever xPk!y and x 6= ϕ(Pk). Since d is pairwise responsive,
and it is possible to move between any two P and P′ with ϕ(P) = ϕ(P′)
through a sequence of switches that do not affect the vector of favorites, d
depends only on favorites.

It now follows that there are numbers ǫk(x, y) ∈ [0, 1] such that εy
k(d,P) =

ǫk(x, y) whenever x = ϕ(Pk) and xPk!y. Consider a profile P in which all
voters rank x first and y second. Since d is Pareto optimific ex post, by
switching x with y one voter at a time we obtain

ǫ1(x, y) + · · · + ǫn(x, y) = 1.

If d is anonymous, then ǫk(x, y) does not depend on k, so ǫk(x, y) = 1/n for
all k, x, and y.

Theorem 2 follows from Lemmas 1 and 4.

4 The Poisson Model

In earlier sections a decision scheme was a function whose argument was an
assignment of preferences to a fixed set of “names.” When the set of voters
is variable, any attempt to keep track of names would be cumbersome at
best, and irrelevant to our aims, so we adopt a definition that embeds the
assumption of anonymity. An extended anonymous decision scheme (EADS)
is a function

D : A → ∆(V )

from anonymous profiles to lotteries.
Fix such a D. Let D(x, a) be the probability that x is chosen when the

anonymous profile is a. The extended anonymous random dictatorship is the
EADS D∗ given by

D∗(x, a) :=
1

|a|

∑

ϕ(P )=x

aP .
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We say that D is Pareto optimific ex post if D(x, a) = 0 whenever there
is y such that yPx for all P with aP > 0. As in the last section, we wish
to develop a mild notion of strategy proofness based on restrictions on the
beliefs a voter may hold about the preferences of other voters.

For a random variable taking values in N that is distributed according
to the Poisson distribution with mean µ, the probability that the variable
takes on value m is

fµ(m) := µme−µ/m!.

For λ ∈ (0,∞)O and a ∈ A let

Fλ(a) :=
∏

P∈O

fλP
(aP ).

Then Fλ specifies a model of the electorate in which the numbers aP of
voters with each preference are independent random variables and each aP

has a Poisson distribution with mean λP .
Poisson models of elections and more general games have been studied

extensively by Meyerson (1998a,b, 2000, 2002). The Poisson distribution
with mean µ is the limit as N → ∞ of the distribution of the number
of heads among N independent coin flips, each of which comes up heads
with probability µ/N . Insofar as Poisson models are limits of related or
more general models, results such as Theorem 3 below imply, by continuity,
corresponding results for “nearby” models. In part because they are limits,
Poisson models tend to be especially tractable.

A particularly pleasant property, which we take as the basis of our anal-
ysis, is called environmental equivalence. Suppose that a voter believes that
the probability of being one of m+1 voters with preference P is proportional
to m + 1 times the probability that there are m + 1 voters with preference
P . Then the probability, conditional on being a voter with preference P ,
that there are m other voters with preference P , should be

(m + 1)fλP
(m + 1)

∑∞
j=1 jfλP

(j)
=

λm+1
P /m!

∑∞
j=1 λj

P /(j − 1)!
=

λm
P /m!

eλP
= fλP

(m).

Thus the voter’s belief concerning the number of other voters with preference
P coincides with the given distribution of the total number of voters with
this preference. Since the numbers aP are statistically independent, being
a voter with preference P conveys no information about the number of
voters with any other preference. Therefore the voter’s belief about the
rest of the electorate should coincide with the model’s description of the
entire electorate. These calculations are heuristic, appealing to intuitions
concerning the perspective of one member of an infinite pool of potential
voters, each of whom is chosen with infinitesimal probability, but they can
be made precise by taking the limit of a sequence of models in which, for
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each P , NP potential voters with preference P each have probability λP /NP

of being included in the electorate.
An extended model of the electorate is a probability measure B ∈ ∆(A).

For each P let eP be the element of A whose P -coordinate is 1 and whose
other coordinates are 0. We say that D is potentially manipulable by prefer-
ence ordering P at B if there is a utility scale U that fits P and a preference
P ′ such that

U
(

∑

a∈A

D(a + eP ′)B(a)
)

> U
(

∑

a∈A

D(a + eP )B(a)
)

(∗∗).

The EADS D is strongly manipulable if there is a preference P such that D
is potentially manipulable by P at some Poisson model Fλ, and if this is not
the case we say that D is weakly strategy-proof.

Theorem 3. If there are three or more alternatives and the EADS D is

weakly strategy-proof and Pareto optimific ex post, then it is the extended

anonymous random dictatorship.

For any X ⊂ V let D(X,a) :=
∑

x∈X D(x, a). We say that the EADS
D is localized if D(X,a + eP ) = D(X,a + eP ′) for all a ∈ A and P,P ′ ∈ O
such that X heads both P and P ′. For each n = 1, 2, . . . there is a unique
anonymous decision scheme dn such that dn = D◦πn. Clearly D is localized
if and only if each dn is localized, D is Pareto optimific ex post if and
only if each dn is Pareto optimific ex post, and D is the extended random
anonymous dictatorship if and only if each dn is the anonymous random
dictatorship for that n. Therefore Theorem 3 follows from Lemma 4 and
the following analogue of Lemma 1.

Lemma 5. If D is weakly strategy proof, then it is localized.

Proof. Fixing a nonempty X ⊂ V and P and P ′ such that X heads both P
and P ′, let M be the set of a ∈ A such that

D(X,a + eP ′) > D(X,a + eP ).

Our goal is to show that M = ∅. Supposing otherwise, let n be the minimum
value of |a| for a ∈ M , let L be the set of a ∈ M such that |a| = n, and let
N := M ∪ { a ∈ A : |a| > n }.

Let B be the convex hull of L, and let C be the convex hull of N . Then
B is the convex hull of its extreme points, each of which is an element of
L. Let b be one of these extreme points. Then b is also an extreme point of
C because any representation of b as convex combination of elements of C
must assign positive weight only to points whose components sum to n. The
separating hyperplane theorem gives a vector ℓ ∈ R

O such that 〈ℓ, b〉 < 〈ℓ, a〉
for all a ∈ N \{b}. Since a ∈ N whenever aQ ≥ bQ for all Q, all components
of ℓ are positive.
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For some α > 0 let λ be the vector with components λQ := αℓQ . For

a ∈ A we have
∏

Q λ
aQ

Q = α
∑

Q ℓQaQ = α〈ℓ,a〉 and

Fλ(a) =
∏

Q∈O

λ
aQ

Q e−λQ/aQ! = α〈ℓ,a〉e−
∑

Q∈O
λQ

/

∏

Q∈O

aQ!.

In particular
Fλ(a)

Fλ(b)
=

(

∏

Q∈O

bQ!/aQ!
)α〈ℓ,a〉

α〈ℓ,b〉
.

For each a ∈ N \ {b} this quantity goes to zero as α → 0, but in fact
a stronger statement is true and relevant. Since the components of ℓ are
positive, 〈ℓ, a〉 is bounded below by a positive multiple of |a|. The number
of a ∈ A with |a| = n′ is bounded above by a polynomial function of n′, and
∏

Q∈O bQ!/aQ! is bounded above by
∏

Q∈O bQ!. Therefore

∑

a∈M\{b} Fλ(a)

Fλ(b)
≤

∑

a∈N\{b} Fλ(a)

Fλ(b)
→ 0 as α → 0,

so
∑

a∈A

D(X,a + eP ′)Fλ(a) >
∑

a∈A

D(X,a + eP )Fλ(a)

when α is sufficiently small, in which case there is a utility scale U that fits
P such that (∗∗) holds when B = Fλ. This contradiction of the assumption
that D is weakly strategy-proof completes the proof.
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