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Abstract

This paper derives some new first and second order asymptotic properties of well known
√
N -consistent estimators for covariance structure models. Generally, optimal GMM is

known to dominate Gaussian QMLE in terms of first order asymptotic efficiency. There

are however nontrivial conditions under which Gaussian QMLE preserves its asymptotic

optimality property even if the distribution is non-Gaussian. I derive such conditions

for a general class of covariance structure models and provide an example when they

hold. The conditions can be stated as restrictions on the fourth order moments of the

distribution. They trivially hold for normal data but also identify non-normal cases for

which Gaussian QMLE is asymptotically efficient. This result supports the much criticized

use of traditional Gaussian QMLE in a range of econometric applications that employ such

covariance structure models as linear structural relationship (LISREL) models, multiple

indicators multiple causes (MIMIC) models, factor analysis and random effect models.

In recent papers, Newey et al (2003, 2004) derived and compared the second order bias

of the Emprirical Likelihood estimator and its first order equivalents, such as GMM and

Exponential Tilting estimators, for covariance structure models. The GMM estimator has

a second order bias that contains more terms than that of the EL estimator and other
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estimators of this family. The extra bias terms come from the estimation of the optimal

weighting matrix and the derivative matrix that are both parts of the GMM first order

conditions. It is unknown how these biases compare to the second order bias of the Gaus-

sian QMLE. I derive the Gaussian QMLE second order bias in a form that allows such a

comparison and show that, under normality, the expressions for the EL and QMLE bias are

identical. There are several advantages to having a formal proof of these results. First, an

explicit form of the QMLE bias is helpful in making comparisons with GMM and EL-type

estimators under other distributions than normal. Second, it can be used to explain the

finite sample performance of Gaussian QMLE and to construct its bias-corrected version.

Finally, I use a higher order stochastic expansion and the bias expression I obtain involves

higher order moments of the distribution rather than the cumulants and is thus relatively

simple.

JEL Classification: C13

Keywords: GMM, (Q)MLE, EL, Covariance structures, LISREL, MIMIC, efficiency, second-

order bias.

1 Introduction

This paper considers estimation of covariance structure models, i.e. models formulated in terms

of the second moments of the data. One situation when such models arise is when there are

unobserved variables whose presence in the model introduces a particular pattern of correlation

between observed variables (e.g., linear structural relationship (LISREL) models, multiple

indicators multiple causes (MIMIC) models, factor analysis and random effect models).

Traditionally covariance structure models are estimated by maximum likelihood under the

assumption of multivariate normality (see, e.g., Jöreskog, 1970). If the data are not normal,

MLE is still consistent. However, the MLE standard errors are wrong and inference may be

incorrect. It is common to make inference robust to non-normality by using the “sandwich”

form of the variance matrix. The form of the variance matrix for normal quasi-MLE of

covariance structures can be found, e.g., in Chamberlain (1984, p. 1295).

However, the Gaussian QMLE is generally inefficient. The optimal generalized method



of moments estimator (GMM) makes efficient use of the restrictions on the second moments

whether or not the data are in fact normal. It is known to be no worse asymptotically than

QMLE (e,g., Chamberlain, 1984).

A trivial case when QMLE is efficient is when the data are in fact normal. The first order

conditions of QMLE and GMM are asymptotically identical in this case. But it turns out that

QMLE may retain the asymptotic optimality property more generally. The condition I derive

in this paper is necessary and sufficient for optimality of QMLE. Thus, this paper is related

to the work on asymptotic robustness of covariance structure estimators (e.g., Browne, 1987;

Anderson and Amemiya, 1988; Browne and Shapiro, 1988; Anderson, 1989; Mooijaart and

Bentler, 1991; Satorra and Neudecker, 1994). However, very few papers consider robustness of

the efficiency property. If this kind of robustness is considered, results are stated in terms of

the higher-order cumulants (e.g, Mooijaart and Bentler, 1991) or provide conditions that are

too weak due to some restriction of the model (Satorra and Neudecker, 1994). The robustness

condition derived here is new; it involves the fourth moments of data and applies to a general

class of models. With its help, one may easily identify situations in which using the normality

assumption does not result in an inefficient estimator. As an example, I show that this is

so in problems about the variance of two uncorrelated random variables with the Student-t

distribution.

This result is given in Section 3. Section 2 describes the general model and the estimators.

Section 4 is devoted to derivation of the second order bias of QMLE and its comparison with

the empirical likelihood estimator.

Intuitively, one may argue that the comparison is obvious without even looking at the

first order conditions the two estimators solve. The bias should be identical. If the true

distribution of the data is discrete then MLE and EL are identical estimators. Furthermore,

bias terms usually do not depend on discreteness, only on existence of certain moments. So

if the assumed distribution (normal, in the case of Gaussian QMLE) turns out to be correct,

we should expect the same bias.

There are several advantages to having a formal proof of this intuition. First, an explicit

form of the QMLE bias is helpful on its own right. It may be used in making comparisons with
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EL under other distributions than normal. Second, it is useful for explaining the finite sample

performance of QMLE and for constructing its bias-corrected version. Finally, we use a higher

order stochastic expansion and the bias expression we obtain involves higher moments of the

distribution rather than cumulants and is thus relatively simple.

2 Preliminaries

Consider a family of distributions {Pθ,θ ∈ Θ ⊂ Rp,Θ compact} and a random vector Z ∈

Z ⊂ Rq from Pθo ,θo ∈ Θ, such that EZ = 0, E{||Z||4} <∞ and

E
[
ZZ′

]
= Σ(θ), if and only if θ = θo. (1)

Expectation is with respect to Pθo . The matrix function Σ(θ) comes from a structural model,

e.g., LISREL, MIMIC, factor analysis, random effects or simultaneous equations model.

For a random sample (Z1, . . . ,ZN ), denote

Si ≡ ZiZ′i

and

S ≡ 1
N

N∑
i=1

Si.

The problem is to estimate θo given (Z1, . . . ,ZN ).

Since we assumed existence of the fourth moments, S satisfies the central limit theorem:

√
N(vec(S)− vec(Σ(θo)))→ N(0,∆(θo)),

where

∆(θ) = V(vec(Si)) = Evec(Si)vec(Si)′ − vec(Σ(θ))vec(Σ(θ))′ (2)

and vec denotes vertical vectorization. To save space we will omit the argument of matrix-

functions.

It is well known (see, e.g., Magnus and Neudecker, 1988, p. 253) that the multivariate

normal distribution satisfies

∆o = (Σo ⊗Σo)(I + K) = (I + K)(Σo ⊗Σo), (3)
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where ⊗ is the Kronecker product, I is the identity matrix, K is the commutation matrix,

such that K vec(A) = vec(A′), for any square matrix A. Thus the fourth moments of the

multivariate normal distribution are expressed in terms of the second moments.

The normal QML estimator is

θ̂QMLE = arg min
θ∈Θ
{log |Σ|+ tr(SΣ−1)}.

The EL estimator is

θ̂EL = arg max
θ∈Θ

N∑
i=1

lnπi

subject to

N∑
i=1

πim(zi;θ) = 0

and

N∑
i=1

πi = 1.

A GMM estimator is based on the moment condition

E[m(Zi;θo)] = 0, (4)

where m(Zi;θ) = vech(Si) − vech(Σ) and vech denotes vertical vectorization of the lower

triangle of a matrix.

The optimal GMM estimator is

θ̂GMM = arg min
θ∈Θ
{mN (θ)′WmN (θ)},

where

mN (θ) =
1
N

N∑
i=1

m(zi;θ)

= vech(S)− vech(Σ),

and the asymptotically optimal weighting matrix is the inverse of the asymptotic variance

matrix of the moment functions:

Wo = {E[m(Zi;θo)m(Zi;θo)′]}−1. (5)
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W in (5) and ∆ in (2) are connected through the duplication matrix (see, e.g., Magnus

and Neudecker, 1988, p. 49). The duplication matrix D is such that D vech(A) = vec(A). D

transforms vech into vec, while the Moore-Penrose inverse of D, D+ = (D′D)−1D′, transforms

vec into vech. We will use four properties of D and D+:

(i) D+ D = I;

(ii) K D = D, where K is the commutation matrix defined above;

(iii) D D+ = 1
2(I + K);

(iv) (I + K) D = 2 D and D+ (I + K) = 2 D+.

Thus, ∆ = V[vec(Si)] = V[D vech(Si)] = DV[vech(Si)]D′. But V[vech(Si)] = E[m(Zi;θ)m(Zi;θ)′].

So

Wo = [D+∆oD+′]−1.

It is a standard result that, under certain regularity conditions, the normal QMLE, the

optimal GMM and the EL estimators of θo are consistent and asymptotically normal. See

Chamberlain (1984, p. 1289), Newey and McFadden (1994, Theorems 2.6 and 3.4), and Owen

(2001).

3 First Order Analysis

Let G(θ) denote the Jacobian matrix of the moment functions in (4). Then

G ≡ G(θ) =
∂m(zi,θ)

∂θ′
= −∂vech(Σ)

∂θ′
.

The following lemmas are used in derivation of the main result of the paper; they are well

known and thus given without proof (see, e.g., Chamberlain, 1984; Hansen, 1982).

Lemma 3.1 Under regularity conditions, the first order conditions for θ̂QMLE and θ̂GMM are,

respectively,

G′D′(Σ⊗Σ)−1D [vech(S)− vech(Σ)] = 0 (6)

G′W−1[vech(S)− vech(Σ)] = 0. (7)
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It is clear from (6)-(7) that the only thing that distinguishes the two estimators is the way

in which the empirical moments mN (θ) are weighted. One way to compare the first order

variances of GMM and normal QMLE is to note that θ̂QMLE comes from the GMM problem

that employs a suboptimal weighting matrix G′D′(Σ ⊗ Σ)−1D and is therefore inferior to

θ̂GMM in terms of first-order relative efficiency unless the weighting matrices are the same.

However, this argument cannot be used to derive our equal efficiency condition.

Lemma 3.2 Let V denote the asymptotic variance matrix of the relevant estimator, i.e. V =

Avar[N−
1
2 (θ̂ − θo)]. Then, under regularity conditions,

VQMLE = [G′oD
′(Σo ⊗Σo)−1DGo]−1

×G′oD
′(Σo ⊗Σo)−1∆o(Σo ⊗Σo)−1DGo (8)

×[G′oD
′(Σo ⊗Σo)−1DGo]−1,

VGMM = [G′o(D
+∆oD+′)−1Go]−1. (9)

If the data are multivariate normal then the two variance matrices are the same. On using

properties of the duplication matrix and equation (3), the following simplifications apply:

D′(Σ⊗Σ)−1∆(Σ⊗Σ)−1D = D′(Σ⊗Σ)−1(I + K)D

= 2 D′(Σ⊗Σ)−1D,

D+∆D+′ = D+(I + K)(Σ⊗Σ)D+′

= 2 D+(Σ⊗Σ)D+′ .

But [D+′(Σ⊗Σ)D+]−1 is equal to D′(Σ⊗Σ)−1D because

D′(Σ⊗Σ)−1D D+(Σ⊗Σ)D+′ =
1
2

D′(Σ⊗Σ)−1(I + K)(Σ⊗Σ)D+′

=
1
2

D′(I + K)D+′

= I.

It is not immediately clear from the form of (8)-(9) that QMLE is dominated by GMM

and under what condition they are equally efficient. The main result is stated in the next

theorem.
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Theorem 3.1 Under the regularity conditions, θ̂GMM is no less asymptotically efficient than

θ̂QMLE. Equal efficiency occurs under the following equivalent conditions:

(i) Go is in the column space of D+∆o(Σo ⊗Σo)−1DGo;

(ii) There exists a q(q+1)
2 × q(q+1)

2 matrix D such that

Go = D+∆o(Σo ⊗Σo)−1DGoD.

Proof. VQMLE − VGMM is positive semidefinite (PSD) if and only if V−1
GMM − V−1

QMLE is

PSD. Denote D+∆oD+′ by C and D′(Σo ⊗Σo)−1D by A. We have

V−1
GMM − V−1

QMLE = G′oC−1Go −G′oAGo[G′oACAGo]−1G′oAGo

= G′oC−
1
2 [I− C

1
2 AGo[G′oAC

1
2 C

1
2 AGo]−1G′oAC

1
2 ]C−

1
2 Go.

This is PSD because the middle part is the idempotent projection matrix onto C1/2AGo. This

proves the first part of the theorem.

The difference is zero if and only if C−1/2Go is in the column space spanned by C1/2AGo,

or equivalently, Go is in the column space of CAGo. Note that

CAGo = D+∆oD+′D′(Σo ⊗Σo)−1DGo

= D+∆o
1
2

(I + K)(Σo ⊗Σo)−1DGo

= D+∆o(Σo ⊗Σo)−1 1
2

(I + K)DGo

= D+∆o(Σo ⊗Σo)−1 1
2

2DGo

= D+∆o(Σo ⊗Σo)−1DGo.

This proves both (i) and (ii). �

Theorem 3.1 is novel in that it states the first order efficiency properties of QMLE and

GMM explicitly in terms of the fourth moments of Z in ∆.

Not surprisingly, the conditions of the theorem hold for the multivariate normal distribu-

tion. Using (3), we have

D+∆o(Σo ⊗Σo)−1DGo = D+(I−K)DGo = 2 D+DGo = 2 Go.
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So condition (ii) trivially holds. However, there may exist other distributions that satisfy the

equal efficiency condition. The following example uses a Student-t distribution with ν degrees

of freedom (ν > 4) to show that the condition holds.

Consider the problem of estimating the common variance θo = νo
νo−2 (0 < θo < 2) of two

uncorrelated random variables with zero mean:

Σ = θ

 1 0

0 1

 , G = −


1

0

1

 , D =



1 0 0

0 1 0

0 1 0

0 0 1


, D+ =


1 0 0 0

0 1
2

1
2 0

0 0 0 1

 ,

D+∆D+′ =
θ2

2− θ


1 + θ 0 1 + θ

0 1 0

1 + θ 0 1 + θ

 , D′(Σo ⊗Σo)−1D =
1
θ2


1 0 0

0 2 0

0 0 1



D+∆(Σ⊗Σ)−1DG = − 2θ
2− θ


1

0

1

 .

The condition of the theorem clearly holds with D = 2−θo
2θo

. Normal QMLE is efficient. In fact,

VQMLE = VGMM = θ3o
2−θo

.

4 Second Order Analysis

Higher order stochastic expansions are based on the Taylor approximation of the first order

conditions at the true value. The expansions have the following form

√
N(β̂ − βo) = µ+N−

1
2τ +Op(N−1), (10)

where µ and τ are Op(1) random vectors.

Since QMLE and EL are
√
N consistent, their first order bias, which can be obtained by

taking the expectation of the first term, is zero. Similarly, the first order variances can be
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obtained as the expectation of the outer product of first term. The second order bias is based

on the expectation of the first two terms in (10). Alternatively, the second order bias can be

obtained using the Edgeworth approximation to the distribution as in Rothenberg (1984) and

McCullagh (1987).

General expressions for µ and τ of extremum and minimum distance estimators with many

examples can be found, e.g., in Rilstone et al. (1996); Ullah (2004). Specialized expressions

for the GMM and (generalized) EL can be found in Newey et al. (2005) and Newey and Smith

(2004).

Derivation of higher order stochastic expansions involves higher order derivatives of the

objective functions. Rilstone et al. (1996) use a recursive definition of derivatives which is

useful in general settings. In our derivation we follow Newey and Smith (2004) in using the

usual definition because we do not go to the order higher than two and because we wish to

compare the QMLE bias to the EL bias expression they derive.

In derivations of results in this section, we will use an alternative way of writing the

first order condition (6)-(7), which circumvents the need to operate with the inverse. Define

λ = −[Σ(θ) ⊗ Σ(θ)]−1D mN (θ), where mN (θ) = 1
N

∑N
i=1 m(Zi;θ) = vech(S) − vech(Σ).

Then the QMLE first order condition can be written as

sN (β) ≡ 1
N

N∑
i=1

si(β) = 0,

where

si(β) = −

 G(θ)′D′λ

D m(Zi;θ) + [Σ(θ)⊗Σ(θ)]λ


and we now have a p + q2-vector of parameters β = (θ′,λ′)′. A similar representation was

used by Newey and Smith (2004) for the EL first order condition.

Define

Mj =
∂2si(β)
∂β′∂βj

, where βj is the j-th element of β, (11)

R = [G′D′(Σ⊗Σ)−1DG]−1,

Q = RG′D′(Σ⊗Σ)−1,

P = (Σ⊗Σ)−1 − (Σ⊗Σ)−1DGQ.
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Note that Mj does not depend on i because derivatives of mi are not random. As before, we

will use subscript o to denote matrices evaluated at βo = (θ′o,0
′)′.

Theorem 4.1 The estimator β̂QMLE satisfies (10) with

µ =

 Qo

Po

D
1√
N

N∑
i=1

[vech(Si)− vech(Σo)], (12)

τ = 1/2

 −Ro Qo

Q′o Po

 p+q2∑
j=1

µjMjoµ,

where µj is the j-th element of µ.

Proof. Let M̄(β) = 1
N

∑N
i=1

∂si(β)
∂β′

, M(β) = E∂si(β)
∂β′

, M̄j(β) = 1
N

∑N
i=1

∂2si(β)
∂β′∂βj

and β̄ be

between β̂ and βo. Note that because ∂si(β)
∂β′

is non-random, M̄(β) = M(β). By the second-

order Taylor expansion of (6) around βo, we have

sN (β̂) = 0

= sN (βo) + M̄(βo)(β̂ − βo) +
1
2

p+q2∑
j=1

(β̂j − βoj)M̄j(β̄)(β̂ − βo)

= sN (βo) + M(βo)(β̂ − βo) + [M̄(βo)−M(βo)](β̂ − βo)

+
1
2

p+q2∑
j=1

(β̂j − βoj)Mj(βo)(β̂ − βo) +

+
1
2

p+q2∑
j=1

(β̂j − βoj)[M̄j(β̄)−Mj(βo)](β̂ − βo).

Since M̄(βo) = M(βo), the third term in the last equation is zero. Also note that the last

term is Op(N−3/2).

Assume that M̄(βo) is not singular. Then,

β̂ − βo = −[M(βo)]
−1sN (βo)

−1
2

[M(βo)]
−1

p+q2∑
j=1

(β̂j − βoj)Mj(βo)(β̂ − βo)

+Op(N−3/2). (13)
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But M(βo) = −

 0 G′oD′

DGo Σo ⊗Σo

, sN (βo) = −

 0

D mN (θo)

 and the second term is

Op(N−1). We thus have

β̂ − βo =
1√
N

 Qo

Po

D
1√
N

N∑
i=1

[vech(Si)− vech(Σo)] +Op(N−1)

=
1√
N
µ+Op(N−1). (14)

Substituting (21) into (20), multiplying by
√
N and collecting terms of the same order yields

the result. �

Note that Eµ = 0 and the first order variance of β̂QMLE based on (12) can be written as

Eµµ′ =

 Qo

Po

D E[m(Zi,θo)m(Zi,θo)′]D′

 Qo

Po

′

=

 Qo∆oQ′o Qo∆oP′o

Po∆oQ′o Po∆oP′o

 , (15)

where the upper left p×p block of (15) is the traditional expression for the asymptotic variance

of θ̂QMLE (see, e.g., Chamberlain, 1984).

Let B denote the second order bias of the relevant estimator. Using (10), the bias can be

written in terms of the expected value of τ as

B = Eτ/N.

Thus, an explicit form of the QMLE bias contains EµjMjoµ, j = 1, . . . , p+ q2. But Mjo can

be written as

Mjo = − ∂2

∂β′∂βj

 G′D′λ

D m(Zi,θo) + (Σ⊗Σ)λ

∣∣∣∣∣∣
θ=θo,λ=0

=



−

 0 Gj′
o D′

DGj
o Ωj

o

 , j = 1, . . . , p

−

 Gj−p,o 0

Ωj−p,o 0

 , j = p+ 1, . . . , p+ q2
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where Gj
o = ∂

∂θj
G
∣∣∣
θ=θo

, Gj−p,o = ∂
∂θ [G′D′ej−p]

∣∣
θ=θo

, Ωj
o = ∂

∂θj
(Σ⊗Σ)

∣∣∣
θ=θo

, Ωj−p,o =

∂
∂θ [(Σ⊗Σ)ej−p]

∣∣
θ=θo

, and ej−p is a q2-vector of zeros with the (j− p)-th element equal to 1.

Therefore Mj is non-random and we can write

EµjMjoµ =



−

 0 Gj′
o D′

DGj
o Ωj

o

Eµµ′ej , j = 1, . . . , p

−

 Gj−p,o 0

Ωj−p,o 0

Eµµ′ej , j = p+ 1, . . . , p+ q2,

(16)

where ek is a p + q2-vector of zeros with the k-th element equal to 1. Substituting (15) into

(16) and simplifying yields the result of the following theorem.

Theorem 4.2 The second order bias of β̂QMLE can be written as follows

BQMLE = − 1
2N

 −Ro Qo

Q′o Po


p∑
j=1

 0 Gj′
o D′

DGj
o Ωj

o

 Qo∆oQ′o

Po∆oQ′o

 ej

+
p+q2∑
j=p+1

 Gj−p,o

Ωj−p,o

 Qo∆oP′oej−p

 , (17)

where ek is the zero vector of relevant dimension in which the k-th element is 1.

McCullagh (1987) and Linton (1997) give expressions for the second order bias of QMLE

in terms of cumulants; our higher-moment representation is simpler and it enables comparison

with the second order biases derived in Newey and Smith (2004).

Newey and Smith’s (2004, Theorems 4.1 and 4.6) second order bias for the EL estimator

of θo is, in our notation,

BEL = − 1
2N

QEL
o

p∑
j=1

Gj
oR

EL
o ej , (18)

where

QEL = RELG′[Em(Zi,θ)m(Zi,θ)′],

REL = (G′[Em(Zi,θ)m(Zi,θ)′]−1G)−1.

It is not clear how this compares to BQMLE(θ) in general. However, when Z is multivariate

normal, it is relatively easy to show that the upper block of BQMLE is equal to (18).

13



In order to show this final result we make use of two results mentioned before. One result

is about stating fourth order moments of the normal distribution in terms of the second order

moments, the other result is about properties of the duplication matrix.

Using the results, it is easy to show that

Qo∆oQ′o = 2Ro,

Qo∆oP′o = 0.

Note that this makes the QMLE variance matrix (15) block diagonal just like its EL counter-

part (see, e.g., Qin and Lawless, 1994, Theorem 1).

We can now use these simplifications to rewrite (17) as follows

BQMLE = − 1
2N

 −Ro Qo

Q′o Po


p∑
j=1

 0 Gj′
o D′

DGj
o Ωj

o

 2Ro

0

 ej


= − 1

2N

 −Ro Qo

Q′o Po

  0

2
∑p

j=1 DGj
oRoej


= − 1

N

 QoD
∑p

j=1 Gj
oRoej

PoD
∑p

j=1 Gj
oRoej

 . (19)

The upper block of (19) does now look similar to (18) but not identical. The difference is

that the expression for BQMLE contains D′(Σ⊗Σ)−1D, while BEL contains 1
2E[m(Zi,θ)m(Zi,θ)′].

We proceed by showing that, regardless of the distribution, we can write E[m(Zi,θ)m(Zi,θ)′]

as [D+∆oD+′ ]. This is because ∆ = V[vec(Si)] = V[D vech(Si)] = DV[vech(Si)]D′. But

V[vech(Si)] = E[m(Zi,θ)m(Zi,θ)′]. Now for the normal distribution, the two facts above

imply that [D+∆oD+′ ] can be written as 2D+(Σ⊗Σ)D+′ .

We further note that [D+′(Σ⊗Σ)D+]−1 is equal to D′(Σ⊗Σ)−1D as discussed in Section
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3. We can therefore write

REL = {G′[2D+(Σ⊗Σ)D+′ ]−1G}−1

= 2[G′D′(Σ⊗Σ)−1DG]−1

= 2R,

QEL = RELG′[2D+(Σ⊗Σ)D+′ ]−1

= RG′D′(Σ⊗Σ)−1D

= QD,

which confirms that the bias expressions are identical.

Note the relationship between the proof and the intuition mentioned above: the proof es-

tablishes equality of certain moments in the EL bias expression with those of QMLE, while the

intuition stresses that the EL bias terms do not depend on discreteness and so the equivalence

of discrete MLE and EL should carry over to continuous distributions.

5 Concluding Remarks

The paper derives new properties of three known consistent estimators – GMM, MLE, EL.

Specifically, it is argued that the Gaussian MLE preserves its asymptotic efficiency property

even if the data are non-normal, provided certain conditions hold. The conditions are problem

specific so it is hard to say how easy it is to violate it. But it is easy to use as illustrated by

the Student-t example.

In this paper we compared Gaussian QMLE to optimal GMM in terms of the first order

asymptotics but, of course, the same result holds for asymptotic equivalents of optimal GMM

such as the empirical likelihood and exponential tilting estimators because their asymptotic

variance is identical to GMM.

The main second order asymptotic result of the paper is the expression for the MLE bias.

It may be useful in many settings including finite sample studies, but we use it here to show

that it is identical to the bias expression for the EL estimator under normality.
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Jöreskog, K. G. (1970): “A general method for analysis of covariance structures,” Biometrika, 57, 239–251.

Linton, O. (1997): “An asymptotic expansion in the GARCH(1,1) model,” Econometric Theory, 13, 558.

Magnus, J. R. and H. Neudecker (1988): Matrix differential calculus with applications in statistics and

econometrics, Wiley Series in Probability and Statistics, Chichester: John Wiley and Sons Ltd.

McCullagh, P. (1987): Tensor Methods in Statistics, Monographs on Statistics and Applied Probability,

London: Chapman and Hall.

Mooijaart, A. and P. Bentler (1991): “Robustness of normal theory statistics in structural equation

models,” Statistica Neerlandica, 45, 159–171.

Newey, W. and D. McFadden (1994): “Large sample estimation and hypothesis testing,” in Handbook of

Econometrics, ed. by R. Engle and D. McFadden, vol. IV, 2113–2241.

Newey, W. K., J. S. Ramalho, and R. J. Smith (2005): “Asymptotic Bias for GMM and GEL Estimators

with Estimated Nuisance Parameters,” in Identification and Inference in Econometric Models: Essays in

Honor of Thomas J. Rothenberg, ed. by D. Andrews and J. Stock, Cambridge University Press, 245–281.

Newey, W. K. and R. J. Smith (2004): “Higher order properties of GMM and Generalized Empirical

Likelihood estimators,” Econometrica, 72, 219–255.

16



Owen, A. B. (2001): Empirical likelihood, Monographs on statistics and applied probability; 92, Boca Raton,

Fla. : Chapman and Hall.

Qin, J. and J. Lawless (1994): “Empirical likelihood and general estimating equations,” The Annals of

Statistics, 22, 300–325.

Rilstone, P., V. Srivastava, and A. Ullah (1996): “The second-order bias and mean squared error of

nonlinear estimators,” Journal of Econometrics, 75, 369–395.

Rothenberg, T. (1984): “Approximating the distributions of econometric estimators and test statictics,” in

Handbook of Econometrics, ed. by Z. Griliches and M. D. Intriligator, vol. II, 881–935.

Satorra, A. and H. Neudecker (1994): “On the Asymptotic Optimality of Alternative Minimum-Distance

Estimators in Linear Latent-Variable Models,” Econometric Theory, 10, 867–883.

Ullah, A. (2004): Finite Sample Econometrics, Advanced Texts in Econometrics, Oxford University Press.

A Proofs

Let M̄(β) = 1
N

∑N
i=1

∂si(β)
∂β′ , M(β) = E ∂si(β)

∂β′ , M̄j(β) = 1
N

∑N
i=1

∂2si(β)
∂β′∂βj

and β̄ be between β̂ and βo. Note

that because ∂si(β)
∂β′ is non-random, M̄(β) = M(β). By the second-order Taylor expansion of (6) around βo,

we have

sN (β̂) = 0

= sN (βo) + M̄(βo)(β̂ − βo) +
1

2

p+q2∑
j=1

(β̂j − βoj)M̄j(β̄)(β̂ − βo)

= sN (βo) + M(βo)(β̂ − βo) + [M̄(βo)−M(βo)](β̂ − βo)

+
1

2

p+q2∑
j=1

(β̂j − βoj)Mj(βo)(β̂ − βo) +

+
1

2

p+q2∑
j=1

(β̂j − βoj)[M̄j(β̄)−Mj(βo)](β̂ − βo).

Since M̄(βo) = M(βo), the third term in the last equation is zero. Also note that the last term is

Op(N−3/2).

Assume that M̄(βo) is not singular. Then,

β̂ − βo = −[M(βo)]−1sN (βo)

−1

2
[M(βo)]−1

p+q2∑
j=1

(β̂j − βoj)Mj(βo)(β̂ − βo)

+Op(N−3/2). (20)
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But M(βo) = −

 0 G′oD′

DGo Σo ⊗Σo

, sN (βo) = −

 0

D mN (θo)

 and the second term is Op(N−1). We

thus have

β̂ − βo =
1√
N

 Qo

Po

 D
1√
N

N∑
i=1

[vech(Si)− vech(Σo)] + Op(N−1)

=
1√
N

µ + Op(N−1). (21)

Substituting (21) into (20), multiplying by
√

N and collecting terms of the same order yields the result.
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