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ABSTRACT 

Most recent studies of dynamic macroeconomic relationships focus on 

models derived from optimising behaviour by economic agents. In most 

of these models, the eigenvalues of the associated dynamical system are 

real-valued and so the time-path of the system exhibits monotonic or 

near-monotonic behaviour. While, it is well-known that linear dynamic 

models with complex-valued eigenvalues exhibit the property of 

oscillatory dynamic behaviour, limited research has been undertaken to 

investigate the properties of optimising models with oscillatory 

behaviour. In this study, we produce an example of an optimising 

consumer with habit persistence whose consumption dynamics are 

characterised by complex-valued eigenvalues and whose consumption 

thus exhibits cyclical behaviour.  In practice, even in this case, oscillatory 

behaviour will not be observable if the periodicity of the cycle is too long 

or if the cycle becomes dampened at too rapid a rate.  For example, there 

will be little evidence of cycles for a consumer who lives for eighty years 

if they have a consumption cycle with a period-length of two hundred 

years.  In order to investigate whether cycles are likely to be empirically 

observable, we also investigate the dynamic properties of a calibrated 

version of the model. 

 

JEL classification: E21; E27. 

 

Keywords: Macroeconomics; Dynamical Systems; Complex-valued Eigenvalues; 

Consumption; Habit Persistence. 

 

 ii 
 



1. INTRODUCTION 

Recent studies of dynamic macroeconomic relationships focus on models 

derived from optimising behaviour by economic agents. In most of these 

models, the eigenvalues of the associated dynamical system are real-valued and 

so the time-path of the system exhibits monotonic or near-monotonic behaviour 

(see, for example, Blanchard and Fischer, 1989, and Turnovsky, 2000).  While 

it is well-known that linear dynamic models with complex-valued eigenvalues 

exhibit the property of oscillatory dynamic behaviour (see, for example, Simon 

and Blume, 1994), limited research has been undertaken to investigate the 

properties of optimising models with oscillatory behaviour.  

In this study, we take the most basic model of the consumer, the model of 

optimal saving attributed to Ramsey (1928) and modify the model to allow for 

habit persistence in consumption.  The consumption behaviour of the 

optimising consumer is then derived using the standard techniques of optimal 

control theory (Leonard and Long, 1992).  Applying these techniques, we are 

able to show that it is possible for the linearised version of this model to have 

complex-valued eigenvalues.  The model can thus exhibit cyclical behaviour 

for an appropriate choice of model parameters.   

Of course, in practice, such cyclical behaviour is unimportant if the 

period length of the cycles is too long (for example, if the consumer lives for 

80 years but the length of the cycles is 100 years) or if the model has 

substantially converged to its steady-state well within the length of a full 

period.  To investigate whether it is possible to generate meaningful cycles we 

then calibrate the model, using plausible parameter values.   
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The rest of the paper proceeds as follows.  Section 2 introduces the basic 

model.  The model’s dynamic properties are investigated in Section 3.  After 

specific functional forms for the utility and production functions have been 

introduced in Section 4, the model is calibrated and results reported in Section 

5.  Section 6 summarises our conclusions. 

 
 
2.  THE MODEL 
 
 Consider the following problem for a representative consumer with habit 

persistence in consumption: 

  21
2

0

Max exp( )[ ( ) ( ) ]
c

V t u c cδ α
∞

= − −∫ dt    (1) 

subject to: 

      (2) ( ) ( )k f k n k cρ= − + −

where 

 k = capital/labour ratio; 

 c = consumption/labour ratio; 

 δ = discount rate; 

 ρ  = rate of capital depreciation; and 

 n = rate of population growth. 

It is also assumed that . ' 0, '' 0, ' 0 and '' 0u u f f> < > <

 The chosen model is the Ramsey (1928) model of optimal saving with an 

additional term in the criterion function used to model habit persistence.  This 

additional term is given by: ( )21
2" "cα− .  

 We can rewrite equation (2) as 

          (3a) k z=

  ( ) ( )z f k n k cρ= − + −      (3b) 
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and derive the following equation for : c

  '( ) ( )c f k z n z zρ= − + −      (3c) 

Then, to solve the consumer’s problem, we first write down the Euler-

Lagrange Hamiltonian as follows: 

21
2exp( ){ ( ) [ '( ) ( ) ] } exp( ) [ ]H t u c f k z n z z t zδ α ρ δ ψ= − − − + − + − − k +  

  exp( ) [ ( ) ( ) ]t z f k n k cδ η ρ− − + + +    (4)  

where ψ  and λ  are discounted co-state variables. 

 The Euler-Lagrange conditions for this Hamiltonian then satisfy: 

  0cH =        (5a) 

  z
dH
dt

= zH        (5b) 

  k k

dH H
dt

=        (5c) 

These equations then reduce to: 

 '( ) 0u c η+ =        (6a) 

 [ '( ) ] 0c c f k nα α ρ δ ψ η+ − − − − − =    (6b) 

 [ ''( ) ] '( ) ( ) 0c f k z f k nψ δψ α η η ρ− − − + + =    (6c) 

In turn, these equations can be written as the following four-dimensional 

equation system, with endogenous variables given by: c, k, ψ  and x. 

          (7a) c x=

       (7b) ( ) ( )k f k n k cρ= − + −

  { ''( )[ ( ) ( ) ]} '( )[ '( ) ]x f k f k n k c u c f k nψ δψ α ρ ρ= + − + − − − −  

          (7c) 

  1[ '( )] [ '( )]x x n f k u cρ δ ψ
α

= + + − + −    (7d) 
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 The steady state of this system satisfies the following equations: 

        (8a) * *( ) ( )c f k n kρ= − + *

  *'( )f k nρ δ= + +       (8b) 

  * '( )u c*ψ =        (8c) 

  * 0x =         (8d) 

 Then the system can be linearized about its steady-state yielding: 

  

*

*
* * *

*
*

*

0 0 0 1
1 0 0

''( ) '( ) ''( ) 0
''( ) 10 0

c c c
k k k

u c u c f k
u cx x x

δ
δ δ

ψ ψ ψ

α α

⎛ ⎞⎛ ⎞−⎛ ⎞ ⎜ ⎟− ⎜ ⎟⎜ ⎟ ⎜ ⎟ −⎜⎜ ⎟ = ⎜ ⎟− − ⎜⎜ ⎟ −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ −−⎝ ⎠ ⎜ ⎟⎝ ⎠⎝ ⎠

⎟
⎟

⎜ ⎟

 (9) 

 

3. ESTABLISHING DYNAMIC PROPERTIES OF MODEL 

Calculating eigenvalues 

 In order to solve the model, it is first necessary to calculate the eigenvalues.  

The characteristic equation satisfies: 

* * *

*

0 0
1 0

0 ( ) ''( ) '( ) ''( ) 0
''( ) 10

c u c u c f k
u c

λ
δ λ

λ δ δ

1
0

λ

λ
α α

−
− −

= = − − −

− −

   (10a) 

 
* * *

2 2 2 ''( ) ''( ) '( ) ''( )( ) ( ) ( )u c u c u c f kδλ δ λ δ λ δ λ
α α

= − + − + − −
*

α

*

 (10b) 

  (10c) 2 2 2 * * *( ) ( ) ''( ) ( ) ''( ) '( ) ''( )u c u c u c f kαλ δ λ δ λ δ λ δ= − + − + − −

Letting 

   *''( )u c
ακ = −       (11a) 
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and   
* *

*

'( ) ''( )
''( )

u c f k
u c

θ =      (11b) 

Equation (10c) can be rewritten as: 

    (12) 2 2 2( ) ( ) ( ) ( )c λ κλ δ λ δ λ δ λ δ θ= − − − − − + = 0

 

Proposition 1: When 0δ →  from above, we can always choose a value of (and 

hence a value of 

κ

α ) so that all eigenvalues of the model given by equation (9) are 

complex-valued. 

 

Proof: 

Let 0δ →  from above in equation (12).  Then the characteristic equation reduces 

to: 

       (13) 4 2( ) 0c λ κλ λ θ= − + =

 The eigenvalues, as 0δ → , are then given by: 

  2 1 1 4
2

κθλ
κ

± −
=       (14) 

 Let 2

1 4
4
κθ

κ
−

∆ = , then  when 0∆ = 1
4

κ κ
θ

= = . 

Then, 

2λ  is real-valued  ⇔ 0∆ > ⇔ κ κ<     (15a) 

 2λ  is complex-valued ⇔ 0∆ <  ⇔ κ κ>     (15b)  

At κ κ= , 

  
* *

2
*

2 '( ) ''( )2
''( )

u c f k
u c

λ θ= ± = ±      (16) 
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So that 

  
* *

1 3 *

2 '( ) ''( )2
''( )

u c f k
u c

λ λ θ= = + = +     (17a) 

  
* *

2 4 *

2 '( ) ''( )2
''( )

u c f k
u c

λ λ θ= = − = −     (17b) 

Furthermore,  is minimized when ∆ ˆκ κ=  and ˆ∆ = ∆ , with κ̂  and ∆̂  given by: 

  1ˆ
2

κ
θ

=  and 2ˆ θ∆ = −       (17) 

Figure 1 plots  against . ∆ κ

(Figure 1 about here) 

Thus, as 0δ → , 2λ  has its largest imaginary part when ˆα α=  and ˆ∆ = ∆ .  At that 

point, 

  
* *

2
*

'( ) ''( )(1 ) (1 )
''( )

u c f ki
u c

λ θ
⎛ ⎞

i= ± = ±⎜ ⎟
⎝ ⎠

    (18a) 

But, 

  1 ( 2) cos sin ( 2) exp
4 4

ii i
4

π π π⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

⎤
⎥
⎦

  (19a) 

  7 7 71 ( 2) cos sin ( 2) exp
4 4

ii i
4

π π π⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

⎤
⎥
⎦

 (19b) 

Then, the four eigenvalues of the system are given by: 

  
* *

1 2 *

'( ) ''( ), (
''( )

u c f k i
u c

λ λ
⎛ ⎞

= ± +⎜ ⎟
⎝ ⎠

1 )   

    
* *

4
*

'( ) ''( ) ( 2)exp
''( ) 8

u c f k i
u c

π⎛ ⎞ ⎛ ⎞= ±⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
  (20a) 

* *

3 4 *

'( ) ''( ), (
''( )

u c f k i
u c

λ λ
⎛ ⎞

= ± −⎜ ⎟
⎝ ⎠

1 )  
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* *
4

*

'( ) ''( ) 7( 2)exp
''( ) 8

u c f k i
u c

π⎛ ⎞ ⎛= ±⎜ ⎟ ⎜⎜ ⎟ ⎝ ⎠⎝ ⎠

⎞
⎟  (20b) 

For each pair of equations (20a-20b), one complex-valued eigenvalue has 

positive real part and one has negative real part.  Thus there is total of two stable 

eigenvalues and two unstable eigenvalues.      End of Proof. 

 

 

Closed-form solution of model 

Restricting our analysis to the case when all eigenvalues are complex-valued, 

we will write the stable eigenvalues as 1( )iλ α β= − +  and 2 ( i )λ α β= − −  and the 

unstable eigenvalues as 3 ( i )λ γ ε= +  and 4 ( i )λ γ ε= − , where , ,  and α β γ ε  are 

positive real-valued constants.  For each eigenvalue we can then use equation (9) to 

calculate the associated eigenvectors which, for each eigenvalue, λ , are given by: 

 

     (21) 2 *

1
( )

( )[ "( )]
( )

u c

δ λ

λ
δ λ αλ

λ δ λ

−⎛ ⎞
⎜ ⎟
⎜=
⎜ − +
⎜ ⎟

−⎝ ⎠

v ⎟
⎟

 

Then, the general closed-form solution of the model is given by: 

[ ]

*
1 2 1

*
1 2 2

3 4*
1 2 3

*
1 2 4

( ) exp( )
( )exp( )

( ) ( ) ( ) ( )
( )exp( )
( ) exp( )

A iA tc c
A iA tk k
B iB t
B iB tx x

λ
λ

λ λ λ λ
λψ ψ
λ

+⎛ ⎞− ⎡ ⎤
⎜ ⎟ ⎢ ⎥−−⎜ ⎟ ⎢ ⎥=
⎜ ⎟ ⎢ ⎥+−
⎜ ⎟ ⎢ ⎥⎜ ⎟ −− ⎣ ⎦⎝ ⎠

1 2v v v v  (22) 
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where there are two “jump” variables, ψ  and ( )x c= , so that the 

constants:  are  determined by initial values for c and k, and by the 

transversality conditions. 

1 2 1 2, ,  and A A B B

 Since we are primarily interested in the dynamic properties of c and k, we can 

use equation (22) to yield the following solutions for c and k: 

 *
1 2 1 2exp( )[2{ ( ) }cos( ) 2{ ( )}sin( )]c c t A A t A A tα δ α β β β δ α β− = − + + + − +  

  1 2 1 2exp( )[2{ ( ) }cos( ) 2{ ( )}sin( )]t B B t B B tγ δ γ ε ε ε δ γ ε+ − + + − −  

          (23a) 

 *
1 2exp( )[2 cos( ) 2 sin( )]k k t A t A tα β β− = − −  

    1 2exp( )[2 cos( ) 2 sin( )]t B t B tγ ε ε+ −   (23b) 

 

4.  CHOOSING SPECIFIC FUNCTIONAL FORMS 

 We now investigate the values of the eigenvalues generated by equation (12) 

using specific functional forms.  In particular we need to establish a formula to 

determine the magnitude of: 
* *

*

'( ) ''( )
''( )

u c f k
u c

θ
⎛ ⎞
=⎜
⎝ ⎠

⎟ .  To do this, we assume that: 

  ( )f k ak β=        (24a) 

and  
1

( )
1
cu c

η

η

−

=
−

       (24b) 

Hence, 

  2''( ) ( 1)f k ββ β ak −= −      (25a) 

Also, 

  '( )
''( )

u c c
u c η

= −        (25b) 

So that       
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* * * 2

*

'( ) ''( ) (1 ) ( )
''( )

u c f k a k c
u c

ββ βθ
η

−−
= =

*

*

   (26) 

Also, substituting equations (24a-24b) into equations (8a-8b) yields 

       (27a) * *( ) ( )c a k n kβ ρ= − +

  * 1( )a k nββ ρ− = + +δ       (27b) 

From equation (27b), 

 
1

1
* nk

a

βρ δ
β

−⎛ + +
= ⎜
⎝ ⎠

⎞
⎟   (27c) 

  

Substituting equation (27a) into equation (26) yields 

 
2 * 2 2 * 1(1 )[ ( ) ( ) ( ) ]a k n a kβ ββ β ρθ

η

− −− − +
=  (28a) 

Then substituting equation (27c) into equation (27a) yields 

2
2(1 ) ( )na n a

a a
nβ β ρ δ ρ δθ ρ

η β β

⎡ ⎤⎛ ⎞ ⎛− + + + +
= − +⎢ ⎥⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⎞
⎟   (28b) 

 
2

2

(1 ) ( ) ( )( )n n nβ β ρ δ ρ ρ δ
η β β

⎡ ⎤− + + + + +
= −⎢ ⎥

⎣ ⎦
 (28c) 

   [ ](1 )( ) ( ) (n n )nβ ρ δ ρ δ β ρ
βη

− + +
= + + − +   (28d) 

In the special case, when 0δ → , considered above, this reduces further to: 

* * 2

*

'( ) ''( ) (1 ) ( )
''( )

u c f k n
u c

β ρθ
βη

− +
= =

2

    (29) 

Note that, from equations (11a), (24b) and (25b), 

 1
*"( )

c
u c

ηα ακ
η

+= − =       (30) 
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But, from equations (27a-27c), the magnitude of  is determined by the magnitude of 

a.  Hence, for a given , the precise magnitude of 

*c

κ α is determined by the magnitude 

of a.   

 

5.  CALIBRATING THE MODEL 

 We shall now calibrate the model by assuming 0.25β = , implying a capital 

share of income of 25%, instantaneous intertemporal elasticity of substitution, 

1 1.0η =  and population growth rate, 0.02n = .  As demonstrated in equations (28d, 

29), the value taken by a is irrelevant for the determination of θ .  We also consider 

three rates of capital depreciation, given by 0.10ρ = , 0.20ρ =  and 0.30ρ =  as well 

as three discount rates given by 0.00δ = , 0.10δ =  and 0.20δ = .   

 Our process for deriving eigenvalues from equation (12) is to determine θ  and 

δ  using the calibrated parameter values and then to investigate the properties of the 

eigenvalue configurations as  is allowed to vary through arrange of values.  All 

reported results have been derived using Mathematica version 5.1.1 (Wolfram, 2003). 

κ

(Table 1 about here) 

 Table 1 gives the values of θ  and κ̂  for 0.10ρ = , 0.20ρ =  and 0.30ρ =   

under the assumption that 0δ = .  We have shown that, when 0δ = , the absolute 

imaginary parts of 2λ  are maximized when ˆκ κ= .  Usually, this does not mean that 

the absolute imaginary parts of each eigenvalue are maximized for κ̂  but it does give 

an indication of where to locate our grid-search for finding optimal values of . κ

 In order to investigate the oscillatory properties of solutions with complex-

valued eigenvalues, it is appropriate to rewrite equations (23a-23b): 

 *
1 2 1 2exp( )[2{ ( ) }cos( ) 2{ ( )}sin( )]c c t A A t A A tα δ α β β β δ α β− = − + + + − +  
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  1 2 1 2exp( )[2{ ( ) }cos( ) 2{ ( )}sin( )]t B B t B B tγ δ γ ε ε ε δ γ ε+ − + + − −  

          (23a) 

 *
1 2exp( )[2 cos( ) 2 sin( )]k k t A t A tα β β− = − −  

    1 2exp( )[2 cos( ) 2 sin( )]t B t B tγ ε ε+ −   (23b) 

Following an unanticipated shock, all variables will jump to the stable manifold where 

, so it will be appropriate to examine the oscillatory properties for c and k 

when solutions are restricted solely along the stable manifold.  Following an 

anticipated shock, that is a shock that is announced at time  but not implemented 

until some later time , then the economic variables will spend some time 

following an unstable path, before reaching the stable manifold at time .  To 

examine this case it is appropriate to consider solutions along the unstable manifold 

where . 

1 2 0B B= =

0t

1 0(t t> )

1t

1 2 0A A= =

 

Solutions along the stable manifold 

(Tables 2A and 2B about here) 

We first consider solutions along the stable manifold.  Table 2A uses a grid-

search over a range of values to find the approximate eigenvalue configurations that 

have maximum absolute imaginary part for the stable eigenvalues.  These will also be 

the configurations that yield the smallest period length if the solution is restricted to 

the stable manifold.  Column 3 of Table 2B shows the period length in years for the 

stable eigenvalues, where the stable eigenvalues are given by 

κ

iα β− ±  and the period 

length is given by the formula:  

Period length 2ps π
β

= =      (31a) 
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  Of course, we will not have observable behaviour if the amplitude of the cycle 

has diminished to almost zero well within the length of a full period.  To investigate 

this outcome we calculate the amplitude after one period along the stable manifold 

assuming that the amplitude is equal to one at time zero.  Amplitude along the stable 

manifold is given by the formula: 

  Amplitude .2expas α π
β

⎛ −
= = ⎜

⎝ ⎠

⎞
⎟     (31b) 

The amplitude associated with stable eigenvalues is reported in Column 4 of Table 

2B. 

In the case of unstable eigenvalues, we need to calculate the amplitude along 

the unstable manifold.  Since movement along the unstable eigenvalue is associated 

with an anticipated shock, it is appropriate to consider the amplitude after a period of 

five years, since shocks are unlikely to be anticipated more than five years ahead of 

time.  Column 5 of Table 2B shows the period length in years for the unstable 

eigenvalues, where the unstable eigenvalues are given by iγ ε±  and the period length 

is given by the formula:  

Period length 2pu π
ε

= =      (32a) 

The amplitude associated with unstable eigenvalues is reported in Column 6 of Table 

2B  and satisfies the formula: 

  Amplitude 10expau π
ε

⎛= = ⎜
⎝ ⎠

⎞
⎟      (32b) 

 Examination of Tables 2A and 2B indicates that the largest period lengths in 

the case examined arise for the largest values of ( 0.20)δ =  and ( 0.30)ρ = .  Yet even 

in this case the period lengths are substantial (21.1 years for stable eigenvalues and 

13.8 years for unstable eigenvalues).  Also along the stable manifold the solutions will 
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have converged to close to their steady-state well before the end of the period.  These 

results indicate that observable cyclical behaviour is unlikely to be achieved for any of 

the chosen parameter values. 

(Figures 2A and 2B about here) 

These results are confirmed by Figures 2A and 2B which examine time-paths 

of c and k along the stable manifold (in Figure 2A) and the unstable manifold (in 

Figure 2B) for a range of initial conditions when 0.20δ =  and 0.30ρ = .  For all 

initial conditions, there is no observable oscillatory behaviour, although the 

occasional hump does arise. 

 

Solutions along the unstable manifold 

It is still possible that oscillatory behaviour might arise along the unstable 

manifold if the imaginary part of unstable eigenvalues were maximised.  This case, 

which is associated with minimum period lengths along the unstable manifold, is 

considered in Tables 3A and 3B.  Once again a reduced minimum period length along 

the unstable manifold arises when 0.20δ =  and 0.30ρ =  but the reduction is not 

significant.  These results are confirmed by Figure 3A which examines time-paths of c 

and k along the unstable manifold for a range of initial conditions when 0.20δ =  and 

0.30ρ = .  Once again, for all initial conditions, there is no observable oscillatory 

behaviour, although the occasional hump does arise.  Again we conclude that cyclical 

behaviour is unlikely to be observed along the unstable manifold for any of the chosen 

parameter values. 

(Tables 3A and 3B about here) 

(Figure 3A about here) 
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6.  CONCLUSION 

 This paper has investigated whether or not it is possible to generate oscillatory 

behaviour in a standard model of consumer behaviour.  The study has been 

undertaken by extending the Ramsey (1928) model to allow for habit persistence in 

consumption.  Our results show that, using this approach, it is possible to generate 

dynamic behaviour which is characterised by complex-valued eigenvalues.  Hence 

oscillatory behaviour is theoretically possible.  However, when the model was 

calibrated with plausible parameter values, the results provide overwhelming evidence 

that observable oscillations are unlikely to occur in practice. 

 The results indicate that it is likely that observable cyclical behaviour will only 

be able to be generated using considerably more complicated models of consumer 

behaviour than were considered here. 
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Figure 1 
Plot of ∆  against κ  when 0δ =  
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Table 1 
Values of θ  and  for given values of κ̂ ρ  when 0.0δ =  

Values of ρ   
0.10 0.20 0.30 

θ  0.0324 0.1089 0.2304 
κ̂  15.4321 4.5914 2.1701 

 

 

Table 2A 
Eigenvalues with Largest Imaginary Parts for Stable Eigenvalues 

δ  ρ  κ  Stable Eigenvalues Unstable Eigenvalues
0.0      0.1 30 0.1574 0.0900i− ±  0.1574 0.0900i+ ±  

      0.2 15 0.2435 0.1610i− ±  0.2435 0.1610i+ ±  
      0.3 5 0.3176 0.2256i− ±  0.3176 0.2256i+ ±  

0.1      0.1 20 0.1792 0.1189i− ±  0.2792 0.1896i+ ±  
      0.2 10 0.2743 0.1931i− ±  0.3743 0.2610i+ ±  
      0.3 4 0.4259 0.2697i− ±  0.5259 0.3539i+ ±  

0.2      0.1 15 0.1953 0.1458i− ±  0.3953 0.2577i+ ±  
      0.2 4 0.3510 0.2214i− ±  0.5510 0.3711i+ ±  
      0.3 3 0.4693 0.2981i− ±  0.6693 0.4539i+ ±  

 

 

Table 2B 
Period Length and Amplitude for Eigenvalues from Table 2A 

Stable Eigenvalues Unstable Eigenvalues 

δ  ρ  Period Length 
(in years) 

Amplitude 
(after one 
period) 

Period Length 
(in years) 

Amplitude 
(after five 

years) 
0.0 0.1 69.8 0.000017 69.8 2.197 

 0.2 39.0 0.000075 39.0 3.379 
 0.3 27.9 0.000144 27.9 4.894 

0.1 0.1 52.8 0.000077 33.1 4.039 
 0.2 32.5 0.000133 24.1 6.498 
 0.3 23.3 0.000049 17.8 13.867 

0.2 0.1 43.1 0.000221 24.4 7.217 
 0.2 28.4 0.000047 16.9 15.721 
 0.3 21.1 0.000051 13.8 28.403 
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Figure 2A 
Plots of c and k on Stable Manifold for Eigenvalues in Table 2A 

When 0.2δ =  and 0.3ρ = . 
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Figure 2B 
Plots of c and k on Unstable Manifold for Eigenvalues in Table 2A 

When 0.2δ =  and 0.3ρ = . 
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Table 3A 
Eigenvalues with Largest Imaginary Parts for Unstable Eigenvalues 

δ  ρ  κ  Stable Eigenvalues Unstable 
Eigenvalues 

0.0      0.1 30 0.1574 0.0900i− ±  0.1574 0.0900i+ ±  
      0.2 15 0.2435 0.1610i− ±  0.2435 0.1610i+ ±  
      0.3 5 0.3176 0.2256i− ±  0.3176 0.2256i+ ±  

0.1      0.1 4 0.4313 and 0.2462− − 0.4387 0.2361i±  
      0.2 2 0.5008 0.7419i− ±  0.6008 0.3103i±  
      0.3 2 0.5471 0.2494i− ±  0.6471 0.3820i±  

0.2      0.1 1 0.9852 and 0.2485− − 0.8168 0.3786i±  
      0.2 1 0.8935 and 0.4418− − 0.8676 0.4578i±  
      0.3 0.8 0.8116 and 0.7502− − 0.9809 0.5318i±  

 

 

Table 3B 
Period Length and Amplitude for Eigenvalues from Table 3A 

Stable Eigenvalues Unstable Eigenvalues 

δ  ρ  Period Length 
(in years) 

Amplitude 
(after one 
period) 

Period Length 
(in years) 

Amplitude 
(after five 

years) 
0.0 0.1 69.8 0.000017 69.8 2.197 

 0.2 39.0 0.000075 39.0 3.379 
 0.3 27.9 0.000144 27.9 4.894 

0.1 0.1 * * 26.6 8.967 
 0.2 8.5 0.014389 20.2 20.166 
 0.3 25.2 0.000001 16.5 25.419 

0.2 0.1 * * 16.6 59.383 
 0.2 * * 13.7 76.554 
 0.3 * * 11.8 134.895 

* denotes real-valued eigenvalues so that periodicity is ∞ . 
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Figure 3A 
Plots of c and k on Unstable Manifold for Eigenvalues in Table 3A  

When 0.2δ =  and 0.3ρ = . 
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