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Abstract 

 Elasticities are often estimated from the results of demand analysis however, drawing inferences 

from them may involve assumptions that could influence the outcome.  In this paper we investigate one of 

the most common forms of elasticity which is defined as a ratio of estimated relationships and 

demonstrate how the Fieller method for the construction of confidence intervals can be used to draw 

inferences.   

 We estimate the elasticities of expenditure from Engel curves using a variety of estimation 

models.  Parametric Engel curves are modelled using OLS, MM robust regression, and Tobit.  

Semiparametric Engel curves are estimated using a penalized spline regression.  We demonstrate the 

construction of confidence intervals of the expenditure elasticities for a series of expenditure levels as 

well as the estimated cumulative density function for the elasticity evaluated for a particular household.  
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1. Introduction. 

 

 In this paper we demonstrate methods for drawing inferences from estimated elasticities of 

demand.  A significant literature in the estimation of demand relationships centers on the determination of 

elasticities.  Such parameters of interest include: the Hicksian and Marshallian price elasticities of 

demand, the Allen and Morishima elasticities of substitution, income and expenditure elasticities defined 

for Engle curves, and long-run elasticities defined in dynamic models can be defined as nonlinear 

functions of the estimated parameters.  In addition, although most demand specifications imply that these 

elasticities of interest vary by prices, income, or level of output, it is frequently the case that there is little 

attempt to draw inferences at more than a single point and for only one level of significance.  In this paper 

we demonstrate how these bounds can be generalized to consider multiple values and how the implied 

cumulative density function of the estimated elasticity can be used to visualize the relationship between 

the level of significance and the inferences drawn. 

 In particular, this analysis focuses on the wide class of elasticities which are defined as ratios of 

estimated relationships.  The principle method we use to construct these intervals is based on Fieller’s 

method.  The advantage of the Fieller method is that it generates a more general class of confidence 

intervals than can be obtained from the traditional (mean ± t ×  standard deviation) intervals or the 

standard resampling methods while still employing the usual asymptotic distributional assumptions.  

Although based on the assumption of asymptotic normality, the Fieller confidence intervals are 

constrained to be neither symmetric nor finite.  We demonstrate how this method contrasts to the usual 

approximation techniques by constructing a cumulative distribution function of the relationship of interest 

so that one can observe how the confidence interval can be defined at various levels of significance. 

 The application considered in this paper is the estimation of Engel curves using a cross-section of 

household expenditures.  Although a number of authors have proposed complex specifications for these 

relationships in most cases their main focus has been on the shape of the Engle curve.  The inferences to 

be drawn from such features of the curve as whether the income elasticities are indicative of a change in 
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the nature of the good from a normal to a luxury good based on the inflection of the Engle curve are 

typically not the objective.  In the application presented here we use both parametric and semi-parametric 

Engle curves to illustrate our method for drawing inferences from the results of various methods for 

estimation.   

 Aside from the application of standard ordinary least squares regression we also employ two other 

parametric methods that are designed to account for the presence of a large proportion of zero demand 

values in one of the commodities under consideration.  We also demonstrate the application of our 

method with the results from a semiparametric technique that allows for a nonparametric fit to the partial 

relationship between the shares of commodity expenditure to the total expenditure. 

 The paper proceeds as follows:  In Section 2 we examine how the elasticity from a typical demand 

specification implies a ratio and some intuition into the nature of the Fieller method for the construction 

of confidence intervals and how it is related to the widely employed Delta approximation.  In Section 3 

we examine the particular case of the expenditure elasticities as defined from an Engel curve.  In Section 

4 we present the results of the estimation of the Engel curve using four methods.  In Section 5 we conduct 

a comparison of the methods employed in Section 4 and our conclusions are presented in Section 6. 

 

2. Elasticities and the Fieller Method. 

 

 In this section we first review how the usual point elasticity measure estimates require the 

construction of probability statements concerning the ratio of estimated parameters or functions of 

estimated parameters.  We then review the Fieller method for the construction of confidence intervals and 

how the Fieller is related to the Delta method for the approximation of the standard error of a nonlinear 

function of estimated parameters.  Finally we discuss how the Fieller interval can be interpreted as the 

solution to a constrained optimization which can be examined geometrically. 
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2.1 Elasticity Estimates and the Fieller Interval 

 The Fieller method for the estimation of confidence intervals for elasticities has been proposed by 

a number of authors.  Fuller and Martin (1961) first propose the Fieller for the construction of intervals 

for the case of the dynamic elasticity and Fuller (1962) subsequently uses the Fieller to derive the 

confidence intervals of isoclines based on an estimated production function.  Miller, Capps and Wells 

(1984) were the first to demonstrate how the Fieller could be widely employed for elasticities.  This result 

was affirmed by Dorfman, Kling and Sexton (1990) with the addition of resampling methods in the 

comparison of techniques although the applications they considered resulted in less dramatic differences 

which may be due to some factors we discuss in Sections 2.3 and 2.4 below.  Krinsky and Robb (1986, 

1991) reject the application of the Delta approximation for elasticities however they do not consider the 

Fieller as a possible competitor to the bootstrap.  Li and Maddala (1999) have less success with the Fieller 

for the computation of the long-run impact as measured in a dynamic model however, recently Bernard et 

al. (2007) have discovered that in the dynamic regression case the Fieller performs very well. 

 The primary case in which one may consider the elasticity as a ratio is the simple case of a 

demand specification of the form: 

( )i i iy f x= + ε         (1) 

Where y is the quantity demanded and x is the variable of interest (i.e. income or price).  Thus we use the 

definition of a point elasticity of y with respect to x evaluated at a particular value of x = xi to be  

|
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In a simple linear parametric case where 0 1( )f x x= β + β  the estimated partial derivative is 1
( ) Ⱡiy x
x

∂  = β ∂ 
 

and the estimated elasticity is defined as a ratio of linear combinations of the parameter estimates: 

1
|

0 1

Ⱡ
Ⱡ Ⱡ Ⱡi

i
y x

i

x
x

β
η =

β + β
      (3) 

 A parallel literature in applied statistics that concerns a similar problem has appeared in the 

analysis of biological assay experiments.  In the simplest version of this problem a logistic regression is 

fit to a series of observations in which differing levels of a substance (drug/poison) x is administered and 

determination of the result (curing/death) is recorded as the event with a binomial outcome.  A linear 

equation for the log of the odds ratio can be specified as:  

( )( )( )
0 11 ( )ln i

i

p x
i ip x x

−
= β −β + ν      (4) 

where vi is the error term and p(xi) is the probability of the event.  From (4) we define the ratio of the 

intercept and the slope parameter ( )0

1

β
βψ =  as the 50% dose response level of xi – where the probability of 

the event is just as likely to occur as not occur ( ( ) .5ip x = ).  In many applications the bounds on this 

critical value are of vital importance and Fieller (1944) provides a solution for the construction of the 

bounds on the estimate of 0

1

Ⱡ
ⱠⱠ β
β

ψ =  that has subsequently been widely used in this literature.  In particular, 

Finney (1952, 1978) demonstrates with numerous examples the application of the Fieller method for this 

problem.  More recent research into the properties of the application of the Fieller method has provided 

additional evidence of the practical advantages of the Fieller over alternative methods.  Sitter and Wu 

(1993) conclude that the Fieller interval is generally superior to the Delta method.   

2.2 The Fieller Interval 

 The application of the Fieller method for the construction of confidence intervals to ratios of the 

general case of linear combinations of regression parameters can be found in Zerbe (1978) and Rao 

(1973, page 241).  Fieller’s method in the general regression context is defined for the confidence interval 

for the ratio 
′

ψ =
′

K 㬠
L 㬠

  which is defined in terms of linear combinations of the regression parameters from 
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the same regression 1 1 1T T k k T× × × ×= +Y X 㬠 㭐 , 1~ ( , )T T T× ×㭐 0 㪐 .  The FGLS estimators for the parameters are 

1Ⱡ Ⱡ Ⱡ( )−′ ′= -1 -1㬠 X 㪐 X X 㪐 Y , with a suitable estimate of  㪐  and the vectors 1 1 and k k× ×K L are known constants.  

Under the usual assumptions we have that the parameter estimates are asymptotically normally distributed 

as ( )Ⱡ㬠 ~ N 㬠, 㨰  where 1ⱠⱠ ( )−′= -1㨰 X 㪐 X .  The 100(1- α )% confidence interval for ψ  is determined by 

solving the quadratic equation 2 0a b cψ + ψ + = , where t is the t-statistic for the 1− α  level of 

significance, 2Ⱡ Ⱡ( )a t′ ′= β −2L L 㨰L , 2 Ⱡ ⱠⱠ2 ( )( )b t ′ ′ ′= − β β K 㨰L K L , and 2 2Ⱡ Ⱡ( )c t′ ′= β −K K 㨰K .  The two roots 

of the quadratic equation ( ) 2

1 2
4

2, b b ac
a

− ± −ψ ψ = , define the confidence bounds of the parameter value.   

For example, in the case of the elasticity from the simple linear demand specification regression 

equation in (1) we define: ( ) ( )2
2 2 2 2

0 1 0 01 1
Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ2i i ia x t x x= β + β − σ + σ + σ , ( ) ( )2 2 2

01 1 1 0 1
Ⱡ Ⱡ ⱠⱠ Ⱡ2 i i i ib t x x x x= σ + σ −β β + β  

and ( )2
2 2 2

1 1
Ⱡ Ⱡi ic x t x= β − σ .  Where 

2
0 01

2
01 1

Ⱡ ⱠⱠ
Ⱡ Ⱡ

 σ σ
=  σ σ 

㨰 .  And the bounds given by the two roots: 

( )

4 2 2 3 2 2 4 2 2 23 3 3
01 0 1 01 0 1 0 1 1 1 012 4 42 2 2 2 2 21 1

01 0 1 1 12 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2
0 1 1 0 1 0 1 0 1 1 1

1 2 2 2 2 2 2 2 2 2 2
01 0 0 1 0 1 1

,
2 2

i i i
i i i i i

i i

i i i i

t t x x t x
t x x x t x x

t x t t t t x

t x x t x t x

 σ − β β σ − β β − β β − β + β σ
 σ − β β − β + σ ±
 + β σ β + σ β + β σ − σ σ + σ β ψ ψ =

σ −β − β β + σ −β + σ
(5) 

 
In order to have two real roots a > 0 (Buonaccori 1979).  Besides the finite interval, the resulting 

confidence interval may be the complement of a finite interval (b2 – 4ac > 0, a < 0) or the whole real line 

(b2 – 4ac < 0, a < 0).  These conditions are discussed in Scheffé (1970), Zerbe (1982) and Gleser and 

Hwang (1987).  It can be shown that as long as the absolute value of the implied t-statistic for the 

denominator is greater in magnitude than the critical value for the confidence interval Ⱡ

Ⱡ t′

′
>L 㬠

L 㨰L
, both 

roots will be real.  The intuition behind this result is as follows: for real roots we require that the 

denominator has sufficient probability mass away from zero.  However, we also find that the implied t-

statistic for the numerator also has a role to play in the formation of these intervals. 

2.3 The Relationship between the Delta Interval and the Fieller Interval 

 The Delta method (see Rao 1973, Page 385) provides an approximate standard deviation for the 

ratio in this case we have  
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( )
( ) ( ) ( )

½

2
1 2 2 2 2

Ⱡ Ⱡ Ⱡ
Ⱡ Ⱡ Ⱡ, 2

Ⱡ Ⱡ Ⱡ
t
      

′ ′ ′      ψ ψ = ψ ± + ψ − ψ      ′ ′ ′            

K 㨰K L 㨰L K 㨰L

L 㬠 L 㬠 L 㬠
  (6) 

In the solution for the Fieller method CI we can rewrite the expression for a as ( )Ⱡ( ) 1a g′= β −2L  where 

( )
2

2

Ⱡ

Ⱡ
g t

 
′ =  
′ 

 

L 㨰L

L 㬠
.  It can be shown that the smaller the value for g the closer the Fieller and the Delta CIs 

become (see Finney (1952-page 63,1978- page 81), Cox (1990), Sitter and Wu (1993)).  Note that this 

expression can be interpreted as the square of the critical value of the t-statistic for the 1-㬐 confidence 

interval divided by the square of the implied t-statistic for the estimate of the denominator ( Ⱡ′L 㬠 ).  Thus 

the larger the t-statistic for the test of the hypothesis 0 : 0H θ =  versus 1 : 0H θ ≠ , the smaller the value of 

g and the more similar the Delta and Fieller intervals become.  Finney (1978 - page 82) suggests that a 

reasonable rule of thumb would be to use the Delta CI when the absolute value of the t-statistic for the 

denominator ( Ⱡθ ) is 4 to 5 times greater than the t-statistic for the confidence bound (g < .05).  Thus if we 

use t = 2 for 㬐 = .05 the absolute value of the denominator t-statistic would be from 8 to 10.  Sitter and 

Wu (1993) caution that such rules of thumb may overly simplify the choice of CI, specifically, when a 

researcher is interested in either only the upper or lower bound the Fieller may provide improved 

coverage over the Delta when g is less than .05.  Furthermore, Herson (1975) demonstrates that when the 

covariance of the numerator to the denominator is positive (negative) the Delta and the Fieller intervals 

match more closely when the expected value of the ratio is positive (negative).  These aspects become 

more obvious using the geometric representation given below. 

2.4 A Geometric Representation of the Fieller Interval 

 Hirschberg and Lye (2007a) demonstrate that the Fieller interval is equivalent to the solution for 

ψ  from the constrained optimization defined by the Lagrangian: 

( ) ( )
( )
( )

11 12 2

12 22

ⱠⱠ ⱠⱠⱠ( , , ) ⱠⱠ Ⱡ
L t

                   

ρ − ψθω ω ψ λ θ = ψ − λ ρ − ψθ θ − θ −  ω ω θ − θ
 (7) 



 8 

where we define the ratio as ρ
ψ =

θ
, ′ρ = K 㬠 , and ′θ = L 㬠 .  With the quantities given from the estimation 

as ⱠⱠ ′ρ = K 㬠 , Ⱡ Ⱡ′θ = L 㬠  and the estimated covariance of Ⱡρ  and Ⱡθ  is defined as: 

11 12

12 22

Ⱡ ⱠⱠ Ⱡ
Ⱡ ⱠⱠ Ⱡ

 
 
 
 
 

 ′ ′ω ω
 =

ω ω ′ ′  

K 㨰K K 㨰L

L 㨰K L 㨰L
.  Again 2t  is the square of the appropriate t-stat for the 1− α  level of 

significance (or the critical value of an F-distribution with 1 degree of freedom in the denominator).5 

Note that the constraint in this case is the ellipse formed for those values that are consistent with a 

1− α  probability for a linear combination of Ⱡρ  and Ⱡθ  to be significant.6  This implies that we may show 

this optimization with a diagram of the quadratic constraint of a ray from the origin.  In this way we can 

demonstrate the relationship between the bounds obtained from the Fieller and the nature of the joint 

distribution of Ⱡρ  and Ⱡθ .   

Figure 1:  Finite Confidence Bounds from the Fieller. 
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5  See von Luxburg and Franz (2004) for an alternative optimization which has the same result. 
6  Note that this is not the joint confidence bound for both random variables as often defined in textbooks which is similar in 
shape but larger in that it is typically limited by the critical value of an F-statistic with 2 degrees of freedom in the numerator 
or a Chi-square with 2 degrees of freedom.   
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 Figure 1 demonstrates the case in which the Fieller method results in finite bounds.7  The ratio 

ⱠⱠ Ⱡ
ρ

ψ =
θ

 is the slope of the line through the points (0,0) and ( )ⱠⱠ,ρ θ .  The two limiting rays from the origin 

define the 1− α  CI of ψ .  We can read these bounds on the vertical axis at the point where these limiting 

rays intersect a line where the x-axis equals 1.   

Figure 2: An Example where the lower bound is finite and the upper bound is infinite. 
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If the ellipse is located too close to the origin we will be unable to construct the two limiting rays 

from the origin to the edge of the ellipse.  One possibility is shown in Figure 2.  In this case Ⱡθ , the 

denominator in the ratio, is not estimated with a high degree of precision.  In fact the 1− α  confidence 

bound for the estimate includes zero.  Note that the horizontal limits of the ellipse define the univariate 

1− α  confidence bounds for θ  which in this case results in a negative lower bound.  This is the case 

when the t-statistic for the test of the hypothesis that 0 : 0H θ =  is less than the critical value of the t used 

for the confidence interval of the ratio.  The practical interpretation of this case is that the ratio has a finite 

lower bound but no upper bound.  

In the case where the origin (0,0) is within the ellipse we are unable to construct tangents to the 

ellipse thus we have no real roots and our confidence interval encompasses the entire real line.  This 

                                                 
7  See Hirschberg and Lye (2007a) for details as to how standard econometric software can be used to generate these plots. 
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would be the case where the quadratic equation (such as (5)) to be solved for the Fieller interval does not 

possess real roots.  Note that by changing the critical value we change the area of the ellipse.  Thus it may 

be the case that although neither bound is finite when .05α =  we may find either one or both are finite for 

.10α = .  Conversely, if we can define a finite interval for .05α =  we may not for .01α = .  And for any 

case the Fieller interval becomes infinite before 0α = .  Also note that as the ellipse moves further away 

from the origin the value of g defined above becomes smaller and the Delta and Fieller CIs become 

equivalent.  And that the correlation between Ⱡρ  and Ⱡθ  will influence the angle of the major axis of the 

ellipse which will influence the symmetry of the bounds. 

2.5 Comparing Alternative Methods. 

 A number of studies have compared the Fieller method confidence intervals with the alternative 

methods for the construction of intervals for the ratio of means.  Monte Carlo experiments to assess the 

performance of a number of different methods have been performed by Jones et al. (1996) for statistical 

calibration, Williams (1986) and Sitter and Wu (1993) in bioassay, Polsky et al. (1997), Briggs et al. 

(1999) for cost-effectiveness ratios, Freedman (2001) for intermediate or surrogate endpoints and 

Hirschberg and Lye (2005) for the extremum of a quadratic regression.  

 Generally, the results from these Monte Carlo simulations indicate that the Fieller-based methods 

work reasonably well under a range of assumptions including departures from normality.  The Delta-

based method is a consistent poor performer and often underestimates the upper limit of the intervals.  

They have concluded that the Fieller method is superior to the traditional Delta method based on a first 

order approximation of the variance of the ratio and the traditional symmetric confidence bounds.  

Alternative methods based on resampling methods such as the bootstrap, Bayesian methods and the 

inverse of the likelihood ratio test have all been compared in different simulations.8  In general, it has 

been found that the Fieller method is as efficient to compute and results in comparable coverage to all 

these other methods.  The analysis shown in Sections 2.3 and 2.4 can be used to demonstrate that 

simulations in which the joint distribution of the numerator and denominator are located far from the 

                                                 
8  The inverse of the likelihood ratio test is asymptotically equivalent to the Fieller however is based on Chi-square distribution 
as opposed to the t-distribution, thus in small samples differences may be more pronounced. 
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origin will result in finding little difference between the Fieller and alternative confidence intervals.  

However, in simulations where the joint distribution approaches the origin it is found that the Fieller often 

dominates or is a close equal to most other more difficult methods to use. 

 

3. Engel Curve Estimation Using Household Expenditure Data 

 

 In order to demonstrate how the Fieller method can be used for the construction of confidence 

intervals for elasticities we present an application in which we apply a series of different estimation 

methods and demonstrate how the results of these elasticity estimates can be portrayed.  The Engel curve 

is the relationship between the amount of a good purchased and income.  The specification of the Engel 

curves that we estimate is typical of the methods employed when using household expenditure survey 

data.  These data record the level of expenditures by item and service for a household along with a series 

of demographic characteristics.  Thus the specification of the Engel curve is based on levels of 

expenditures and not on the quantity since the assumption of a unit price can not be made for most 

commodities in the survey.  Also due to the various difficulties in defining income for a household total 

expenditure by the household is frequently employed as the proxy for household income. 

 The specification is defined by the share as a function of the log of the total expenditure: 

(ln( ), )i i i iy g c x= + ε      (8) 

where iy  is the expenditure share on the commodity or service by household i, ci is the total expenditure 

by household i, and xi are the household characteristics of household i.  The elasticity for a particular 

household type9 j is defined as: 

( )( )(ln( ), )
ln( )

|

(ln( ), )

(ln( ), )

j j

j

g c x
j j c

y c
j j

g c x

g c x

∂
∂+

η =    (9) 

Once an Engel curve relationship has been estimated the elasticity is estimated by: 

                                                 
9  We define household types as all having the average demographic characteristics and different levels of total expenditure. 
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|

Ⱡ
Ⱡ Ⱡj

j
y c

j

ρ
η =

θ
       (10) 

where ( )Ⱡ (ln( ), )
ln( )Ⱡ Ⱡ (ln( ), ) j jg c x

j j j cg c x ∂
∂ρ = +  and Ⱡ Ⱡ (ln( ), )j j jg c xθ = .  Thus the elasticity estimates are formed by a 

ratio of the predicted share plus the first derivative of the share with respect to the log of expenditure 

divided by the predicted share. 

 The specification of (ln( ), )j jg c x  is either a parametric or a semi-parametric form with an error 

defined as either non-bounded or censored.  These models have been fit using traditional regression, Tobit 

or censored regression – to account for zero-valued expenditures for some items, robust regression - to 

account for the presence of outliers in household data and zero valued dependent values and by the use of 

semi-parametric models. 

3. 1 Parametric Specifications 

 The parametric specification used in the applications presented here is a general form to allow for 

flexibility that embeds the traditional quadratic as well as allowing for more flexibility by the use of a 2nd 

order Laurent expansion as proposed by Barnett(1983).  We define the specification as: 

( )2 1 2
0 1 2 3 4

1

ln( ) ln( ) ln( ) ln( )
K

i k ik i i i i i
k

y x c c c c− −

=

= α + α + γ + γ + γ + γ + ε∑  (11) 

where the xk are K demographic characteristics of the household which we would like to control for.  The 

estimation of this function can be estimated as a linear equation. 

 In this case the estimate of the partial derivative of the expenditure with respect to the log of total 

expenditure is given by a linear combination of the estimated parameters: 

Ⱡ (ln( ), ) 2 3
1 2 3 4ln( ) Ⱡ Ⱡ Ⱡ Ⱡ2ln( ) ln( ) 2ln( )j jg c x

j j jc c c c∂ − −
∂     = γ + γ + γ − + γ −        (12) 

The predicted value Ⱡ (ln( ), )j jg c x  is another linear combination of the parameter estimates, thus |

Ⱡ
Ⱡ Ⱡj

j
y c

j

ρ
η =

θ
 

and in this case: 

2
1 2

0 1 2 2 3
1 3 4

Ⱡ Ⱡln( ) 1 ln( ) 2 ln( )
Ⱡ Ⱡ Ⱡ

Ⱡ Ⱡln( ) ln( ) ln( ) 2ln( )

K j j j

j k jk
k j j j j

c c c
x

c c c c− − − −
=

   γ + + γ +    ρ = α + α +
    +γ − + γ −    

∑  



 13 

and: 

( )2 1 2
0 1 2 3 4

1

Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ Ⱡln( ) ln( ) ln( ) ln( )
K

j k jk j j j j
k

x c c c c− −

=

θ = α + α + γ + γ + γ + γ∑  

Once the estimated covariance matrix of the parameters has been estimated then we can determine the 

Fieller interval for the elasticity evaluated for any household defined by the levels of the regressors. 

 One exception to this is when the estimates are generated via a Tobit or other truncated regression 

technique.  In this case the predicted value and the marginal impact of expenditure are not simple linear 

functions of the parameters but must also account for the probability model assumed.  In these 

applications we will use the Tobit or Normit model which assumes that the data are normally distributed 

with a truncation point at zero.10  Using the results from McDonald and Moffitt (1980) we define the 

unconditional estimated expected value of the share for household type j as: 

( ) ( )Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ[ ] / /j j j jE y y y y= Φ σ + σφ σ        (13) 

where Ⱡ Ⱡ (ln( ), )j j jy g c x= .  In this case we assume the error in the regression equation specified in (8) is 

defined as 2~ N( , )σ㭐 0 I , ( )zΦ  and ( )zφ  are the cumulative normal function and the normal density 

function evaluated at z.  The derivative of the unconditional expected value of y with respect to ln(x) is 

estimated by: 

( )Ⱡ Ⱡ (ln( ), )
ln( ) ln( ) Ⱡ Ⱡ/j j jE y g c x

jc c y ∂ ∂ 
∂ ∂= Φ σ         (14) 

Thus the estimated unconditional elasticity would be defined as : 

|

Ⱡ
Ⱡ Ⱡj

j
y c

j

ρ
η =

θ
          (15) 

where ( ) ( )Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ/ /j j j jy y yθ = Φ σ + σφ σ  and ( ) ( )Ⱡ (ln( ), )
ln( )

ⱠⱠ Ⱡ Ⱡ/j jg c x
j j jc y∂

∂ρ = θ + Φ σ .  When the model is a parametric 

model as defined as in (11) { } ( )2 3
1 2 3 4

ⱠⱠ Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ2ln( ) ln( ) 2ln( ) /j j j j j jc c c y− −    ρ = θ + γ + γ + γ − + γ − Φ σ      . 

 Alternatively, the conditional estimated expected value of the share for the case 0y >  is: 

                                                 
10  In application used here we ignore the possible upper censoring of the shares at one because we do not have all the shares 
for the households in our sample. 
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( )Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ[ | 0] /j j jE y y y y> = + σλ σ         (16) 

where ( ) ( )
( )( )z
zz φ

Φλ = is the inverse Mills ratio.  The derivative of the conditional expected value of y with 

respect to ln(x) is given by: 

( ) ( ) ( )Ⱡ 2| 0 Ⱡ (ln( ), )
ln( ) ln( ) Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ1 / / /j j jE y y g c x

j j jc c y y y ∂ > ∂ 
∂ ∂

 = − σ λ σ − λ σ  
     (17) 

Here we will refer to the conditional estimate of the elasticity when 0y >  as | jy cη% and it is defined as: 

| j

j
y c

j

ρ
η =

θ

%
% %           (18) 

where ( )Ⱡ Ⱡ Ⱡ Ⱡ/j j jy yθ = + σλ σ%  and 
Ⱡ | 0

ln( )
jE y y

j j c
 ∂ > 
∂ρ = θ +%% .  When the model is specified as the parametric form 

defined in (11) we would use: 

{ } ( ) ( ) ( )22 3
1 2 3 4Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ Ⱡ2ln( ) ln( ) 2ln( ) 1 / / /j j j j j j j jc c c y y y− −      ρ = θ + γ + γ + γ − + γ − − σ λ σ − λ σ        

%% . 

 

4. Estimation methods for the Engel curve 

 

 The estimation of Engel Curves has been proposed using a number of techniques. Historically the 

primary method has been the application of a parametric model similar to the one specified in (11).  

Alternatively, semi-parametric models that allow for any functional form relationship between the budget 

shares and total expenditures, but assume that the demographic variables enter the model in a linear way, 

have been used (see eg. Blundell, 1998; Bhalotta and Attfield, 1998; Alan et al., 2002; Gong et al., 2005).  

An alternative approach employs quantile regression (see eg. Deaton, 1997; Koenker and Hallock, 2001), 

where the 50th quantile is the least absolute deviations estimator.  It has been suggested that quantiles are 

resistant statistics (Davison 2003), that is, they are robust to outliers and contamination. 

 A typical characteristic for some commodities, such as education expenditure, is that a significant 

proportion of household observations are reported with zero expenditure.  A number of explanations have 

been proposed for observed zero expenditure in the data.  These include false reporting, infrequent 



 15 

purchases or non purchases. One approach has been to estimate using the entire sample irrespective of 

whether households had zero or positive expenditure on a particular commodity.  In other studies, semi-

parametric regression has been used (see eg. Bhalotta and Attfield, 1998; Gong et al., 2005). 

Alternatively, limited dependent variable models have been proposed.  One approach is to use the Tobit 

model (see eg Tansel and Bircan 2006) which assumes that the same set of variables determine both the 

probability of a non-zero consumption and the level of expenditure.  A modification of the Tobit model is 

the double-hurdle model which is a two equation model with a binary choice part explaining the 

participation decision and a conditional regression equation explaining positive expenditure levels (see eg 

Cragg 1971; Melenberg and Van Soest 1996). Deaton and Irish (1984) also propose a number of models 

to account for misreporting of households.  An alternative approach suggested by You (2003) is to 

assume that the exact source of zero expenditures is unobservable and include all the observations in the 

sample and to use robust estimation to deal with the problem of potential outliers and zero expenditures. 

Beatty (2007), on the other hand, has suggested that quantile methods may be a useful tool in dealing with 

zero expenditure. 

 In this paper we will demonstrate the estimation of Fieller intervals for the elasticity of 

expenditure share with respect to total expenditure based on the results of 4 different types of estimation 

procedures.  The data  used in this paper comes from the application by Gong, Van Soest, and Xhang 

(2005, henceforth GVS) which consists of expenditure data collected from a survey of rural Chinese 

communities entitled “Rural Household Income and Expenditure Survey’ conducted by the State 

Statistics Bureau of China and the Chinese Academy of Social Science.  The data was collected in 1995 

and provides information on households from 19 Chinese provinces.  Only using data from households 

with 2 parents and 1 or more children and excluding observations with missing or implausible values 

gives a sample of 5394 households for estimation.  Table A.1 in the Appendix displays the sample 

statistics for these data.  Also in the Appendix is Figure A.1 which provides a kernel density plot of log 

total expenditure. 
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 The applications in GVS employ both a linear specification with a quadratic term for the influence 

of total expenditure as well as a semiparametric application.  In following their analysis we will use their 

specification with a slight modification to allow for the linear and squared inverse terms.  In addition, in 

their estimation GVS allow for the endogeneity of total expenditure.  However, tests indicate that 

exogeneity of total expenditure is only rejected for alcohol and tobacco, and even in this case their 

estimates obtained are similar to those without correction for endogeneity.  Thus, in our applications that 

follow we will not consider the possibility that total expenditure is endogenous, although the applications 

can all be readily extended to this case. 

4.1 OLS Estimation 

 The first model we fit is the linear regression model as specified in (11) using the same 

demographic variables used by GVS using the ordinary least squares approach where the errors are 

assumed to be 2
1~ ( , )T T× σ㭐 0 I .  From Table 1 it can be seen that the results are similar to those reported 

by GVS in their table III (page 519). 

Table 1.  The results of the OLS estimation as applied to the GVS data. 

 Food Education Alc & Tob 
 Coefficient se Coefficient se Coefficient se 
Intercept 14246.02 5251.37 -1169.66 773.14 -1619.52 720.03 
AG -58.04 22.57 2.33 2.85 1.73 3.09 
AG2/100 66.43 26.10 -3.07 3.05 -4.99 3.58 
DCOAST -1.22 0.59 0.14 0.09 0.56 0.08 
DMIDDLE -6.60 0.52 0.03 0.08 0.23 0.07 
CHILD6 -6.66 4.28 0.26 0.48 -1.24 0.59 
GIRL6 0.21 3.93 -0.49 0.58 -0.02 0.54 
CHILD12/PUP12* -5.80 3.27 0.66 0.28 -0.99 0.45 
GIRL12/PUG12* -0.45 2.20 -0.12 0.35 -0.17 0.30 
CHILD15/PUP15* -4.92 3.41 1.42 0.36 -0.60 0.47 
GIRL15/PUG15* -8.75 3.21 -0.08 0.50 -1.02 0.44 
CHILD18/PUP18* -8.35 3.36 2.42 0.48 -1.02 0.46 
GIRL18/PUG18* 0.56 3.23 -1.76 0.70 -0.23 0.44 
PADU -2.09 2.22   0.41 0.30 
PFADU -1.61 2.30   -0.69 0.32 
NUM -1.82 0.29 0.03 0.04 -0.13 0.04 
PUP19   4.80 0.80   
PUG19   -3.89 1.22   
LNCPER -1310.38 466.68 107.88 68.71 149.42 63.99 
LNCPER2 43.57 15.47 -3.68 2.28 -5.09 2.12 
ILNCPER -65878.99 26130.62 5551.07 3847.05 7695.11 3582.84 
ILNCPER2 112524.05 48521.47 -9704.71 7143.39 -13388.85 6652.91 

2R  .3649  .0210  .0314  
*  In following GVS for the case of Education these variables are defined as the PUP version – the proportion of Children in school of this 
gender and age. 
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 Using these estimates we determined the elasticity for the average household across the range of 

log total expenditure from 6 to 9 (note the mean is 7.6).  Thus we can compute the elasticity for each set 

of values as well as the distribution of the estimate based on Fieller’s method.  In Figures 3, 4 and 5 we 

have the plots of the elasticity on the vertical axis, the log of total expenditure (LNCPER) on the 

horizontal axis, and a dashed line for the average log of total expenditure. 

Figure 3  The elasticity of the Expenditure share for alcohol and tobacco with respect to the log of total 
expenditure with 95% Fieller confidence intervals based on OLS results. 

 

From Figure 3 we note that that the expenditure share on Alcohol and Tobacco is inelastic for average 

households with less than 7.7 log total expenditure and not different from 1 at expenditures above. 
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Figure 4 The elasticity of the expenditure share for education with respect to the log of total expenditure 
with 95% Fieller confidence intervals. 

 

 

From Figure 4 we find that we are unable to reject the null hypothesis 0 |: 1
jy cH η =  when 㬐 = .05 except 

for a range of log expenditures between 6.3 and 7.3.   

Figure 5  The elasticity of the expenditure share for food with respect to the log of total expenditure with 
95%  Fieller confidence intervals (small dash) as well as the Delta method (long dash) 95% confidence 
interval . 

 

 In Figure 5 it can be noted that for most of the range of values of the log of total expenditure the 

demand for food is income inelastic.  In Figure 5 we have added the estimated 95% confidence interval 

estimated using the Delta as the Fieller method interval.  Note that for the lower values of total 
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expenditure the two intervals coincide quite closely and it is only near the top values the total expenditure 

data where the Delta interval is much smaller than the Fieller.  However, if we compute the elasticity for 

education expenditures for low levels of total expenditure at which almost none of the sample buys 

education services we get a very different relationship between the two methods as is seen in Figure 6.   

Figure 6  The lower levels of the elasticities for education expenses with the Delta (long dash) as well as 
Fieller (short dash)  95% CIs. 

 

 Figure 6 provides the same comparison of confidence intervals as in Figure 5 for education and 

where the log total expenditure ranges from 5.4 to 7.  At log total expenditure values below 5.7 the upper 

Fieller bound is infinite while the lower bound is much smaller in magnitude than the corresponding 

Delta method interval which maintains the symmetry.  This example demonstrates quite clearly why in a 

number of Monte Carlo studies which compare the Delta and the Fieller methods, the Delta method has 

been found to have comparable coverage to the Fieller in some cases and not others.  In this example we 

note that although the upper bound has become infinite for the Fieller the lower bound is much higher 

than the bound estimated by the Delta method.   

 An alternative method for comparing these intervals is to define the implied cumulative density 

function (CDF) for the two methods.  This is done by setting the value of 㬐 = .5 then finding the implied 

upper and lower bounds for progressively smaller and smaller values of 㬐.  For the Fieller interval we 

eventually find a value of 㬐 where the bounds become infinite before 0α → .  Figure 7 is a comparison of 
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the CDFs computed for the elasticity for education for a log total expenditure level = 5.5 using the Delta 

approximation and the Fieller method.  The CDF for the Delta demonstrates the typical shape of a CDF 

for a symmetrical distribution.  The 95% confidence interval can be read from this graph by the values of 

the elasticity on the horizontal axis where the 2.5% and 97.5% lines cut the Delta CDF.  In this case the 

interval is approximately -2.6 to 5.4.  This interval could also be found from Figure 6 by drawing a 

vertical line from 5.5 which would cut the Delta 95% CI at the same values.   

 Figure 7 also shows the CDF for the Fieller interval, note that the two CDFs only coincide when 

the elasticity is equal to the ratio of the expected values at approximately 1.2 which is the 50th percentile 

or the median of the ratio.  The CDF for the Fieller interval exhibits a significant degree of asymmetry 

and the significance level of the confidence bound at which the upper bound approaches infinity can be 

seen to be a bit less than where 㬐 = .2 for the two sided test and  .1 for the one sided test for the upper 

limit.  Also note that if we are interested in only the lower 2.5% bound of the elasticity the Fieller interval 

implies a lower bound of approximately -.3 versus the Delta lower bound of approximately -2.6.  In this 

case the Fieller has a much tighter lower bound than upper bound. 

Figure 7  The CDF implied by the Fieller (dashed line) and Delta (solid line) confidence intervals for the 
elasticity of the expenditure on education when the log of total expenditure is 5.5 
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4.2 Robust Regression Estimation 

 An alternative estimation method to the usual OLS method for Engel curves is the use of a robust 

regression method.  Typically in using expenditure survey data we find that there are a large number of 

outlier values both in the share of expenditure on particular commodities (such as alcohol and tobacco) 

and for some commodities (such as education) there may be a large number of observations where the 

dependent variable is zero.  Because both these anomalies are present in the data used here (see GVS for 

more detail) we consider the application of a robust estimator.  In addition, the application of a robust 

estimation procedure has the advantage of providing estimates and asymptotic standard errors of the 

parameters that we can use in a similar fashion to the standard regression results.  Thus to compute the 

confidence intervals and the elasticities we can use the same techniques as we used in the case of the 

regression.  In this example we follow You (2003) who found that in an analysis of Canadian expenditure 

data the MM estimator introduced by Yohai(1987) performed consistently better than competing robust 

regression methods.   

 The least trimmed estimate proposed by Rousseeuw (1984) is used for the initial estimates of the 

parameter vector prior to the application of the MM estimation procedure.  The estimates of the 

covariance matrix are based on the reweighed 1( )−′X X  matrix as defined by Huber (1981, page 173).  The 

specification of the model is the same as used in the regression case.  The results of the estimation are 

given below: 

Table 2.  The results of the robust estimation as applied to the GVS data. 

 Food Education Alc & Tob 
 Coefficient se Coefficient se Coefficient se 
Intercept 20909.05 5373.29 45.75 75.69 -236.64 435.47 
AG -60.53 24.12 -0.080 0.292 1.91 1.89 
AG2/100 67.76 27.75 -0.071 0.312 -4.26 2.18 
DCOAST -0.69 0.63 -0.003 0.009 -0.02 0.05 
DMIDDLE -6.56 0.57 0.003 0.008 0.07 0.04 
CHILD6 -6.83 4.62 -0.030 0.049 -0.83 0.36 
GIRL6 -1.40 4.23 -0.058 0.059 0.11 0.33 
CHILD12/PUP12* -6.43 3.50 0.079 0.030 -0.62 0.28 
GIRL12/PUG12* -0.75 2.36 0.054 0.038 -0.10 0.18 
CHILD15/PUP15* -5.62 3.63 0.070 0.039 -0.72 0.29 
GIRL15/PUG15* -9.00 3.43 0.096 0.056 -0.03 0.27 
CHILD18/PUP18* -7.91 3.60 0.037 0.053 -0.71 0.28 
GIRL18/PUG18* -2.18 3.46 0.011 0.077 -0.21 0.27 
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 Food Education Alc & Tob 
 Coefficient se Coefficient se Coefficient se 
PADU -2.75 2.38   0.22 0.19 
PFADU -1.38 2.47   -0.49 0.19 
NUM -1.83 0.31 0.001 0.004 -0.06 0.02 
PUP19   0.207 0.086   
PUG19   -0.099 0.131   
LNCPER -1927.92 478.00 -4.42 6.73 20.99 38.82 
LNCPER2 64.70 15.86 0.16 0.22 -0.69 1.29 
ILNCPER -97386.28 26705.58 -202.98 376.08 1182.70 2160.32 
ILNCPER2 167775.62 49522.83 325.81 697.07 -2124.21 3999.21 

2R  .3305  .0229  .0048  
*  In following GVS for the case of Education these variables are defined as the PUP version – the proportion of children in school of this 
gender and age instead of the proportion of all children in this age and gender group. 

 

 From Table 2 we note that the log total expenditure terms are estimated for alcohol & tobacco and 

for education with much less accuracy than was the case with the OLS result.  However a test based on 

the differences in the sums of the squared error of the restricted versus the unrestricted model rejects the 

hypothesis that the coefficients estimated for the log of total expenditure terms are all equal to zero at the 

.01 level.  Figure 8 shows how the elasticity for education for the mean household characteristics, varies 

by the log of total expenditure.  Note that based on the robust estimation there is no level of total 

expenditure for which we can reject the hypothesis that the elasticity is not equal to one and there is also 

no level at which the elasticity is not significantly greater than zero.  The plots for the other commodities 

based on this model are shown in Section 5 below. 

Figure 8  The estimated elasticity using robust regression of the expenditure share for education with 
respect to the log of total expenditure with 95% Fieller confidence intervals. 
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4.3 The Tobit model for estimation 

 Due to the level of detail of an expenditure survey many households record zero for the 

consumption of a particular commodity.  In the present sample 3031 of 5394 households reported 

expenditure levels for education as zero.  Tobin’s (1958) original application of the subsequently named 

Tobit model was in a demand context that related to household level data used for the estimation of Engel 

curves.  A search of recent literature finds well over 100 papers that use a Tobit type model in the 

estimation of Engel curves.  The estimation of regressions using censored data can be formulated using a 

number of different distributional assumptions.  However the most common applications are based on the 

Normal distribution.   

 As we note above the estimated elasticity in the case of the Tobit model is defined as either the 

unconditional case  |

Ⱡ
Ⱡ Ⱡj

j
y c

j

ρ
η =

θ
 or the conditional case | j

j
y c

j

ρ
η =

θ

%
% % .  Once we have estimated the Tobit 

model using a standard maximum likelihood routine we also obtain an estimate for the asymptotic 

covariance matrix.  Thus we might proceed to estimate the confidence bounds for the estimated elasticity 

in the same manner as in the case of the regression results.  However, because ⱠⱠ ,  ,  , and j j j jρ ρ θ θ%%  are 

defined as functions of the cumulative normal density function ( )Ⱡ Ⱡ/yΦ σ , the normal density function 

( )Ⱡ Ⱡ/yφ σ  as well as of the parameter estimates we incur more complication to the estimation.  In order to 

generate a Fieller interval we will use a bootstrap to estimate the variance covariance matrix of 

ⱠⱠ ,  ,  , and j j j jρ ρ θ θ%% .  Efron (1982 ch 5 ) and Efron and Tibshirani (1993 ch 6) discuss the use of the 

bootstrap to estimate the standard error and the covariance for statistics.  Here we apply what is 

sometimes referred to as an unconditional bootstrap to the household data and re-run the regressions 

multiple times.  In the unconditional bootstrap we resample the rows of the entire data set to create a 

series of pseudo-samples of the same size which can then be used to reestimate the regression relationship 

multiple times.   

 Table 3 lists the parameter estimates based on the application of the Tobit model to the GVS data 

for education expenditures the only expenditure item in this data for which more than half the dependent 
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value is given as zero.  Note that from these results all the log total expenditure variables are significant 

unlike the parameters estimated by the robust and OLS estimates. 

Table 3.  The results of the Tobit estimation as applied to the GVS data. 

 Coefficient se 
Intercept -1120.90 128.34 
AG 5.13 5.94 
AG2/100 -9.17 6.45 
DCOAST 0.07 0.17 
DMIDDLE 0.13 0.15 
CHILD6 -0.14 0.93 
GIRL6 -0.43 1.15 
PUP12 1.75 0.53 
PUG12 0.38 0.66 
PUP15 3.27 0.68 
PUG15 0.61 0.94 
PUP18 4.63 0.90 
PUG18 -2.46 1.32 
NUM 0.12 0.07 
PUP19 8.55 1.48 
PUG19 -5.45 2.30 
LNCPER 100.49 17.53 
LNCPER2 -3.34 0.78 
ILNCPER 5444.93 282.38 
ILNCPER2 -9769.97 165.53 
Ⱡσ  3.71 0.06 

 

 In order to determine the variance and covariance of ⱠⱠ ,  ,  , and j j j jρ ρ θ θ%%  we computed their values 

using a first-order balanced bootstrap (see Davison and Hinkley (1997 page 439)) which insures that each 

observation is selected exactly B times, where B is the number of bootstrap replications was set to 1000.  

We then reestimated the Tobit model for the education data using a maximum likelihood estimation 

routine where the number of iterations was constrained to be 10 or less (the estimation of the complete 

sample in this case required more than 180 iterations).  In this case we follow the recommendation of 

Davison and MacKinnon (1999) who propose that when bootstrapping the results of a MLE such as the 

Tobit, it is unnecessary to allow the process to converge completely for each bootstrap replication. 
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Figure 9  The estimated unconditional (broken line) and conditional (solid line) elasticities of the 
expenditure share for education with respect to the log of total expenditure with 95% Fieller confidence 
intervals. 

 

 The conditional and unconditional elasticities and the 95% Fieller bounds for education expenses 

are shown in Figure 9.  From this figure it is readily apparent that the conditional elasticities lie above the 

unconditional elasticities at all observed levels of total expenditure and that the estimated precision of the 

conditional estimate is much greater than the corresponding unconditional estimates.  In addition, by 

comparing Figure 9 with Figures 4 and 8 we can conclude that the unconditional and conditional 

elasticity estimates for education are markedly more precise than our findings from the OLS and robust 

regression.  From Figure 9 we can conclude that for most levels of total expenditure both elasticities are 

significantly greater than zero and less than one. 

4.4 The Semiparametric Regression Model. 

 GVS propose the use of a semiparametric Engel curve model that does not rely on the assumption 

of a parametric functional form such as (11).  An alternative to the use of a parametric function is the use 

of a model that allows for the specification of a general function for the relationship between the 

expenditure share and the total expenditure level.  This model would be specified as: 

0
1

(ln( ), )
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i i i i
K
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=
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= α + α + + ε∑
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where (ln( ))ih c  is specified as a general function with a shape that is determined by the data and the x’s 

are the demographic variables that determine the location by a linear model.  In this example we will 

employ a penalized least squares method where a thin-plate quadratic smoothing spline is used to 

approximate the function (ln( ))ih c .  The estimation of such penalized splines via mixed or error 

component regression methods has been shown to be a fairly simple extension of the estimation of linear 

mixed regression model estimation by Ruppert, Wand and Carroll (2003, page 108).  Because the 

estimation involves the definition of a linear regression model it can be augmented for the estimation of 

the additional regression parameters.  Table 4 lists the parameter value estimates for the semiparametric 

model for the demographic variables.  Note that the spline we are using in this case is a quadratic. 

Table 4.  The results of the semiparametric estimation as applied to the GVS data. 

 Food Education Alc & Tob 
 Coefficient se Coefficient se Coefficient se 
Intercept -180.16 136.59 16.45 11.79 24.32 20.86 
AG -58.25 22.57 2.35 2.85 1.77 3.09 
AG2/100 66.53 26.10 -3.08 3.05 -5.02 3.58 
DCOAST -1.26 0.59 0.15 0.09 0.56 0.08 
DMIDDLE -6.61 0.52 0.03 0.08 0.23 0.07 
CHILD6 -6.71 4.28 0.27 0.48 -1.24 0.59 
GIRL6 0.18 3.93 -0.49 0.58 -0.01 0.54 
CHILD12/PUP12* -5.87 3.27 0.67 0.28 -0.99 0.45 
GIRL12/PUG12* -0.42 2.20 -0.12 0.35 -0.17 0.30 
CHILD15/PUP15* -4.95 3.41 1.42 0.36 -0.60 0.47 
GIRL15/PUG15* -8.73 3.21 -0.09 0.50 -1.02 0.44 
CHILD18/PUP18* -8.32 3.36 2.43 0.48 -1.02 0.46 
GIRL18/PUG18* 0.45 3.23 -1.77 0.70 -0.22 0.44 
PADU -2.09 2.22   0.41 0.30 
PFADU -1.65 2.30   -0.69 0.31 
NUM -1.82 0.29 0.03 0.04 -0.13 0.04 
PUP19   4.80 0.80   
PUG19   -3.87 1.22   

2R  .3671  .0241  .0355  
*  In following GVS for the case of Education these variables are defined as the PUP version – the proportion of children in school of this 
gender and age instead of the proportion of all children in this age and gender group. 

 

 The elasticity for this case |
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requires the computation of a numerical derivative evaluated at each level of the total expenditure.  In this 

application we follow Wang and Wahba (1995) and use a model defined bootstrap where we first fit the 
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semi-parametric model to the original sample and then we resample the residuals and add them back to 

the predicted values in order to create a new set of dependent variables as suggested by Freedman (1981).  

Thus we keep the independent variables the same and only change the dependent variables. 

Figure 10  The elasticity of the expenditure share for alcohol and tobacco with respect to the log of total 
expenditure with 95%  Fieller confidence intervals based on the semiparametric model. 

 

From Figure 10 we can see that the elasticity estimates for alcohol and tobacco are significantly different 

from zero over the span plotted, however we can only reject unitary elasticity for the values of log 

expenditure from approximately 6.3 to 7.2. 

Figure 11  The elasticity of the expenditure share for education with respect to the log of total 
expenditure with 95%  Fieller confidence intervals based on the semiparametric model. 
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Figure 11 displays the expenditure elasticity for education as estimated by the semiparametric estimation.  

From this figure we find that we are unable to reject the hypothesis that the elasticity is equal to one for 

the entire span shown.  However, we are only able to reject the hypothesis that these elasticities are zero 

for log total expenditures from 6.6 to 8.3. 

Figure 12  The elasticity of the Expenditure share for food with respect to the log of total expenditure 
with 95%  Fieller confidence intervals based on the semiparametric model. 

 

Figure 12 shows the plot of the elasticities for expenditure on food in which we note that for log total 

expenditures greater than 8.7 we cannot reject the hypothesis of a zero elasticity value.  As we will show 

in Section 5 below due to the relatively tight fit of all the models for food the elasticities for food are very 

similar for all the estimation methods applied here. 

 

5. Comparisons of Elasticity Estimates 

 

 Figures 14, 15 and 16 display the comparison plots of the elasticity and the 95% confidence upper 

and lower bounds by commodity and estimation strategy.  In Figure 14 the large differences across 

models are most apparent at the lower levels of total expenditure.  In particular, we find that the 

parametric elasticity estimates for alcohol and tobacco vary much more than those generated by the 

semiparametric model.  For the education expenditures we also observe that, with the exception of the 
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Tobit model, the parametric models do not agree at lower levels of total expenditure.  However, this must 

in a large part be a consequence of large proportion of the households with log total expenditure less than 

the mean (7.6) as having zero education expenditure.  Interestingly, the penalized spline tracks the 

parametric Tobit model quite closely.  All models for food consumption match each other quite closely 

which should not be surprising since food consumption is so well predicted by all the models. 

Figure 14  A comparison of the estimated elasticities by commodity and estimation method. 
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Figure 15  A comparison of the estimated Fieller upper 97.5% bound for elasticities by commodity and 
estimation method. 

  

 
  

 Figure 15 also shows a series of comparison plots for the estimated upper 97.5% bound based on 

the Fieller method.  For alcohol and tobacco expenditure there is a uniform inference over the three 

models that the elasticity for log total expenditure from approximately 6.3 to 7.2 is less than one.  In this 

case the robust model would indicate that for the majority of the values of log total expenditure the 97.5% 

upper bound of the elasticity is less than one.  For education we find that all the models appear to indicate 

upper bounds greater than one for the majority of the sample.  As with the elasticity estimates the upper 

bound values for food are fairly similar for the three estimation methods. 

 In Figure 16 we have plotted a series of the estimated 2.5 % bounds for the elasticities based on 

the Fieller method.  From plots of the lower bound plots we can infer that the three methods used to 

model Alcohol and Tobacco expenditures result in elasticities that are greater than zero.  For education 

this is true for all methods for the majority of the levels of the total expenditure in the sample.  In the case 
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of food it is only when approaching the highest value of the log total expenditure do we find values that 

are not significantly above zero. 

Figure 16  A comparison of the estimated lower Fieller bound for a 2.5% bound for elasticities by 
commodity and estimation method. 

  

 
 

 In addition to the comparison of the elasticity measures we can also compare the precision of the 

elasticity measures across different levels of the log total expenditure and across estimation methods.  In 

Figure 17 we compare the CDFs based on the Fieller method for education at the mean level of the log 

total expenditure as 7.6.  Note that the expected value of the elasticity is marked for each model estimate.  

From these CDFs one can determine for each method how the elasticity varies and how the various 

probability statements one can make about the elasticities will vary by model used for estimation.  The 

slopes of the CDFs indicate the precision of the estimates and the locations of the expected value of the 

elasticity (where p=.5).  Thus we find that the steepest CDF is for the Tobit model and the least precise 

the elasticity estimate from the semiparametric model.  Another observation from Figure 17 is the 

coincidence of the 2.5% lower bound for the three parametric estimates of the elasticity – they all have 



 32 

lower bounds around .7.  However their 97.5% upper bounds appear to vary markedly from .9 for the 

Tobit to 1.3 for OLS. 

Figure 17  The CDFs based on the Fieller method for the elasticity of expenditure on education when log 
total expenditure = 7.61. 

 

 An alternative comparison can be made for a particular method and commodity across different 

values of the log expenditure function in order to establish how the confidence intervals vary by value at 

which they are evaluated.  In Figure 18 we plot the CDFs for the expenditure elasticity for food based on 

the results for the semiparametric model using the Fieller confidence interval method.  As the level of 

expenditures decline we find that the expected value of the elasticities decline as well.  We can also see 

from this diagram that the confidence intervals are fairly similar in size for log expenditure levels of 7, 

7.6 and 8.  However for log expenditures of 6 and 9 we see that the CDFs are markedly flatter indicating a 

widening of the confidence intervals. 

 



 33 

Figure 18  The CDFs based on the Fieller method for the elasticity of expenditure on food based on the 
results from the semiparametric estimation. 

 

 Figure 19 is the equivalent plot to Figure 18 for education expenses when using the Tobit model.  

In this case the CDF for the elasticity for an income at which almost no households consume educational 

services is shown to be much less precise than the case compared to the higher total expenditure levels.   

Figure 19  The CDFs based on the Fieller method for the unconditional elasticity of expenditure on 
education based on the results from the conditional Tobit model estimation. 
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6. Conclusions 

 

 In this paper we have demonstrated that the Fieller intervals for the elasticity estimates can be 

implemented with a number of different estimation strategies.  When the estimated parameters that make 

up the ratio that defines the elasticity are normally distributed the Fieller provides the exact confidence 

interval but the Delta method is only an approximation.  When the estimated parameters are 

asymptotically normally distributed the Fieller is an approximation while the Delta method becomes an 

approximation based on an approximation.  In this paper we have shown under what conditions the 

Fieller and the Delta are similar and what factors in the joint distribution of the estimates of numerator 

and denominator will lead to the two methods resulting in divergent inferences.  A geometric examination 

of the relationship between these two methods is available in Hirschberg and Lye (2008). 

 In our application we find that the different models used to estimate the Engel curves for the same 

commodities do not result in the same point estimates of the elasticities.  However, the inferences drawn 

as to whether the commodity has an income elasticity greater than one or not are quite similar across all 

values of total expenditure when we use the appropriately defined confidence intervals.  We have also 

demonstrated that plots of the estimated elasticity CDF may be useful for the determination of the 

appropriate inferences especially in the cases where bounds may become infinite due to the available 

evidence 

 There are a number of alternative methods for the estimation of Engel curves that we have not 

considered.  Alternative censored and semiparametric regression models have been proposed that will 

influence the form of the specific formulas used for the estimation.  In addition, to other single equation 

robust methods quantile regression methods have also been applied to the estimation of Engel curves.  It 

may also be possible to use methods other than the bootstrap for the estimation of the variance covariance 

matrix of the numerator and denominator for the elasticities from these estimation procedures.  Our use of 

the bootstrap is limited in that we do not use the bootstrap to estimate the distribution of the ratios 

directly.  Our main reason for this is that traditional resampling techniques applied to the ratio of means 
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(see Davison and Hinkley (1997) for an extensive set of examples) the bounds are finite in nature and 

they do not allow for the open ended interval case.  The specification of the constrained optimization in 

(7) implies that it is possible to construct Fieller-like intervals that allows for the use of assumptions for 

the joint distribution of the numerator and denominator other than the normal.  Hirschberg and Lye 

(2007b) propose the use of an empirical joint distribution based on the bootstrap for the case of cost-

effectiveness ratios.  
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Appendix  

 

 The description of the data used from the Gong, Van Soest and Zhang (2005). 

Table A.1  Summary Statistics for the 5,394 observations used in this analysis. 

Variable name Label Mean StdDev Min Max 
FS Food Expense Share x 100 54.786 18.656 3.300 99.606 
AT Alcohol & Tobacco Share x 100 1.850 2.071 0.000 34.165 
ED Education Share x 100 0.697 2.212 0.000 60.811 
AG Age divided by 100 0.418 0.094 0.220 0.835 
DCOAST dummy, 1 if household in coastal area 0.317 0.465 0.000 1.000 
DMIDDLE dummy, 1 if household in middle area 0.454 0.498 0.000 1.000 
CHILD6 Proportion of children (0-5) 0.043 0.109 0.000 0.600 
GIRL6 Proportion of female children (0-5) 0.019 0.071 0.000 0.500 
CHILD12 Proportion of children (6-12) 0.155 0.193 0.000 0.667 
GIRL12 Proportion of female children(6-12) 0.071 0.128 0.000 0.667 
CHILD15 Proportion of children (6-12)} 0.070 0.120 0.000 0.600 
GIRL15 Proportion of female children (13-15) 0.031 0.082 0.000 0.500 
CHILD18 Proportion of children (16-18) 0.069 0.121 0.000 0.600 
GIRL18 Proportion of female children (16-18) 0.032 0.084 0.000 0.500 

PADU 
Proportion of adult members (19+)  
(both parents and children older than 18) 0.603 0.213 0.000 1.000 

PFADU 
Proportion of female adult members (19+)  
(spouse and female children older than 18) 0.298 0.131 0.000 0.833 

PUP12 Proportion of children at school (6-12) 0.131 0.180 0.000 0.667 
PUG12 Proportion of female children at school (6-12) 0.059 0.117 0.000 0.600 
PUP15 Proportion of children at school (13-15) 0.061 0.114 0.000 0.600 
PUG15 Proportion of female children at school (13-15) 0.026 0.076 0.000 0.500 
PUP18 Proportion of children at school (16-18) 0.032 0.087 0.000 0.600 
PUG18 Proportion of female children at school (16-18) 0.014 0.057 0.000 0.500 
PUP19 Proportion of children at school (19+) 0.010 0.050 0.000 0.600 
PUG19 Proportion of female children at school (19+) 0.004 0.032 0.000 0.400 
NUM number of household members 3.966 0.977 2.000 9.000 
LNCPER log total expenditures per capita (yuan) 7.612 0.584 5.243 9.868 
LNCPER2 LNCPER squared 58.287 9.036 27.485 97.370 
ILNCPER inverse LNCPER 0.132 0.010 0.101 0.191 
ILNCPER2 inverse LNCPER squared 0.018 0.003 0.010 0.036 
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Figure A.1  The kernel density estimate for the log of the total household expenditure 
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