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Abstract

Using novel �rm-level panel data from European countries, this paper empirically
investigates how the performance-innovation relationship varies with �rm size. We
distinguish between �rm-level measures of applied research using patents (from both
the European and US Patent O¢ ces) and measures of basic research (using academic
publication in �hard science� journals). We look at (total factor) productivity and
growth as measures of �rm performance. Our results indicate that the correlation of
performance with applied research (patents) is stronger for small �rms than for large
�rms. By contrast, the correlation of performance with basic research (academic
publications) is stronger for large �rms than small �rms. A number of possible
theoretical explanations for our �ndings are discussed.
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1. Introduction

Whether �rm size a¤ects the amount and composition of corporate R&D is an impor-

tant question that has been hotly debated among economists and policymakers. Several

theoretical arguments have been put forward in favor or against large size. According to

Galbraith (1952), for instance, big �rms may �nd it easier to internally generate the funds

that are necessary to run large R&D programs. Large, diversi�ed �rms may also have an

advantage when it comes to �nd useful applications for the uncertain outcomes of R&D,

especially if their research is close to the basic-science end of the spectrum [Nelson (1959)].

On the negative side, bureaucracy and red tape could sti�e entrepreneurship and creativity

in large �rms. Incumbents may even delay the development of new technologies to avoid

cannibalizing the streams of rents from existing technologies [Arrow (1962), Reinganum

(1983)]. Thus, in the end, whether small or large �rms are more conducive to innovation

is an empirical matter.

Unfortunately, the existing empirical literature on the relationship between �rm size

and innovation has produced rather fragile results.1 One major problem has been the

paucity of data, especially at the lower end of the �rm-size distribution. As Cohen and

Levin (1989) have stressed, in fact, most of the literature has restricted attention to very

large �rms (typically the 500 or 1000 largest �rms in the manufacturing sector), which may

not be representative of the whole distribution. Furthermore, with few notable exceptions

[e.g., Mans�eld (1981), Griliches (1986)], little is known about the composition of corporate

R&D and the relationship between basic research, performance, and �rm size.

We contribute to this literature by empirically investigating the relationship between

1For excellent surveys of this large body of research, see Cohen and Levin (1989) and Kamien and
Schwartz (1975). More recently, Blundell, Gri¢ th and Van Reenen (1999) have investigated the related
question of how innovation and market share interact. In a panel of British �rms, they �nd a robust,
positive e¤ect of market share on di¤erent measures of innovative output (headcounts of innovations
and patents). Furthermore, the payo¤ from innovation is larger for high market share companies. They
interpret these results as evidence of the importance of the �e¢ ciency e¤ect� [see Gilbert and Newbery
(1982)]; however, due to the necessity of having stock market data, they can only analyze a sample of
relatively large �rms.
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�rm size and innovation using a novel and comprehensive database on patents and aca-

demic publications. Patent data from the European Patent O¢ ce (EPO) and from the

United States Patent and Trademark O¢ ce (USPTO) is systematically matched to all

European �rms. This dataset covers a wide distribution of �rm size. About 10 percent

of the innovating �rms in our sample have less than 7 employees and less than $1 million

in annual sales. Our dataset also contains new data on �rm publications in academic

journals. Publications are especially important since they may capture a type of research

which is more basic (or science-based) than that captured by patents [e.g., Cockburn and

Henderson (1998)]. Patents are in fact required by law to be very speci�c and tied down to

well de�ned commercial applications. Academic publications, by contrast, are not judged

upon their commercial application, but rather on their novelty and applicability to a wide

range of scienti�c problems.

Simply put, our conjecture is that �rms that conduct more basic research are more

likely to publish than �rms that have a stronger focus on applied research. The discovery

of the transistor e¤ect by a team of scientists working at the Bell Telephone Laboratories

provides a nice illustration. After WorldWar II, Bell started devoting substantial resources

to basic research in semiconductors. This research resulted in a number of important aca-

demic publications and valuable patents.2 Such cases do not appear to be isolated events.

As Murray (2002) has argued, in fact, a given piece of knowledge can encompass both pure

scienti�c content that is published in academic journals, and commercial applications that

are patented. Murray (2002) and Murray and Stern (2006) identify scienti�c ideas that

are initially published in academic journals and subsequently patented. Based on this

work, one can interpret publications data as proxing for the scienti�c base associated with

the patented inventions of �rms. In other words, publications could be a useful proxy for

2The key article here is probably Bardeen J. and W.H. Brattain, published in the Physical Review in
1949 under the title "Physical Principles Involved in Transistor Action". See also the July 1949 issue of
The Bell System Technical Journal devoted entirely to the discussion of the transistor and semiconductor
devices. Two successful patents resulting from this research were �led in 1948: the one for the point
contact transistor and the one for the junction transistor.
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basic research conducted within �rms.

We construct our measures of applied and basic research as follows. All granted patent

applications from the EPO and the USPTO are used to generate a �rm-level measure of

applied research. To measure more basic research, all patenting �rms are matched by name

(using authors�a¢ liations) to the complete Thomson�s ISI Web of Science, which covers

about 20 million publications in thousands of international journals in �hard�sciences, such

as physics and biochemistry. For each publication we have information on the number

of times it has been cited as well as on the quality of the journal in which the article

was published, which we use to control for the quality of the publication. Finally, we

systematically match publications data to �rms and link this information to performance

measures. By using multiple indicators of innovative activity, we thus hope to provide a

richer and more nuanced view of how �rm size and innovation interact.

Our main �ndings can easily be summarized. Private �rms contribute substantially to

the advancement of basic scienti�c knowledge. We matched about 200 thousand publica-

tions to �rms over the period 1970-2004. These publications appear to be of high quality as

indicated both by the number of citations they receive and by the impact factor of the jour-

nals in which they were published. We then investigate how the performance-innovation

relationship varies with �rm size, looking at total factor productivity and growth as mea-

sures of �rm performance. Our results indicate that the correlation of performance with

applied research (patents) is stronger for small �rms than for large �rms. By contrast,

the correlation of performance with basic research (academic publications) is stronger for

large �rms than small �rms. These correlations are robust to controlling for the quality of

patents (as measured by patent citations) as well as the quality of academic publications

(as measured by forward citations and the impact factor of the journal in which the article

was published). Restricting attention to di¤erent subsets of the size distribution also does

not alter the general picture.

Our results for the productivity-publications relationship relate to an earlier literature
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studying the basic research premium. Griliches (1986) adopted a production function

approach to estimate the returns to basic research, where basic research was measured

using survey data for large US �rms.3 His main �nding was that this type of research was

associated with a higher productivity premium than other types of R&D. In this paper,

we are able to replicate his �nding only for big �rms. In our sample, for big �rms the

relationship between productivity and publications is more than three-fold larger than the

relationship between productivity and patents. Yet, for small �rms we do not observe

an important premium for basic research. Importantly, the fact that the basic research

premium varies with �rm size mitigates the concern that this premium is driven solely

by unobserved �rm heterogeneity (as is the case, for instance, if academic publications

capture unobserved labor-force skills) and allows us to identify speci�c channels through

which this premium is generated (e.g., e¢ cient internal capital markets).

In the second part of the paper we discuss possible theoretical explanations for our

�ndings. As mentioned above, there are several arguments pointing to a causal relationship

between �rm size and innovation. Because of �nancial constraints, for instance, returns

to innovation might increase with �rm size, while the displacement e¤ect suggests that

the opposite may be true. We build on these ideas to illustrate why basic and applied

research may exhibit the markedly di¤erent patterns that we see in the data. Three

possible explanations are explored.

The �rst one is that a key advantage of internal capital markets �namely headquarters�

superior ability to pick "winners", relative to external investors [Stein (1997)] �may be

especially relevant in the case of basic research. A second explanation hinges on the

relative severity of �nancial constraints for basic and applied research. Basic research is

often more risky than applied research and its returns accrue very far in the future. Thus

it is plausible that �nancial constraints may be more stringent for basic research. We

3A �rst attempt to measure basic research was made by Mans�eld (1981). He used information on the
composition of company-�nanced R&D expenditures in 1977 provided by 108 �rms.
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develop a simple model to show that this fact could generate patterns of returns to basic

and applied research that are consistent with our observations. Finally, we use a variant

of that model to formalize Nelson�s (1959) diversi�cation hypothesis, stating that a broad

technological base may necessary to �nd use for the uncertain outcome of an R&D project,

especially when research is close to the basic-science end of the spectrum. Throughout

we discuss possible ways to empirically disentangle these di¤erent channels, but a careful

empirical analysis of these issues is left for future work.

The remainder of the paper is organized as follows. Sections 2 and 3 describe the data

and provide descriptive statistics. Section 4 reports the econometric results. Section 5

discusses possible explanations for our results. Section 6 concludes.

2. Data

This paper combines data from three main sources: (i) patents from the EPO and USPTO,

(ii) academic publications from the Web of Knowledge database and (iii) �nancial infor-

mation from Amadeus. In this section, we explain our methodology for constructing these

data and describe our sample.

2.1. Patents

In order to generate a �rm-level measure of applied innovation, we look at patent based

measures which capture technological advances by �rms [Griliches (1990) and Trajten-

berg (1990)]. We constructed a unique dataset of European �rm patents by matching

all granted patent applications from the EPO and the USPTO to the complete list of

Amadeus �rms (about 8 million �rm names) for the period 1979-2004. In addition to

patenting information, we also use patent citations data to measure the quality of patents.

Patent quality is highly skewed and only few patents have signi�cant economic value. A

common method to proxy for the quality of patents is by counting the number of citations

they receive [Trajtenberg (1990) and Hall et al. (2005)]. Another issue is that European
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�rms typically have corporate controlling shareholder. Our matching process is at the �rm

level and is not aggregated to the highest shareholder level (as is the case, for example,

for Compustat �rms). We also test the robustness of our results to aggregating patents to

the highest corporate level, yet such aggregation is likely to hamper the main advantage

of our database: examining the e¤ect of innovation on the performance of small �rms.

Some European �rms register patents only with the USPTO, without applying to the

EPO. In order to identify the European �rms that only apply to the USPTO, we match

the complete set of Amadeus �rms to the name of the patent applicants from the USPTO.

The most updated patent database for the USPTO is the 2002 version of the NBER

patents and citations data archive. Because this database covers patent information only

up to 2002 and our accounting data go up to 2004, we updated the patent data �le by

extracting all information about patents granted between 2002 and 2004 directly from

the USPTO website. Having updated the USPTO patent database, we follow the same

matching procedure as for the EPO to create the matched USPTO patent data for the

Amadeus �rms4.

2.2. Academic Publications

Another measure of innovation is publication in academic journals. We develop systematic

data on �rm publications to proxy for science-based inventive activity by �rms. The

world�s largest source of information on academic publications is the Thomson�s ISI Web

of Knowledge (WOK), which includes publication records on thousands of international

journals in �hard�sciences (such as natural or physical sciences). Each publication has

an address �eld which contains the authors�a¢ liation. We match all patenting �rms by

4Firms can apply for patents for the same invention with both the EPO and the USPTO. Patents
protecting the same invention across di¤erent organizations are called a patent family (this includes
patents that are registered in all three main patents o¢ ces: the EPO, JPO, and USPTO). To avoid
double counting of inventions, information on patent families is needed. We collect this information from
the OECD Triadic database on patent families. Having identi�ed inventions that belong to the same
family, we exclude patents granted by the USPTO that belong to the same family of patents granted by
the EPO.
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name to the complete ISI database. For each publication, we also have information on the

number of citations, which we use to control for the quality of the publication. European

research institutions can be incorporated, thus, they appear in Amadeus as potential

�rms to be matched. To screen out such �rms, we follow two steps. First, as for patent

matching, we drop Amadeus names that include strings that are associated with research

institutions. Second, we manually examine the websites of �rms that have a large number

of publications but appear as small �rms in terms of their sales and number of patents.

For these �rms, we check whether their primary activity is research. In case the primary

activity is research, we exclude them from our matched sample. Almost 30 percent of the

organizations matched to the WOK database were identi�ed as research or non-for-pro�t

institutions. Finally, because our main objective is using academic publications as a proxy

for basic research, we want to control for publications that are likely to be linked to applied

research and less to pure scienti�c advance. Such publications are most likely to appear in

professional journals. To mitigate this concern and control for the quality of publication

we follow two steps. First, we use information about forward citations at the publication

level, where a publication is assumed to be of higher quality if it receives more forward

citations. Second, we control for the importance of the journal in which the article was

published by using the impact factor from the Journal Citations Report.

2.3. Accounting

Accounting information is taken from Amadeus. The source of the accounting information

is the Company Register House in each of the twelve countries included in our sample.

The key advantage of these data is their large coverage of �rms and unique accounting

information on private �rms with a wide size distribution. Yet, the accounting data has

some limitations. First, countries di¤er in reporting requirements. For example, very small

�rms (fewer than 10 employees) in Great Britain are not obliged to disclose accounting

information including number of employees, sales, or total assets. On the other hand,
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French �rms must provide such information regardless of their size. For very small �rms

(below 10 employees) we include in our estimation sample only those that report �nancials.

In order to avoid selection bias in reporting �nancials (i.e., only the best small innovating

�rms voluntary disclose their �nancials), we test the robustness of our results by including

only �rms with more than 50 employees (which is well above the voluntary threshold for

�nancial reporting).

3. Descriptive Statistics

Table 1 reports summary statistics for �rms in our sample. About 13 thousand �rms have

at least one patent between 1979 and 2004. On average, these �rms have about 7 patents

(with a median of 1). Our sample covers a wide distribution of �rm size, especially in

the lower tail. The median �rm in our sample generates about $20 million in annual sales

and has 126 employees. 10 percent of the innovating �rms in our sample have less than

7 employees and less than $1 million in annual sales5. About 6.5 thousand �rms have at

least one academic publication over the same period, with an average of 4 publications.

Table 2 reports summary statistics, separately for patenting and publishing �rms.

Panel A includes only �rms that have at least one patent. The average �rm has 1,495

employees with a median of 150 employees. Out of the 13 thousand patenting �rms, 1,613

�rms also publish. These publishing �rms have on average about 8 publications. Panel

B of table 2 reports the same summary statistics for �rms with at least one academic

publication. European �rms published about 200 thousand articles in academic journals

between 1979 and 2004. The average publishing �rm has 2,414 employees with a median

of 113 employees. 25 percent of the publishing �rms also patent. On average, these �rms

have about 4 patents. Firms in the publishing sample are, on average, about 20 percent

more productive and about a third more capital intensive than �rms in the patenting

5As a comparison, Compustat patenting �rms have on average $3 billion in annual sales with a median
of $500 million [Bloom, Schankerman and Van Reenen, 2005].
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sample. This may indicate that publications are the result of capital intensive research,

which may generate large productivity gains.

Figure 1 plots the distribution of �rm publications across main technology areas. Most

�rm publications (31 percent) are concentrated in Biology and Chemistry, 22 percent in

Engineering and 21 percent in Health and Medicine. Table A1 provides information on the

quality of �rm publications. On average, an article receives more than 7 citations, but this

�gure varies substantially across �elds, from a minimum of about 2.5 citations in Computer

science to a maximum of 11 citations in Biology and Chemistry. As a comparison, the

average of citations received by the non-�rm publications (that is, publications we have not

matched to Amadeus) is 10.1 (a median of 2). The quality of �rm publications is also high

according to the Journal Citations Report indicator, which averages 3.8 for publications by

�rms and 2.5 for all other publications. Table A2 examines publications only for �rms that

report �nancials. We split the sample of publications according to the median number

of employees. Publications by larger �rms appear to receive and make more citations

compared to publications by small �rms. For example, in Biology and Chemistry, an

average �rm publication receives about 12 citations, while for small �rms the average is of

approximately 9 citations. Table A3 reports similar statistics when we restrict attention to

publications in leading journal only. (Leading journals are de�ned as those in the highest

quartile of the journal impact factor, as indicated by the Journal Citations Report index.)

A similar pattern emerges, with publications by large �rms receiving more citations than

publications by small �rms.

Figures 2 and 3 describe the relationship between �rm labor productivity, innovation

and size. We are especially interested in di¤erences between patenting and publications,

following the conjecture that patenting proxy for applied research, whereas publishing

proxy for basic research. Figure 2 plots the relationship between labor productivity and

patenting for �rms of di¤erent size class. We split �rms into high and low patenting

categories according to whether their number of patents is above or below the median.
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The bars then re�ect the percentage di¤erence in labor productivity between the high

and low innovating �rms. For small �rms, labor productivity is much higher for high

innovators than for low innovators. This means that conditional on being small, there

are large productivity gains associated with patenting. By contrast, for big �rms the

di¤erence in labor productivity between high and low innovators is much smaller. Thus

conditional on being large, the productivity gains associated with patenting are lower

compared to the case of small �rms. This pattern of results could indicate that the

displacement e¤ect is important: the productivity gains associated with an incremental

improvement are mitigated by the obsolescence of previous inventions, which is likely to

be costly especially for large �rms. Alternatively, it could be that small �rms produce,

on average, better inventions than large �rms because they face more severe constraints.

Such constraints would lead to small �rm selection bias: only the best small �rms that

were able to overcome the constraints and come up with the invention enter our sample.

For instance, small �rms could face higher unit costs than large �rms when �ling a patent,

or the cost of external �nance could be higher for them [Hall (1989, 1992), Mayer (1992),

Himmelberg and Peterson (1994)]. Later in the paper we test whether this selection bias is

likely to drive our results by examining a sample of small and large non-innovating �rms.

Figure 3 provides a similar description of the relationship between productivity gains

to publishing and �rm size. Here we observe the opposite pattern than for patenting.

Productivity gains associated with publishing are much higher when �rms are large. Since

the cost of submitting a paper for publication is likely to be negligible, this result suggests

that large �rms may have a comparative advantage in developing commercial applications

of scienti�c breakthroughs. In Section 5 we explore this idea in greater depth.

4. Econometric Results

Our econometric analysis focuses on identifying robust correlations between �rm size and

the private gains from patenting and publishing. More speci�cally, we examine the e¤ects
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of the stocks of patents and publications on �rm performance (total factor productivity and

sales growth) and analyze how these correlations vary across �rms of di¤erent size. Our

analysis di¤ers from previous �classical�productivity estimations [e.g., Griliches (1986)] in

that we do not directly observe R&D expenditures. This implies that we cannot compute

net returns to innovation, as the costs associated with the innovative output are not

observed. We thus focus on di¤erences in the private gains associated with innovation

(both basic and applied) by small and large �rms.

4.1. Firm Size and Patents Stock

Table 3 reports the relation between patents stock and (total factor) productivity and

examines how this relation varies with �rm size. Columns 1 to 4 include all innovation

�rms, that is, �rms that have at least one patent or academic publication between 1979

and 2004. Column 1 reports the e¤ect of lagged patents stock on sales, controlling for

employment, capital and complete sets of three-digit SIC, country and year dummies.

The coe¢ cient on the stock of patents is positive and highly signi�cant (an elasticity of

0.055). In column 2 we interact patents stock with the lagged number of employees. The

coe¢ cient on this interaction is negative and highly signi�cant (-0.012 with a standard

error of 0.003). Column 3 adds �rm �xed-e¤ects to control for �rm unobserved time-

invariant heterogeneity (which may be correlated with patenting). The coe¢ cient on the

patents stock actually rises and remains highly signi�cant (0.073 with a standard error of

0.014). The same pattern of results also holds when including an interaction between �rm

number of employees and patents stock (column 4). This means that the productivity

gains associated with a given level of patents stock fall with the size of the innovating

�rm. Or in other words, an additional patent is associated with higher productivity gains,

in percentage terms, for small �rms than for large �rms.6

To test the robustness of our results we also examine the relation between patenting

6We also interacted lagged employment with lagged capital stock because of the high correlation patent
and capital stocks in our sample. The results are robust for adding this interaction.
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and productivity for di¤erent sub-samples of �rm sizes. In columns 5 and 6 we split

observations according to the number of lagged employees. Columns 5 includes only

observations where the number of employees is in the lowest quartile (25 employees). The

elasticity of sales with respect to patents stock is 0.126 (with a standard error of 0.044).

This elasticity falls as we examine sub-sets of larger �rms. For example, for �rms in the

highest employment quartile (column 8), the elasticity of sales with respect to patents

stock falls to 0.038 (with a standard error of 0.010). Columns 9 to 12 exclude �rms that

never patent to mitigate the concern of including non-for-pro�t �rms in our sample. The

same pattern of results holds, meaning that for small �rms, patenting is associated with

higher productivity gains as compared to large �rms.

4.2. Firm Size and Publications Stock

Table 4 reports the estimation results when the publications stock is added. The estima-

tion sample includes all innovating �rms (patenting and publishing). Column 1 includes

linearly patents and publications stocks. The coe¢ cient on patents stock remains almost

unchanged, while the coe¢ cient on publications stock is positive and signi�cant (0.030

with a standard error of 0.015). The same pattern emerges when the interaction between

patents stock and size is added. This result is interesting because under the assumption

that publications measure the quality of patented knowledge, we would expect the coe¢ -

cient on patents stock to fall when controlling for publications. Thus the stability of the

patents stock coe¢ cient suggests that publications capture additional information about

a �rm�s inventive activities, not just unobserved patents quality.

Column 4 includes an additional interaction between the lagged number of employees

and publications stock. The coe¢ cient on this interaction is positive and signi�cant (0.012

with a standard error of 0.004). This means that the productivity gains associated with

a given level of publications stock rise with the size of the innovating �rm. This result is

also inconsistent with the hypothesis that publications measure unobserved patent quality.
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There is no clear reason to suspect that publications would measure patent quality better

for large �rms than for small �rms.

Columns 5 to 8 examine the robustness of this result by splitting the size of the sample

according to �rm size. Column 5 includes only observations where the lagged number

of employees is below the median. The elasticity of patents stock is positive and highly

signi�cant (0.085 with a standard error of 0.025), where the elasticity of publications stock

is negative and not signi�cant (-0.016 with a standard error of 0.034). Column 6 includes

only observations where the lagged number of employees is above the median. For this

sub-sample, the elasticity of publications stock is positive and highly-signi�cant (0.048

with a standard error of 0.015), where the elasticity of patents stock is still positive and

signi�cant, but lower than for the smaller �rms. In columns 7 and 8 we include only

observations where the number of employees is above 435 (75th percentile) and 1,600

(90th percentile), respectively. The elasticity of publications stock rises to 0.083, where

the elasticity of patents stock falls to 0.029 (column 8).

Our results about the relationship between �rm productivity and publications relate

to an earlier literature on the returns to basic research. Griliches (1986) also adopted

a production function approach to measure the returns to basic research, where basic

research was measured using survey data for large US �rms. He found that a small

number of typically very large �rms were responsible for a substantial fraction of total and

basic R&D expenditures and that basic research was associated with a much high premium

than other types of research.7 In our sample, this high premium for basic research only

exists for big �rms. Indeed, for �rms with more than 1200 employees the relationship

between productivity and publications is more than three-fold larger than that between

productivity and patents. By contrast, for small �rms, we do not observe an important

premium for basic research, as measured by academic publications. Note that the fact

7Speci�cally, he found that the productivity gains associated with basic research were eight times larger
than the productivity gains associated with other types of research.
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that our basic research �premium�varies with �rm size helps mitigate the concern that

it is driven solely by unobserved �rm heterogeneity. If, in fact, academic publications

captured just unobserved labor-force skills, we would expect this premium to be roughly

constant as �rm size varies.

As reported in table A7 in the appendix, the same pattern of results holds when we

screen �rm publications according to quality measures, such as the number of forward

citations a publication receives and the impact factor of the journal in which the article

was published.

Table 5 reports similar estimations for �rm growth (measured separately by employ-

ment and sales growth). The pattern is similar to the one found in the productivity

estimation. The contribution of patents stock to �rm growth is much more prominent for

small �rms. By contrast, the correlation of �rm growth with publications is stronger for

large �rms than for small �rms.

4.3. Compustat versus AmaPat

The main advantage of our new European dataset, AmaPat, is that it captures a wide range

of �rm size. To demonstrate this advantage, we estimate similar productivity-innovation

speci�cations for Compustat �rms and large European �rms. The sample of Compustat

�rms includes all patenting �rms, where patents data is taken from the NBER archive.

We follow the same matching procedure as for the European �rms to assign publications

to Compustat �rms. The average US �rm in our sample, which covers the period 1980-

2001, has 14,843 employees with a median of 2,625 employees (as compared to AmaPat,

where the average �rm has 1,370 employees with a median of 126). Table 6 reports the

estimation results of the variation of the productivity-innovation relationship across �rm

size. Column 1 reports the estimation results of the �rm productivity against patent and

publication stocks. The coe¢ cient on the patent stock is negative and not signi�cant

while the coe¢ cient on the publications stock is positive and signi�cant (0.022 with a
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standard error of 0.008). This result is somewhat consistent with our result that, for large

�rms, the correlation between productivity and publications should be strong while the

correlation between productivity and patenting should be weak. In columns 2 and 3 we

add interactions between a �rm�s patents and publications stocks and employment. None

of the interactions is signi�cant. In columns 4-9 we perform similar estimations for large

European �rms. In none of these speci�cations we are able to replicate the results on �rm

size and the productivity gains associated with patenting and publishing.

4.4. Innovation Intensity and Firm Size

Table 7 investigates Schumpeter�s hypothesis that size should be positively associated with

innovation intensity in our dataset. Two measures of innovation intensity are considered:

patents stock to sales (�patents intensity�) and publications stock to sales (�publications

intensity�). The sample is cross-sectional for 2003, the year for which we have most �rms.

Our proxy for �rm size is employment in 2000.

Column 1 gives the results of our simplest speci�cation. Patents intensity appears to be

strongly negatively associated with �rm size, thus contradicting Schumpeter�s hypothesis.

However, by adding past employment squared in column 2, a signi�cant nonlinearity

emerges. Patents intensity appears to be largest for both very large and very small �rms,

a �nding that resonates well with the results by Bound et al. (1984). The in�ection point

is at about 170 employees, which is well within our �rm size range. In column 3 and 4 we

check the robustness of our results by excluding publishing �rms that do not patent. The

qualitative results are the same but the magnitude of the coe¢ cients nearly doubles. The

location of in�ection point remains essentially unchanged.

Columns 5-8 look at publications intensity. The same pattern of results emerges. The

main di¤erence is that the coe¢ cient on past employment in the linear regression is only

marginally signi�cant when the sample includes both publishing and patenting �rms. In

the nonlinear regression, however, all coe¢ cients are highly signi�cant. Again, publications
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intensity appears to be largest for both very large and very small �rms. The in�ection

point is at about 160 employees, essentially the same as for patents. Similar qualitative

results obtain when we restrict attention to publishing �rms only.

4.5. Selection into Innovation

Our serious concern is that our results about patents could be driven at least in part by

a small �rm selection bias. Suppose in fact that small �rms face greater di¢ culties in

developing and implementing their ideas than large �rms. Then many of their projects

would fail to reach development stages �typically the low quality ones. As a result, the

average quality of inventions by small �rms should be higher than that of large �rms.

To test this idea we use data on non-innovating �rms (that is, �rms that never patent

or publish). We randomly sample 10 percent of all Amadeus �rms that report �nancial

information and that have not been matched to the patents or publications data. The

selection hypothesis implies that the e¤ect of innovating on productivity should be larger

for small �rms than for large �rms.

Table 8 estimates the e¤ect an innovation indicator on productivity and examines

the extent to which this e¤ect varies with �rm size. The innovation indicator is de�ned

as a dummy variable that receives the value of one for �rms that innovate (patent or

publish) and zero for �rms that never innovate. All regressions are cross-sectional for the

year 2004. Column 1 includes a linear dummy for innovating. The coe¢ cient on this

dummy is positive and signi�cant, indicating a 6 percent average productivity premium

for innovation. Column 2 adds an interaction term between the innovation dummy and

the size of the �rm (as previously, measured by lag employment). The coe¢ cient on

this interaction is positive, but not signi�cant. This means that we cannot reject the

hypothesis that selection into innovation is identical across �rm size. Columns 3 to 6

report the estimation of the e¤ect of innovating for di¤erent sub-samples of �rm size. The

pattern of results suggests that as the size of �rms increase, the e¤ect of innovating on

17



productivity rises. Clearly this pattern is the opposite of what we would expect under the

selection hypothesis.

5. Basic and Applied Research: Theoretical Considerations

In this section we discuss possible explanations for our empirical �ndings. Our focus will be

on di¤erences between basic and applied research that may help rationalize the markedly

di¤erent patterns that we observe in the data.

5.1. Internal Capital Markets

Large �rms frequently reallocate scarce resources across projects through internal capital

markets. The costs and bene�ts of such markets (relative to external �nance) have been

studied extensively. On the positive side, corporate headquarters may have informational

advantages over external investors that could be conducive to better �nancing decisions

[Stein (1997), Guedj and Scharfstein (2005)]. Furthermore, while external investors do

not have residual rights over the assets they invest in (only in case the �rm defaults),

headquarters owns and controls the project in which it invests and therefore has stronger

incentives to improve its quality [Gertner, Scharfstein and Stein (1994)]. On the negative

side, internal capital markets may be prone to agency problems and in�uence activities,

which could lead to biased decision-making [Meyer, Milgrom and Roberts (1992), Scharf-

stein and Stein (1998)].

A plausible conjecture is that the bene�ts of having an active internal capital market

(which is typically related to the size of the �rm) may be particularly large in the case

of basic research. A straightforward extension of Stein�s (1997) �winner-picking�model

su¢ ces to make this point.

In Stein�s model there are two types of �rms: large �rms running several projects

and small �rms running only one project. Because of moral hazard, all �rms are cash

constrained. In that setting the headquarters of a large �rm can perform a useful role
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by reallocating resources from projects with low NPV to projects with high NPV. Stein

makes the simplifying assumption that headquarters perfectly observes whether returns

are low or high, whereas external investors observe nothing. It is not hard to relax this as-

sumption. In general, the value of having an internal capital market rises with the amount

of private information that the headquarters has (in principle, this value could be negative

because supervision by headquarters generates an �e¤ort-dilution�e¤ect). Thus Stein�s

model suggests that large �rms should perform better than small �rms when projects

cannot easily be evaluated by outsiders (i.e., when the amount of asymmetric information

between headquarters and external investors is large), and should perform poorly when

the opposite is true. To the extent that it is harder for outsiders to evaluate basic research

than applied research (relative to insiders), this yields precisely the pattern of returns that

we observe in the data.8

5.2. Financial Constraints and the Displacement E¤ect

Financial constraints may also help explain our empirical �ndings if they are particularly

stringent in basic research. We illustrate this idea in the context of a simple model of

R&D where �rms can choose among di¤erent types of research.

The economy is populated by a continuum of �rms. Each �rm is characterized by

a productivity parameter � and initially operates in a single, �primary�market. Both

the short-run pro�ts in the primary market, �1 (�), and the optimal number of workers

employed by the �rm, L�(�), are assumed to be increasing in �.9 Thus � is a measure of

�rm size.

A �rm can engage in R&D to expand its business into di¤erent markets. There are two

periods. In the �rst period, short-run pro�ts accrue and investment decisions are made,

8Empirically, one could try to use cross-industry variation in our data to provide exogenous variation
for the importance of internal capital markets. Industry measures such as Productivity Growth Dispersion
and average Tobin�s Q might be good starting points.

9This is the case if, for instance, L� solves maxL f�R (L)� wLg, where R is a revenue function (in-
creasing in L) and w is the wage.
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subject to �nancial constraints. In the second period, the �rm may introduce a new

product. Long-run pro�ts are �2 (�)+��2 (�) if the new product is introduced, and �2 (�)

if the new product is not introduced. We assume that ��2 (�) is (weakly) decreasing in

�rm size �. This captures the idea that large �rms may be less inclined to invest in R&D,

since the new product may cannibalize the streams of rents from existing technologies (i.e.,

Arrow�s (1962) displacement e¤ect). This assumption is satis�ed if, for instance, the new

product reduces sales in the primary market by a given fraction.

To increase the chances of developing a new product, the �rm can engage in basic or

applied research (or both). Either type of research costs I and stochastically produces

new knowledge.10 Let kA and kB denote the �rm�s initial stocks of technical and scienti�c

knowledge, respectively. Engaging in applied research increases the stock of technical

knowledge from kA to kA, where kA is a random variable de�ned on
�
kA;

�kA
�
. Similar

remarks apply to basic research and the �rm�s stock of scienti�c knowledge (denoted by

kB). Thus, due to the uncertainties of the R&D process, �rms of the same size may

well end up with with di¤erent knowledge stocks. The probability that a new product is

introduced is given by the separable function q (kA; IA)+r (kB; IB), where IA; IB 2 f0; Ig.11

We normalize q (kA; 0) and r (kB; 0) to zero and de�ne � � q (kA; I), � � r (kB; I).12 Of

course @�=@kA > 0 and @�=@kB > 0. The expected values of � and � are denoted by ��

and ��, respectively.

We assume that both investments have positive net present value, but that the invest-

ment in applied research is ex-ante more pro�table:

����2 (�)� I > ����2 (�)� I > 0:
10The investment I can of course be interpreted as an additional expenditure, on top of the �rm�s

normal R&D expenditures.
11This rules out complementarities or substitutability between basic and applied research. See Aghion

and Tirole (1994) for a similar assumption.
12More generally, what we need is some form of complementarity between knowledge and investment so

that, for instance, @q (kA; IH) =@kA > @q (kA; IL) =@kA for IH > IL. In other words, investments in R&D
must have a component of development, not just research.
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This is obviously the case if the investment in basic research is very risky: �� < ��.

At the end of the �rst period, kA and kB are realized and, conditional on its stock of

knowledge, the �rm�s expected long-run pro�ts (denoted by �LR) are �2 (�) if no invest-

ment is made, �2 (�) + ���2 (�) (� (�) + ���2 (�)) if the �rm invests in applied (basic)

research, and �2 (�)+(�+�)��2 (�) if the �rm invests both in applied and basic research.

In the second period, pro�ts accrue.

Due to credit market imperfections, the �rm may be unable to raise all the money it

needs. Speci�cally, we posit that a �rm with short-run cash �ow �1 (�) can raise at most

��1 (�), where � � 1measures the extent to which the �rm can borrow using its short-term

pro�ts as collateral.13 Since investments in applied research yield higher ex-ante returns

than investments in basic research, �nancial constraints are more likely to be binding for

basic research. Three cases must thus be considered: ��1 (�) < I (no investment is made),

I � ��1 (�) < 2I (only applied research is undertaken), and ��1 (�) � 2I (both types of

research are undertaken).14

The interplay between �nancial constraints and the displacement e¤ect can easily

generate the kind of patterns that we observe in the data. To see this, suppose that

��1 (�) � I, so that applied research is always undertaken. The derivative of the expected

long-run pro�ts �LR with respect to kA has the same sign as

@�LR

@�
= ��2 (�)

which, because of the displacement e¤ect, is decreasing in �. Thus the returns to technical

knowledge (or �patents�) are decreasing in �rm size. Now consider basic research. The

derivative of �LR with respect to kB has the same sign as

@�LR

@�
=

�
0 if ��1 (�) < 2I
��2 (�) if ��1 (�) � 2I

:

13See Aghion et al. (2007) and Almeida and Campello (2006) for similar assumptions.
14Note that in this simple model �rm size a¤ects the �nancial constraints only through the short-run

cash-�ow �1 (�). In practice, however, size is related to �nancial constraints through several channels. For
instance, both unit bankruptcy costs and transaction costs for new share or bond issues typically decrease
with size. See Schiantarelli (1996) for a careful discussion.
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Here, despite the displacement e¤ect, the returns to scienti�c knowledge (or �publications�)

may well increase with �rm size, since only large �rms have the �nancial resources to

conspicuously invest in R&D.

We can gain further insight by considering an extension of the model where some �rms

are always constrained while others are not. To introduce variation among �rms of the

same size, suppose that �rms may be hit by an adverse shock and be required to plow in

extra cash D to remain a�oat (D could be negative �a positive shock). If D is drawn

from the cumulative distribution F (�), a fraction F (��1 (�)� I) of the �rms will engage

in applied research, and a fraction F (��1 (�)� 2I) will engage in both basic and applied

research. Expected long-run pro�ts are thus

�LR = �2 (�) + ���2 (�)F (��1 (�)� I) + ���2 (�)F (��1 (�)� 2I) :

We have that

@2�LR

@�@�
=

@��2 (�)

@�
F (��1 (�)� I) + ��2 (�) f (��1 (�)� I)�

@�1 (�)

@�
@2�LR

@�@�
=

@��2 (�)

@�
F (��1 (�)� 2I) + ��2 (�) f (��1 (�)� 2I)�

@�1 (�)

@�
:

Two opposite e¤ects emerge. In both equations the �rst term is negative because of the

displacement e¤ect. The second term, however, is positive since knowledge is bene�cial

only when �rms invest in R&D. Note that, in general, the displacement e¤ect will be

more important (on average) for applied research than for basic research because more

�rms engage in applied research: F (��1 (�)� I) � F (��1 (�)� 2I). In particular, if D

is uniformly distributed, one obtains

@2�LR

@�@�
<
@2�LR

@�@�

which is consistent with our evidence.

A second prediction can be obtained by varying the cost of R&D. Indeed, for IH > IL

(and assuming again that D is uniformly distributed), we get @
2�LR

@�@�
(IL) <

@2�LR

@�@�
(IH) and
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@2�LR

@�@�
(IL) <

@2�LR

@�@�
(IH). The reason is simply that few �rms experience displacement if

R&D costs are high. Empirically, therefore, we should expect our interaction coe¢ cients

to be larger in sectors where �rms, for exogenous reasons, depend more on external �nance.

5.3. Diversi�cation

Diversi�cation can also help explain our empirical �ndings. To illustrate this point, we

modify the above model to capture the basic idea in Nelson (1959). Consider a �rm

composed of n divisions, or product lines.15 Total pro�ts are given by �1(n), where �1(�)

is increasing. As before, we assume that the �rm can engage in basic or applied research,

or both. Throughout, we abstract from �nancial constraints.

There are two main di¤erences between this model and the previous one. The �rst

is that applied and basic research are now assumed to facilitate the invention of two

distinct products, A and B. Thus, by engaging in applied research, the �rm can increase

the likelihood that product A is introduced, and similarly for basic research. As in the

previous model, the additional pro�ts in case of success,��A (n) and��B (n), are assumed

to be weakly decreasing in �rm size (or diversi�cation, as parametrized by n).

The second di¤erence captures the essence of Nelson�s (1959) diversi�cation hypothesis.

Nelson claimed that while applied research can be tied to the solution of a speci�c practical

problem or the creation of practical object, basic research is characterized by a higher

degree of uncertainty. This greater uncertainty makes having a broad technological base

important because it "insures that, whatever direction the path of research may take, the

results are likely to be of value to the sponsoring �rm. It is for this reason that �rms

which support research toward the basic-science end of the spectrum are �rms that have

their �ngers in many pies" (Nelson (1959), p.302). Note that, implicit in this argument,

there is the assumption that "a single-product �rm is unable to exploit an invention not

15For simplicity, n is here a parameter of the model. However, the optimal n could easily be derived
endogenously in a model where managerial ability places restrictions to the number of divisions that a
manager can e¢ ciently supervise.
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directly linked to its primary product, through licensing to others or developing a new

product line" (Kamien and Schwartz (1975), p.15).

We capture these ideas as follows. We posit that applied research can easily be tied to

the solution of problems related to the �rm�s n primary products. Thus the probability of

successfully introducing a new product is just, as before, � = q (kA; I). For basic research,

however, things are more di¢ cult. Indeed, due to its greater uncertainty, the link between

basic research and primary products can only be established with probability h (n), where

h (�) is increasing in n. The probability that a new product can be introduced is therefore

�h (n), where � = r (kB; I). Conditional on (�; �), expected long-run pro�ts are thus

�LR = �2 (n) + ���A (n) + �h (n)��B (n) :

Note that while the returns to applied research always decrease with �rm size, @2�LR=@�@�

may well be positive if h grows su¢ ciently fast as diversi�cation increases.

Empirical investigation of the diversi�cation hypothesis is not straightforward. Only

about ten percent of �rms in our sample are diversi�ed (operating in more than one two-

digit industry segments). Yet, unlike in the US, European �rms are likely to belong to

diversi�ed business groups [Belenzon and Berkovitz (2007)]. Thus, although a �rm itself

might operate in only one industry segment, it could be tied via ownership links to other

�rms that operate in di¤erent segments (about 30 percent of �rms in our sample belong

to business groups). This suggests that diversi�cation in the European context should be

studied in a business groups framework, and should consider the complex issues associated

with groups structure.16.

6. Conclusion

This paper empirically investigates how the performance-innovation relationship varies

with �rm size using a novel and comprehensive �rm-level panel data from 12 European

16See Khanna and Yafeh (2006) for a survey of the literature on business groups.
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countries. Unlike previous contributions, our database covers a wide distribution of �rm

size, which allows us to establish more robust correlations between the variables of interest.

We also distinguish between di¤erent types of innovative activity. In particular, we use

all granted patent applications from the European Patent O¢ ce to generate a �rm-level

measure of applied research, while basic research is proxied by the number of publications

in �hard�science journals.

We �nd that private corporations contribute substantially to the advancement of basic

scienti�c knowledge. Furthermore, the correlation of performance with applied research

(patents) is stronger for small �rms than for large �rms. By contrast, the correlation

of performance with basic research (academic publications) is stronger for large �rms

than small �rms.. A number of possible theoretical explanations for our �ndings are

also discussed, including the role of internal capital markets, �nancial constraints, and

diversi�cation.

There are several ways in which our �ndings could be extended. The most important

limitation of our analysis is that it only highlights correlations, without showing causal-

ity. In particular, we do not try to disentangled the speci�c channels through which �rm

size might a¤ect the incentives to innovate. Is the positive correlation between size and

publications the result of e¢ cient internal capital markets, or is it more related to diversi�-

cation and knowledge spillovers? A natural place to start would be the rich cross-industry

and cross-country variation in our data, that could provide exogenous variation for the

importance, for example, of internal capital markets for innovation [e.g., Belenzon and

Berkovitz (2007)].
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A. Appendix

A.1. Matching patent data

A.1.1. European Patent O¢ ce (EPO)

The matching between EPO patent applicants and Amadeus �rms has been a collaborative
project with the Institute for Fiscal Studies (IFS) and the Centre for Economic Perfor-
mance (CEP).17 This section is a brief summary of the matching procedure described in
the CEP/IFS AmaPat document and is included here for completeness. See also Belenzon
and Berkovitz (2007).
Our main information source on patents is the April 2004 publication of the PATSTAT

database, which is the standard source for European patent data. This database contains
all bibliographic data (including citations) on all European patent applications and granted
patents, from the beginning of the EPO system in 1979 to 2004.
We match the name of each EPO applicant listed on the patent document to the

full name of a �rm listed in Amadeus (about 8 million names). Since we are interested
only in matching patent applicants to �rms, we exclude applicant names that fall into
the following categories: government agencies, universities, and individuals. We identify
government agencies and universities by searching for a set of identifying strings in their
name. We identify individuals as patents where the assignee and the inventor name strings
are identical.
The matching procedure follows two main steps. (i) Standardizing names of patent

applicants. This involves replacing commonly used strings which symbolize the same thing,
for example �Ltd.� and �Limited� in the UK.18 We remove spaces between characters
and transform all letters to capital letters. As an example, the name �British Nuclear
Fuels Public Limited Company�becomes �BRITISHNUCLEARFUELSPLC�. (ii) Name
matching: match the standard names of the patent applicants with Amadeus �rms. If
there is no match, then try to match to the old �rm name available in Amadeus. We need
to confront a number of issues. First, in any given year, the Amadeus database excludes
the names of �rms that have not �led �nancial reports for four consecutive years (e.g.
M&A, default). We deal with this issue in several ways. First, we use information from
historical versions of the Amadeus database (1995-2003) on names and name changes.
Second, even though Amadeus contains a unique �rm identi�er (BVD ID number), there
are cases in which �rms with identical names have di¤erent BVD numbers. In these
cases, we use other variables for identi�cation, for example: address (ZIP code), Date of
incorporation (whether consistent with the patent application date), and more. Finally,
we manually match most of the remaining corporate patents to the list of Amadeus �rms.

17We extend our gratitude to the tremendous work done by Rachel Gri¢ th and the IFS team, especially
Gareth Macartney in developing and implementing the patent matching. More information about the
matching is available at: "AmaPat: Accounting, Ownership and Patents for European Firms" (CEP/IFS
AmaPat document).
18The complete list of strings is available in the CEP/IFS AmaPat document.
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A.1.2. United States Patents and Trademarks O¢ ce (USPTO)

The procedure described above matches European �rms to patents registered with the
EPO. Yet, some European �rms register patents only with the USPTO, without applying
to the EPO. In order to identify the European �rms that only apply to the USPTO,
we match the complete set of Amadeus �rms to the name of the patent applicants from
the USPTO. The most updated patent database for the USPTO is the 2002 version of
the NBER patents and citations data archive.19 Because this database covers patent
information only up to 2002 and our accounting data go up to 2004, we updated the
patent data �le by extracting all information about patents granted between 2002 and
2004 directly from the USPTO website.20 Having updated the USPTO patent database,
we follow the matching procedure described above to create the matched USPTO patent
data for the Amadeus �rms.
Firms can apply for patents for the same invention with both the EPO and the USPTO.

Patents protecting the same invention across di¤erent organizations are called a patent
family. To avoid double counting of inventions, information on patent families is needed.
We collect this information from the OECD Triadic database on patent families.21 Having
identi�ed inventions that belong to the same family, we exclude patents granted by the
USPTO that belong to the same family of patents granted by the EPO.

A.2. Matching academic publications

The largest database on academic publications is the ISI Web of Knowledge (WoK) by
Thomson. This includes millions of records on publications in nearly 9,000 leading aca-
demic journals. The data is divided to three main categories based on the publication
type: hard sciences, social sciences, and arts and humanities. Because we are interested in
capturing investment in scienti�c research, we focus only on the hard sciences section of
WoK. This section includes about 20 million publication records over the period 1970-2004.
The address �eld on each record indicates the a¢ liation of the authors of the publication.
For example, the following is a record in our database. This a¢ liation is typically either
a research institution or a �rm. We use the name appearing in this �eld and match it
to the complete list of Amadeus �rms. "HIGH-CAPACITY DIGITAL RADIO WITH
TRELLIS CODING", BACCETTI B , TAVERNA M , BELLINI S , SALVINI G, EURO-
PEAN TRANSACTIONS ON TELECOMMUNICATIONS, NOV-DEC 1993. Address:
BACCETTI B (reprint author), SIEMENS TELECOMUN SPA, I-20060 CASSINA DE
PECCHI, ITALY. The record would be matched to SIEMENS TELECOMUN SPA, which
is a �rm in Amadeus. We follow the same matching procedure as described above for the
EPO and USPTO patent matching. Articles may have more than one author (the median
number of authors per article is 2). In this case, the address �eld would include multiple
a¢ liations. We assign an academic publication to a speci�c �rm if the name of this �rm
appears at least once in the address �eld of the article. This procedure means that a
single article can be assigned to more than one �rm, but a �rm cannot be assigned more
than once to the same article. For each article, we also extract information on the number

19http://elsa.berkeley.edu/~bhhall/bhdata.html
20http://patft.uspto.gov/netahtml/PTO/srchnum.htm
21This includes patents that are registered in all three main patents o¢ ces: the EPO, JPO, and USPTO.
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of times it was cited, the journal in which it was published, and the year of publication.
Information about the importance of journals is taken from the Journal Citations Report
index (JCR). The Web Of Science often uses abbreviations. For example, �Chemicals�,
�Chemische" (chemical in German) and Chemistry appear as �Chem�. Such standardiza-
tion is important for name matching, because the name of the same company can appear
di¤erently in Amadeus and on the address �eld of the article (the country origin of each
author is also listed for each publication, which ease the translation to English).
Finally, European research institutions can be incorporated, thus, they appear in

Amadeus as potential �rms to be matched. To screen out such �rms, we follow two steps.
First, as for patent matching, we drop Amadeus names that include strings that are asso-
ciated with research institutions (such as, UNIVERSITY, RESEARCH, INSTITUTION,
etc.) or government organizations (endings such as, NCR for Italy, CEA for France, etc.).
Second, we manually examine the websites of �rms that have a large number of publica-
tions but appear as small �rms in terms of their sales and number of patents. For these
�rms, we check whether their primary activity is research. In case the primary activity
is research, we exclude them from our matched sample. At the end of this procedure we
are left with 234,864 publications that are matched to 21,052 Amadeus �rms. Because
our aim is to examine the e¤ect of publications on �rms performance, we match to the
publishing �rms accounting information. Firms that never report accounting information
are dropped from our sample. After dropping �rms with no �nancial information, we are
left with 163,833 �rm publications between 1970 and 2004. Over the estimation period,
1995-2004, our sample of �rms publish 87,671 articles. Figure B7 plots the total number
of �rm publications over time. Starting at 1990 there has been a sharp increase in the
number of �rm publications, especially Biology and Chemistry, Health and Medicine and
Engineering. A similar pattern holds when we include only �rm publications in leading
journal (journals with above median impact factor).

A.3. Accounting database

The accounting information is taken from Amadeus. The database contains �nancial
information on about 8 million �rms from 34 countries, including all the European Union
countries and Eastern Europe. The accounts of each �rm are followed for up to ten years.
The information source for Amadeus is about 50 country vendors (generally the o¢ ce of
register of Companies). The main advantage of Amadeus over other data sources is its
coverage of small and medium size �rms.
The accounting database includes items from the balance sheet (22 items) and income

statement (22 items). No information is available from the changes in cash �ow report
(i.e., investment data is not available). The accounting data is harmonized by BvD to
enhance comparison across countries. This comparison becomes easier over time due to the
improvement in the European Union harmonization is accounting standards. In addition
to accounting data items, Amadeus provides a description of �rms including their product
market activity. The main descriptive items are legal form (public versus private), date
of incorporation, types of accounts (consolidated versus unconsolidated), country, US SIC
and NAIC for the product market activity of the �rm (primary and non-primary). The
industry location information includes up to eight di¤erent six-digit NAIC codes per �rm
(note that the sales of the �rm are not broken-up across the di¤erent product markets).
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An important feature of the data is the criteria for dropping �rms from the sample
over time. As long as a �rm continues to �le its �nancial statements, it continues to
appear in Amadeus. In case a �rm becomes inactive, it stops �ling its �nancial statement
(alternatively, a �rm can be late in �ling its �nancial statement). This �rm will be kept
in the sample for four extra years since the last year �nancial statements were reported
(thus, in the �fth year the �rm will be removed from the sample). For example, a �rm
that becomes inactive and stops �ling its reports in 1995 (i.e., 1994 is the last year when a
�nancial statement was reported) will remain in the database until 1998 (including) and in
1999, it will be dropped from the sample (all observations of the speci�c �rm will be taken
out from the Amadeus database in the 1999 update). In order to mitigate the problem of
losing dead �rms, we purchased old Amadeus disks that allow tracking �rms that exit the
sample in previous years. For example, the �rm that exits in 1995 will appear in the 1998
Amadeus disk, but not in the 1999 disk. By using both 1998 and 1999 disks, we mitigate
the selection bias of dropping inactive �rms after 4 years of missing data.
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Health & Medicine
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Physics
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Materials Science
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Engineering
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FIGURE 1: FIRM PUBLICATIONS ACROSS MAIN TECHNOLOGY  AREAS
(234,707 ARTICLES BETWEEN 1970 AND 2004)

Notes: This figure plots the distribution of firm publications across main technology areas. We include all publication that
were matched to about 8m European firms from Amadeus over the period 1970-2004. The academic publications are
constructed by matching the name of the firm to the address field in the complete ISI Web of Science database.



Variable # firms # Obs Mean Std. Dev. 10
st

50
th

90
th

Patents stock 13,087 58,445 6.8 51.5 0.1 0.9 10.9

Publications Stock 6,516 27,657 3.9 28.7 0 0.5 5.7

Sales (`000) 14,251 60,926 435,158 3,933,684 921 21,153 379,236

Employess 17,047 74,321 1,370 10,458 7 126 1,423

Age 16,659 73,876 28 26 5 19 65

Employment growth 17,047 74,321 0.02 0.44 -0.04 0 0.22

Sales Growth 13,741 58,993 0.09 0.53 -0.06 0.09 0.42

Capital (`000) 15,094 64,534 278,911 3,309,300 93 3,822 145,348

Cash flow (`000) 14,341 60,156 43,743 489,349 -523 971 30,371

Capital/Employee (`000) 13,997 61,305 619 30,196 6 37 212

Sales/Employee (`000) 13,088 57,404 263 309 74 176 502

SUMMARY STATISTICS FOR MAIN FIRM CHARACTERISTICS

Distribution

TABLE 1-

Notes: This table provides summary statistics for firms in our estimation sample over the period 1995-2004. The
sample includes all Amadeus firms with at least one patent or one academic publication in "hard" science journals
between 1978 and 2005. Patents are constructed by matching the name of all Amadeus firms to all EPO and
USPTO patent records. Academic publications are constructed by matching the name of the firm to the address
field in the complete ISI Web of Science database (which includes about 20 million publications). Cash is defined as
net income plus depreciation. Capital is defined as fixed-assets. Age is the number of years since the date of
incorporation. Patents and publication stocks are computed using the perpetual inventory method using a
depreciation rate of 15 percent.



Variable # firms # Obs Mean Std. Dev. 10
st

50
th

90
th

Publications Stock 1,613 8,259 7.9 49.4 0 0.9 12.0

Patents stock 13,087 58,445 6.90 51.50 0 1 10.90

Sales (`000) 9,997 44,384 451,209 3,729,158 1,329 24,890 409,483

Employess 12,558 55,884 1,495 11,353 10 150 1,600

Age 12,245 55,803 29 26 5 21 67

Employment Growth 12,558 55,884 0.02 0.44 -0.17 0 0.21

Sales Growth 9,606 42,801 0.09 0.51 -0.06 0.08 0.40

Capital (`000) 10,428 46,069 293,528 3,580,681 185 4,983 162,882

Cash flow (`000) 9,980 43,205 46,318 496,709 -665 1,233 33,938

Capital/Employee (`000) 9,759 43,769 526 21,309 8 40 201

Sales/Employee (`000) 9,283 41,823 247 272 79 175 449

Variable # firms # Obs Mean Std. Dev. 10
st

50
th

90
th

Publications Stock 6,516 27,657 3.90 28.70 0 1 6

Patents stock 1,613 27,657 3.90 28.70 0.00 0.52 5.70

Sales (`000) 5,730 23,995 810,821 5,952,074 695 23,991 776,867

Employess 6,061 26,340 2,414 15,796 5 113 2,211

Age 5,965 26,103 27 27 4 17 67

Employment Growth 6,061 26,340 0.03 0.44 -0.41 0 0.26

Sales Growth 5,571 23,437 0.10 0.56 -0.05 0.09 0.44

Capital (`000) 6,065 25,657 463,153 3,700,162 47 3,787 279,699

Cash flow (`000) 5,702 23,673 76,970 661,374 -580 950 56,280

Capital/Employee (`000) 5,589 24,416 695 38,482 4 39 273

Sales/Employee (`000) 5,229 22,678 299 364 67 191 608

COMPARISON OF KEY VARIABLES: PATENTING FIRMS VERSUS PUBLISHING FIRMS

Distribution

TABLE 2-

PANEL A: PATENTING

PANEL B: PUBLISHING

Distribution

Notes: These tables provide summary statistics for firms in our estimation sample over the period 1995-2004. Panel
A includes only firms that have at least one patent in the period 1978-2004 and panel B includes all firms that have
at least one academic publication in the same period. Patents are constructed by matching the name of all
Amadeus firms to all EPO and USPTO patent records. Academic publications are constructed by matching the
name of the firm to the address field in the complete ISI Web of Science database (which includes about 20 million
publications). Cash is defined as net income plus depreciation. Capital is defined as fixed-assets. Age is the
number of years since the date of incorporation. Patents and publication stocks are computed using the perpetual
inventory method using a depreciation rate of 15 percent.



Notes: This figure plots percentage differences in labor productivity (sales per employee) between high and low publishing firms across
quintiles of number of employees. A firm is assumed to be high (low) patenting if its number of patents is higher (lower) than the sample
median number of patents. The sample includes all Amadeus firms with at least one patent or one academic publication in "hard" science
journals between 1978 and 2005. Patents are constructed by matching the name of all Amadeus firms to all EPO and USPTO patent
records. Academic publications are constructed by matching the name of the firm to the address field in the complete ISI Web of Science
database.
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FIGURE 2: PERCENTAGE DIFFERENCE IN LABOR PRODUCTIVITY BETWEEN 
HIGH AND LOW PATENTING FIRMS ACROSS FIRM SIZE CLASSES



Figure 1: Difference in mean labour productivity between high and low patenting 

Notes: This figure plots percentage differences in labor productivity (sales per employee) between high and low publishing firms and across
quintiles of number of employees. A firm is assumed to be high (low) publishing if its number of publications is higher (lower) than the median
number of publications. The sample includes all Amadeus firms with at least one patent or one academic publication in "hard" science journals
between 1978 and 2005. Patents are constructed by matching the name of all Amadeus firms to all EPO and USPTO patent records.
Academic publications are constructed by matching the name of the firm to the address field in the complete ISI Web of Science database.
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FIGURE 3: PERCENTAGE DIFFERENCE IN LABOR PRODUCTIVITY BETWEEN 
PUBLISHING AND NON-PUBLISHING FIRMS ACROSS FIRM SIZE CLASSES



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Firms:

# Employees t-1 : All All All All
≤ 25th     

(25)

≤ median     

(110)

> median      

(110)

> 75th      

(435)
All All

≤ median    

(135)

> median    

(135)

log(Employment)t-1 0.806*** 0.816*** 0.345*** 0.357*** 0.857*** 0.837*** 0.740*** 0.676*** 0.783*** 0.795*** 0.802*** 0.694***

(0.009) (0.009) (0.017) (0.017) (0.021) (0.014) (0.018) (0.028) (0.011) (0.011) (0.016) (0.018)

log(Capital)t-1 0.186*** 0.184*** 0.107*** 0.106*** 0.166*** 0.157*** 0.230*** 0.280*** 0.197*** 0.495*** 0.163*** 0.267***

(0.007) (0.007) (0.009) (0.009) (0.011) (0.009) (0.013) (0.021) (0.008) (0.008) (0.011) (0.013)

log(Patents stock)t-1 0.055*** 0.147*** 0.073*** 0.177*** 0.126*** 0.082*** 0.051*** 0.038*** 0.065*** 0.141*** 0.096*** 0.056***

(0.009) (0.024) (0.014) (0.048) (0.044) (0.025) (0.009) (0.010) (0.009) (0.025) (0.023) (0.009)

log(Patents stock)t-1 × 

log(Employment)t-1

-0.012*** 
(0.003)

-0.016*** 
(0.007)

-0.011*** 
(0.003)

Country dummies (12) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Three-digit SIC dummies (183) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year dummies (10) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Firm fixed-effects No No Yes Yes No No No No No No No No

R
2

0.881 0.891 0.976 0.976 0.562 0.703 0.856 0.849 0.887 0.899 0.720 0.876

Observations 53,842 53,842 53,842 53,842 13,380 27,009 26,833 13,428 38,000 38,000 19,030 18,970

Number of firms 12,326 12,326 12,326 12,326 4,543 7,624 5,633 2,817 8,284 8,284 5,057 3,920

TABLE 3- 

PRODUCTIVITY-PATENTS RELATIONSHIP AND FIRM SIZE

DEPENDENT VARIABLE: LOG(SALES)

Patenting and Publishing Excluding non-patenting

Notes: This table reports the results of OLS regressions examining the relationship between productivity, patents and firm size. The sample covers the period 1995-2004
and includes all Amadeus firms with at least one patent or one academic publication in "hard" science journals between 1978 and 2005. Patents are constructed by
matching the name of all Amadeus firms to all EPO and USPTO patent records. Academic publications are constructed by matching the name of the firm to the address field
in the complete ISI Web of Science database (which includes about 20 million publications). Capital is defined as fixed-assets. Patents and publication stocks are computed
using the perpetual inventory method using a depreciation rate of 15 percent. Standard errors (in brackets) are robust to arbitrary heteroskedasticity and allow for serial
correlation through clustering by firms. * significant at 10%; ** significant at 5%; *** significant at 1%.



                                   (1) (2) (3) (4) (5) (6) (7) (8)

# Employees t-1 : All All All All
≤ median    

(110)

> median    

(110)
> 75

th
         (435)

> 90
th         

(1600)

log(Employment)t-1 0.806*** 0.809*** 0.816*** 0.813*** 0.837*** 0.731*** 0.667*** 0.626***

(0.009) (0.009) (0.009) (0.009) (0.014) (0.016) (0.027) (0.045)

log(Capital)t-1 0.186*** 0.189*** 0.184*** 0.183*** 0.158*** 0.237*** 0.276*** 0.277***

(0.007) (0.007) (0.007) (0.007) (0.009) (0.012) (0.021) (0.038)

log(Patents stock)t-1 0.052*** 0.153*** 0.168*** 0.085*** 0.044*** 0.029*** 0.029**

(0.009) (0.025) (0.025) (0.025) (0.009) (0.009) (0.013)

log(Publications stock)t-1 0.030** 0.041*** 0.041*** -0.037 -0.016 0.048*** 0.055*** 0.083***

(0.015) (0.015) (0.015) (0.036) (0.034) (0.015) (0.016) (0.018)

log(Patents stock)t-1 × 

log(Employment)t-1

-0.014*** 
(0.003)

-0.016*** 
(0.003)

log(Publications stock)t-1 × 

log(Employment)t-1

0.012*** 
(0.004)

Country dummies (12) Yes Yes Yes Yes Yes Yes Yes Yes

Three-digit SIC dummies (183) Yes Yes Yes Yes Yes Yes Yes Yes

Year dummies (10) Yes Yes Yes Yes Yes Yes Yes Yes

R
2

0.891 0.891 0.891 0.891 0.703 0.860 0.851 0.846

Observations 53,842 53,842 53,842 53,842 27,009 26,833 13,428 5,491

Number of firms 12,326 12,326 12,326 12,326 7,624 5,633 2,817 1,163

TABLE 4- 

PRODUCTIVITY-INNOVATION RELATIONSHIP AND FIRM SIZE

DEPENDENT VARIABLE: LOG(SALES)

Notes: This table reports the results of OLS regressions examining the relationship between productivity, innovation and firm size. The sample
covers the period 1995-2004 and includes all Amadeus firms with at least one patent or one academic publication in "hard" science journals
between 1978 and 2005. Patents are constructed by matching the name of all Amadeus firms to all EPO and USPTO patent records.
Academic publications are constructed by matching the name of the firm to the address field in the complete ISI Web of Science database
(which includes about 20 million publications). Cash is defined as net income plus depreciation. Capital is defined as fixed-assets. Age is the
number of years since the date of incorporation. Patents and publication stocks are computed using the perpetual inventory method using a
depreciation rate of 15 percent. Standard errors (in brackets) are robust to arbitrary heteroskedasticity and allow for serial correlation through
clustering by firms. * significant at 10%; ** significant at 5%; *** significant at 1%.



(1) (2) (3) (4) (5) (6)

Dependent variable:

log(Employment)t-1 -0.044*** -0.040*** -0.041*** -0.024*** -0.021*** -0.022***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

log(Patents stock)t-1 0.032*** 0.078*** 0.081*** 0.022*** 0.060*** 0.064***

(0.003) (0.011) (0.012) (0.003) (0.010) (0.011)

log(Publications stock)t-1 0.021*** 0.026*** 0.008 0.009* 0.013** -0.013

(0.005) (0.005) (0.013) (0.005) (0.005) (0.013)

log(Patents stock)t-1 × 

log(Employment)t-1

-0.007*** 
(0.001)

-0.007*** 
(0.001)

-0.005*** 
(0.001)

-0.006*** 
(0.001)

log(Publications stock)t-1 × 

log(Employment)t-1

0.003** 
(0.001)

0.004*** 
(0.001)

Country dummies (12) Yes Yes Yes Yes Yes Yes

Three-digit SIC dummies (183) Yes Yes Yes Yes Yes Yes

Year dummies (10) Yes Yes Yes Yes Yes Yes

R
2

0.043 0.045 0.045 0.037 0.038 0.039

Observations 63,164 63,164 63,164 57,779 57,779 57,779

Number of firms 14,195 14,195 14,195 13,354 13,354 13,354

TABLE 5- 

GROWTH-INNOVATION RELATIONSHIP AND FIRM SIZE

log(Employment t /Employment t-1 ) log(Sales t /Sales t-1 )

Notes: This table reports the results of OLS regressions examining the how the effects of innovation on growth
vary with firm size. The sample covers the period 1995-2004 and includes all Amadeus firms with at least one
patent or one academic publication in "hard" science journals between 1978 and 2005. Patents are constructed
by matching the name of all Amadeus firms to all EPO and USPTO patent records. Academic publications are
constructed by matching the name of the firm to the address field in the complete ISI Web of Science database.
Patents and publication stocks are computed using the perpetual inventory method using a depreciation rate of
15 percent. Standard errors (in brackets) are robust to arbitrary heteroskedasticity and allow for serial correlation
through clustering by firms. * significant at 10%; ** significant at 5%; *** significant at 1%.



(1) (2) (3) (4) (5) (6) (7) (8) (9)

Firms:

log(Employment)t-1 0.676*** 0.674*** 0.671*** 0.607*** 0.621*** 0.622*** 0.647*** 0.666*** 0.667***

(0.028) (0.029) (0.029) (0.050) (0.054) (0.054) (0.038) (0.041) (0.042)

log(Capital)t-1 0.314*** 0.314*** 0.315*** 0.289*** 0.289*** 0.289*** 0.282*** 0.281*** 0.281***

(0.025) (0.025) (0.025) (0.042) (0.042) (0.042) (0.031) (0.031) (0.031)

log(Patents stock)t-1 -0.010 -0.022 0.008 0.030** 0.087 0.084 0.025** 0.106** 0.103**

(0.007) (0.024) (0.031) (0.014) (0.058) (0.063) (0.011) (0.045) (0.046)

log(Publications stock)t-1 0.022*** 0.021** -0.043 0.081*** 0.083*** 0.096 0.070*** 0.074*** 0.085

(0.008) (0.009) (0.049) (0.019) (0.019) (0.100) (0.017) (0.018) (0.079)

log(Patents stock)t-1 × 

log(Employment)t-1

0.001 
(0.002)

-0.002 
(0.003)

-0.006 
(0.006)

-0.007 
(0.006)

-0.009* 
(0.005)

-0.009* 
(0.005)

log(Publications stock)t-1 × 

log(Employment)t-1

0.007 
(0.005)

-0.001 
(0.010)

-0.001 
(0.008)

Country dummies (12) Yes Yes Yes Yes Yes Yes Yes Yes Yes

Three-digit SIC dummies (183) Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year dummies (10) Yes Yes Yes Yes Yes Yes Yes Yes Yes

R
2

0.951 0.951 0.951 0.854 0.854 0.854 0.847 0.847 0.847

Observations 21,416 21,416 21,416 4,793 4,793 4,793 7,706 7,706 7,706

Number of firms 1,502 1,502 1,502 1,020 1,020 1,020 1,615 1,615 1,615

TABLE 6- 

PRODUCTIVITY-INNOVATION RELATIONSHIP AND FIRM SIZE: US COMPUSTAT FIRMS VERSUS LARGE EUROPEAN FIRMS

DEPENDENT VARIABLE: LOG(SALES)

US Compustat firms Large Europeam firms (>1600 Employees) Large Europeam firms (>1000 Employees)

Notes: This table reports the results of OLS regressions examining the relationship between productivity, innovation and firm size for US Compustat
firms and for large European firms. The sample covers the period 1995-2004 for European firms and includes all Amadeus firms with at least one
patent or one academic publication in "hard" science journals between 1978 and 2005. For the US, the sample covers the period 1980-2001 and
includes only firms with at least one patent or publication over the period 1969-2005. The sample included in columns 4-6 matches the average number
of employees for the sample of Compustat firms. For Europe, patents are constructed by matching the name of all Amadeus firms to all EPO and
USPTO patent records. Academic publications are constructed by matching the name of the firm to the address field in the complete ISI Web of
Science database (which includes about 20 million publications). Patents and publication stocks are computed using the perpetual inventory method
using a depreciation rate of 15 percent. Standard errors (in brackets) are robust to arbitrary heteroskedasticity and allow for serial correlation through
clustering by firms. * significant at 10%; ** significant at 5%; *** significant at 1%.



(1) (2) (3) (4) (5) (6) (7) (8)

Depedent variable

Firms:

Employeest-1 ('000) -0.894*** -2.722*** -1.161*** -4.417*** -0.885* -2.854*** -1.290* -4.615***

(0.244) (0.654) (0.358) (1.074) (0.483) (1.045) (0.678) (1.586)

Employees
2

t-1 ('000) 0.008*** 0.013*** 0.009*** 0.014***

(0.002) (0.004) (0.003) (0.004)

Country dummies (12) Yes Yes Yes Yes Yes Yes Yes Yes

Three-digit SIC dummies (183) Yes Yes Yes Yes Yes Yes Yes Yes

Year dummies (10) Yes Yes Yes Yes Yes Yes Yes Yes

R
2

0.079 0.079 0.084 0.115 0.046 0.046 0.071 0.072

Observations 10,415 10,415 7,367 7,367 10,415 10,415 4,208 4,208

Patents stock / Sales Publications stock / Sales

TABLE 7- 

THE EFFECTS OF FIRM SIZE ON INNOVATION INTENSITY

All Only patenting All Only publishing

Notes: This table reports the results of OLS regressions that examine the relation between firm size and innovation
intensity. The sample is cross-sectional for 2003 (which has most firms) and includes all Amadeus firms with at least one
patent or one academic publication in "hard" science journals between 1978 and 2005. Patents are constructed by
matching the name of all Amadeus firms to all EPO and USPTO patent records. Academic publications are constructed
by matching the name of the firm to the address field in the complete ISI Web of Science database (which includes about
20 million publications). Patents and publication stocks are computed using the perpetual inventory method using a
depreciation rate of 15 percent. Standard errors (in brackets) are robust to arbitrary heteroskedasticity and allow for
serial correlation through clustering by firms. * significant at 10%; ** significant at 5%; *** significant at 1%.



(1) (2) (3) (4) (5) (6)

# Employees t-1 : All All
≤ median     

(150)

> median      

(150)
> 75

th         

(265)

>90
th         

(1500)

log(Employment)t-1 0.745*** 0.739*** 0.725*** 0.729*** 0.723*** 0.649***

(0.007) (0.008) (0.019) (0.011) (0.018) (0.048)

log(Capital)t-1 0.220*** 0.220*** 0.196*** 0.242*** 0.236*** 0.246***

(0.005) (0.005) (0.001) (0.007) (0.011) (0.036)

Dummy for innovating 0.060*** -0.004 0.049*** 0.056*** 0.173*** 0.189***
(0.012) (0.044) (0.018) (0.016) (0.031) (0.066)

Dummy for innovating × 

log(Employment)t-1

0.012   
(0.007)

Country dummies (12) Yes Yes Yes Yes Yes Yes

Three-digit SIC dummies (183) Yes Yes Yes Yes Yes Yes

Year dummies (10) Yes Yes Yes Yes Yes Yes

R
2

0.837 0.837 0.492 0.835 0.801 0.807

Observations 90,449 90,449 46,202 44,247 16,347 3,400

Number of firms 19,822 19,822 12,435 9,867 3,835 813

DEPENDENT VARIABLE: LOG(SALES)

TABLE 8- 

SELECTION INTO INNOVATION

Notes: This table reports the results of OLS regressions examining how the effect of innovating on productivity
varies with firm size. The sample covers the period 1995-2004 and includes two samples of firms: all Amadeus
firms with at least one patent or one academic publication in "hard" science journals between 1978 and 2005
and a random sample of 10 percent of all non-innovating firms (firms that were not matched to the patents and
publications databases). Dummy for innovating receives the value of one for observations where the firm ever
innovates, and zero for observations where the firm never innovates. Standard errors (in brackets) are robust to
arbitrary heteroskedasticity and allow for serial correlation through clustering by firms. * significant at 10%; **
significant at 5%; *** significant at 1%.
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FIGURE A1: FIRM PUBLICATIONS OVER TIME AND ACROSS MAIN TECHNOLOGY 
AREAS

Biology & Chemistry Computer Science

Engineering Health & Medicine

Materials Science Physics

Other

Notes: This figure plots the distribution of firm publications over time and across main technology areas. We include all publication that were
matched to about 8m European firms from Amadeus over the period 1970-2004. The academic publications are constructed by matching the
name of the firm to the address field in the complete ISI Web of Science database.



Main field # Publications
Mean Citations 

Received

Mean Citations 

Made

Mean of Journal 

Impact Factor

Average # Authors 

per publication

All fields 234,707 7.37 16.44 2.14 3.76

Biology & Chemistry 74,422 11.09 21.23 3.11 4.31

Engineering 51,507 3.14 10.44 0.82 2.87

Health & Medicine 48,254 7.55 14.11 2.84 4.36

Physics 22,107 8.35 19.49 2.08 3.97

Materials Science 16,452 5.50 13.72 1.03 3.45

Other 11,319 6.72 18.86 1.29 2.73

Computer Science 10,646 2.58 17.23 0.72 2.72

Table A1

SUMMARY STATISTICS FOR FIRM PUBLICATIONS ACROSS MAIN FIELDS

Notes: This table reports summary statistics for firm publications. Firm publications are constructed by matching the name of the firm
to the address field in the complete ISI Web of Science database (which includes about 20 million publications). The sample covers
the period 1978-2004 and includes all Amadeus firms with at least publication in "hard" science journals (where we do not condition
on reporting financials). Mean citations received is the average number of forward citations a publication receives and mean citations
made is the average number of citations the publications makes. The journal impact factor is based on the JCR index included in the
ISI.



Main Field Publications
Mean of Citations 

Received

Mean of Citations 

Made

Mean of Impact Rate 

of Journal

Average number of 

Authors

All fields 67,395 7.89 17.22 2.05 3.77

Biology & Chemistry 24,027 12.06 22.68 2.93 4.30

Engineering 16,962 3.02 10.59 0.79 2.97

Health & Medicine 12,661 9.06 16.88 2.84 4.37

Physics 3,748 7.25 17.80 1.66 3.87

Materials Science 5,795 5.22 13.80 1.00 3.21

Other 1,909 7.34 20.73 1.50 3.08

Computer Science 2,293 2.12 15.66 0.74 2.70

Main Field Publications
Mean of Citations 

Received

Mean of Citations 

Made

Mean of Impact Rate 

of Journal

Average number of 

Authors

All fields 68,187 6.28 17.07 2.27 4.13

Biology & Chemistry 20,495 8.99 22.03 3.37 4.79

Engineering 14,802 3.16 10.93 0.83 2.93

Health & Medicine 13,457 6.46 14.03 3.24 5.18

Physics 7,810 7.90 20.99 2.21 4.20

Materials Science 4,443 4.72 14.06 1.02 3.78

Other 3,053 5.59 20.00 1.38 3.01

Computer Science 4,127 2.50 18.10 0.67 2.81

Table A2

SUMMARY STATISTICS FOR FIRM PUBLICATIONS ACROSS MAIN FIELDS: LARGE FIRMS VERSUS SMALL FIRMS

PANEL A: PUBLICATIONS BY LARGE FIRMS (# EMPLOYEES>110, MEDIAN)

PANEL B: PUBLICATIONS BY SMALL FIRMS (# EMPLOYEES ≤ 110, MEDIAN)

Notes: This table reports summary statistics for firm publications, disaggregated according to whether the publishing firm is large or
small. A firm is said to be large (small) if its number of employees is greater (lower) than 110, the sample median number of
employees. The sample covers the period 1978-2005 and includes all Amadeus firms with at least publication in "hard" science
journals. Only firms that report financials are included. Firm publications are constructed by matching the name of the firm to the
address field in the complete ISI Web of Science database.



Main Field Publications
Mean of Citations 

Received

Mean of Citations 

Made

All fields 23,272 11.53 17.64

Biology & Chemistry 10,429 15.99 24.01

Engineering 360 2.71 11.93

Health & Medicine 3,551 2.18 6.64

Physics 6,192 11.23 14.58

Materials Science 1,264 8.39 15.59

Other 1,067 8.38 15.45

Computer Science 409 9.29 14.28

Main Field Publications
Mean of Citations 

Received

Mean of Citations 

Made

All fields 25,560 8.75 16.29

Biology & Chemistry 10,061 11.19 20.37

Engineering 405 3.42 17.16

Health & Medicine 3,170 3.37 9.31

Physics 7,560 7.14 10.66

Materials Science 681 7.56 17.69

Other 3,084 11.72 23.48

Computer Science 599 5.99 16.59

PANEL B: PUBLICATIONS BY SMALL FIRMS (# EMPLOYEES ≤ 110, MEDIAN)

PANEL A: PUBLICATIONS BY LARGE FIRMS (# EMPLOYEES>110, MEDIAN)

PUBLICATIONS CHARACTERISTICS ACROSS MAIN FIELDS IN LEADING JOURNAL

Table A3

Notes: This table reports summary statistics for firm publications in leading academic journals.
We include only journals in the top quartile of the JCR impact factor. The sample covers the
period 1978-2005 and includes all Amadeus firms with at least publication in "hard" science
journals. Only firms that report financials are included. Firm publications are constructed by
matching the name of the firm to the address field in the complete ISI Web of Science database.



(1) (2) (3) (4) (5) (6) (7)

# Employees t-1 : All All All
≤ median    

(280)

> median    

(280)
> 75

th
         (435)

> 90
th         

(1600)

log(Employment)t-1 0.763*** 0.776*** 0.772*** 0.802*** 0.699*** 0.647*** 0.619***

(0.013) (0.014) (0.014) (0.023) (0.023) (0.037) (0.059)

log(Capital)t-1 0.209*** 0.208*** 0.208*** 0.158*** 0.261*** 0.286*** 0.283***

(0.010) (0.010) (0.009) (0.013) (0.017) (0.030) (0.051)

log(Patents stock)t-1 0.049*** 0.133*** 0.156*** 0.100*** 0.029*** 0.024** 0.023

(0.009) (0.026) (0.027) (0.021) (0.009) (0.011) (0.015)

log(Publications stock)t-1 0.042*** 0.050*** -0.067 -0.011 0.058*** 0.067*** 0.086***

(0.015) (0.015) (0.049) (0.035) (0.016) (0.017) (0.021)

log(Patents stock)t-1 × 

log(Employment)t-1

-0.011*** 
(0.003)

-0.014*** 
(0.003)

log(Publications stock)t-1 × 

log(Employment)t-1

0.015*** 
(0.005)

Country dummies (12) Yes Yes Yes Yes Yes Yes Yes

Three-digit SIC dummies (183) Yes Yes Yes Yes Yes Yes Yes

Year dummies (10) Yes Yes Yes Yes Yes Yes Yes

R
2

0.863 0.864 0.864 0.483 0.852 0.824 0.859

Observations 34,865 34,865 34,865 17,460 17,405 8,552 3,557

Number of firms 7,384 7,384 7,384 4,450 3,648 1,792 739

TABLE A4- 

PRODUCTIVITY-INNOVATION RELATIONSHIP AND FIRM SIZE. MORE THAN 50 EMPLOYEEES

DEPENDENT VARIABLE: LOG(SALES)

Notes: This table reports the results of an OLS regression examining the relationship between productivity, innovation and firm size
for firms that have more than 50 employees. The sample covers the period 1995-2004 and includes all Amadeus firms with at least
one patent or one academic publication in "hard" science journals between 1978 and 2005. Patents are constructed by matching the
name of all Amadeus firms to all EPO and USPTO patent records. Academic publications are constructed by matching the name of
the firm to the address field in the complete ISI Web of Science database (which includes about 25 million publications). Cash is
defined as net income plus depreciation. Capital is defined as fixed-assets. Age is the number of years since the date of
incorporation. Patents and publication stocks are computed using the perpetual inventory method using a depreciation rate of 15
percent. Standard errors (in brackets) are robust to arbitrary heteroskedasticity and allow for serial correlation through clustering by
ultimate owner. * significant at 10%; ** significant at 5%; *** significant at 1%.



Country Publications
Mean of Citations 

Received

Mean of Citations 

Made

Mean of Impact 

Rate of Journal

Average Number of 

Authors

All Counties 234,864 7.37 16.44 2.14 3.76

Belgium 6,012 7.85 17.17 2.26 4.26

Germany 40,282 6.51 17.20 2.16 3.88

Denmark 1,301 13.60 21.07 3.31 5.07

Spain 5,111 5.62 22.73 2.55 4.84

Finland 2,975 8.12 18.13 1.86 3.77

France 49,804 7.13 18.85 2.08 4.44

Great Britain 85,284 7.58 13.17 2.04 2.97

Greece 584 5.66 18.75 2.24 3.99

Italy 21,380 6.12 17.72 2.43 4.83

Netherlands 8,474 8.43 18.91 2.31 3.84

Norway 4,247 7.29 21.81 1.56 3.34

Sweden 9,410 11.97 17.26 2.28 3.46

TABLE A5-

SUMMARY STATISTICS FOR FIRM PUBLICATIONS ACROSS COUNTRIES

Notes: This table reports summary statistics for firm publications across countries. The sample covers the period 1995-2004
and includes all Amadeus firms with at least publication in "hard" science journals between 1978 and 2005. Firm publications
are constructed by matching the name of the firm to the address field in the complete ISI Web of Science database.



Field Journal # of Firms # of Publications
Citations per 

Publication

Mean of Employees of 

Firm

Cell 8 10 186 12,068

Nature Genetics 8 14 151 2,286

Genes & Develpoment 3 4 8 12

Nature Cell Biology 4 10 57 3,591

Molecular Cell 2 3 98 808

Physical Review Letters 93 322 23 3,087

Physical Review 22 50 32 19

European Physical Journal 3 13 11 9

Applied Physics Letters 167 595 22 11,129

Europhysics Letters 63 107 14 3,856

Nature Biotechnology 32 57 35 7,753

Structure 12 22 51 6,334

Nature Structural Biology 3 3 94 46,173

Systematic Biology 1 1 7 2

Biological Chemistry 17 34 6 8,750

Angewandte Chemie International Edition 67 192 22 11,591

Analytical Chemisty 94 165 23 5,158

Journal of Medicinal Chemistry 120 577 26 5,955

Electrophoresis 57 132 14 6,656

Chemical Revirews 11 15 64 39,789

Nature Medicine 9 20 72 18,203

Journal of the American Medical Association 11 20 9 2,338

European Journal of Clinical Investigation 28 35 21 20,402

Journal of the National Cancer Institute 16 18 28 10,322

Lancet Neurology 4 7 9 399

Molecular Microbiology 19 40 22 10,817

Journal of Virology 39 79 42 6,075

International Journal of Antimicrobial Agents 43 70 2 4,504

Applied and Environmental Microbiology 69 171 33 6,968

Virology 29 51 29 8,635

Immunity 10 22 108 1,691

Journal of Immunology 61 159 39 2,541

AIDS 51 95 11 4,397

European Journal of Immunology 54 128 39 3,340

Journal of Infectious Diseases 6 10 16 983

TABLE A6-

FIRM PUBLICATIONS IN TOP JOURNALS

Clinical Medicine

Microbiology

Immunology

Molecular Biology & 

Genetics

Physical

Biology & Biochemistry

Chemistry

.Notes: This table reports summary statistics on firm publications in selected top academic journals The sample covers the period 1995-2004 and includes all
Amadeus firms with at least publication in "hard" science journals between 1978 and 2005. Firm publications are constructed by matching the name of the firm
to the address field in the complete ISI Web of Science database (which includes about 20 million publications).



(1) (3) (4) (5) (6) (7)

# Employees t-1 : All All
≤ median    

(110)
> median    (94) > 75

th
         (350)

> 90
th         

(1200)

log(Employment)t-1 0.806*** 0.814*** 0.084** 0.739*** 0.684*** 0.635***

(0.009) (0.009) (0.014) (0.016) (0.024) (0.042)

log(Capital)t-1 0.186*** 0.183*** 0.158*** 0.233*** 0.269*** 0.282***

(0.007) (0.007) (0.009) (0.012) (0.018) (0.034)

log(Patents stock)t-1 0.054*** 0.169*** 0.089*** 0.044*** 0.033*** 0.026***

(0.009) (0.025) (0.026) (0.009) (0.009) (0.012)

log(Publications stock)t-1 0.008 -0.086*** -0.045 0.032** 0.046*** 0.062***

(0.013) (0.033) (0.029) (0.014) (0.015) (0.017)

log(Patents stock)t-1 × 

log(Employment)t-1

-0.016*** 
(0.003)

log(Publications stock)t-1 × 

log(Employment)t-1

0.016*** 
(0.004)

Country dummies (12) Yes Yes Yes Yes Yes Yes

Three-digit SIC dummies (183) Yes Yes Yes Yes Yes Yes

Year dummies (10) Yes Yes Yes Yes Yes Yes

R
2

0.881 0.891 0.694 0.859 0.851 0.842

Observations 51,344 51,344 27,009 24,335 12,401 4,919

Number of firms 11,420 11,420 7,624 5,352 2,718 1,119

TABLE A7- 

PRODUCTIVITY-INNOVATION RELATIONSHIP AND FIRM SIZE: CITATIONS WEIGHTED PUBLICATIONS STOCK

DEPENDENT VARIABLE: LOG(SALES)

Notes: This table reports the results of an OLS regression examining the relationship between productivity, innovation
and firm size. Publications are weighted according to the number of forward citations they receive. The sample covers
the period 1995-2004 and includes all Amadeus firms with at least one patent or one academic publication in "hard"
science journals between 1978 and 2005. Patents are constructed by matching the name of all Amadeus firms to all
EPO and USPTO patent records. Academic publications are constructed by matching the name of the firm to the
address field in the complete ISI Web of Science database (which includes about 20 million publications). Capital is
defined as fixed-assets. Patents and publication stocks are computed using the perpetual inventory method using a
depreciation rate of 15 percent. Standard errors (in brackets) are robust to arbitrary heteroskedasticity and allow for
serial correlation through clustering by firms. * significant at 10%; ** significant at 5%; *** significant at 1%.


	firm size.pdf
	FS Tables



