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Abstract

Yield curve models of the Nelson and Siegel (1987) class have proven themselves popular
empirical tools in finance and economics, but they lack a formal theoretical justification. Hence,
this article uses a multifactor version of the Cox, Ingersoll and Ross (1985a) continuous-time
general-equilibrium economy to derive a macroeconomic foundation for a theoretically-consistent
version of the Nelson and Siegel class of yield curve models. It is established that the level and
shape of the yield curve as represented by NS models may be explained succinctly in terms of
expectations of inflation and real output growth within an underlying economic model. This
theoretically-rigorous yet parsimonious and intuitive framework is applicable as a macro-finance
tool, and the application in this article provides a ready interpretation of a series of empirical
results from the macro-finance literature that relate the level and slope of the yield curve to
output growth and inflation.
JEL: E43, E31, E32
Keywords: yield curve; term structure of interest rates; macro-finance; Nelson and Siegel

model; Heath-Jarrow-Morton framework.

1 Introduction

This article develops a formal macroeconomic foundation for the popular Nelson and Siegel (1987)
(hereafter NS) class of yield curve models. Specifically, it establishes that the level and shape of
the yield curve as represented by NS models may be explained succinctly in terms of expectations
of inflation and real output growth within an underlying economic model.

The initial motivation is to justify the NS approach to yield curve modelling from a theoret-
ical perspective. However, an equally-important contribution discussed subsequently below is to
the field of macro-finance, a growing literature that explores the interlinkages, relationships, and
information in common between financial markets and economic variables.

The essence of the NS approach, as will be detailed in section 2, is to fit yield curve data
at a given point in time with a parsimonious linear combination of simple functions of time-to-
maturity; i.e Level, Slope, and Bow (or Curvature) components. This simple structure makes NS
models easy to estimate, and the estimated coefficients provide an intuitive quantitative summary
of the level and shape of the yield curve. Not surprisingly then, NS models have proven very
popular empirical tools in finance and economics. They are applied extensively by academics and
practitioners across many markets and countries for routine yield curve analysis and zero-coupon
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interest rate estimation, where they have typically proven to be comparable or superior to more
complex approaches to yield curve modelling.1

However, more recent applications have pushed beyond the simple curve-fitting for which NS
models were originally developed. For example, Fabozzi, Martellini and Priaulet (2005), Diebold
and Li (2006), and Diebold, Rudebusch and Aruoba (2006) use estimated NS coefficients directly
within a time-series/forecasting context without addressing the theoretical criticism in Filopovíc
(1999 and 2000) that NS models cannot be intertemporally consistent and arbitrage free. These
technical issues are rectified in Sharef and Filipovíc (2004), Krippner (2006), and Christensen,
Diebold and Rudubusch (2007) with versions of the NS model that specify Gaussian dynamics
for the NS components, but a fundamental issue still remains: are NS components with Gaussian
dynamics an appropriate representation for a yield curve model? Addressing this question with a
sound theoretical basis is essential if the trend continues for NS models to be applied more widely,
because it will suggest when their application is likely to be appropriate relative to more complex
models of the yield curve, or highlight where appropriate modifications to the NS approach should
be made.

Given the yield curve is ultimately a reflection of the underlying economy, a sensible starting
point for a theoretical justification to the NS class of yield curve models is within an economic model.
Hence, in section 3, the derivation of a macroeconomic foundation begins with the specification
of a generic multifactor version of the standard continuous-time general-equilibrium model of the
economy from Cox, Ingersoll and Ross (1985a). The yield curve and its dynamics derived from that
economic model under rational expectations are then compared explicitly to the yield curve and
dynamics of the intertemporally-consistent and arbitrage-free version of NS models from Krippner
(2006); i.e the so-called augmented NS (hereafter ANS) model. This comparison shows that the
ANS Level component equates to within a parametric term premium to long-term expected inflation
plus potential growth. The ANS Slope and Bow components reflect to within a parametric term
premium function the expected mean reversion of the current levels of inflation and output growth
back to their anticipated long-run levels.

The ANS framework (i.e the ANS model with its macroeconomic foundation) has an obvious
connection to the field of macro-finance, given that it offers a theoretically-rigorous yet parsimo-
nious and intuitive connection between the yield curve, output growth, and inflation. As a simple
and practical illustration of its application as a macro-finance tool, the ANS framework is used
in this article to provide ready interpretations of relationships between the yield curve, output
growth, and inflation that have been well established empirically within the literature. For ex-
ample, heuristically-justified ordinary least squares (OLS) regressions have established a strong
relationship between the current slope of the yield curve (typically measured as the 10-year gov-
ernment bond yield less the 3-month Treasury bill rate) and future output growth, a moderate
relationship between the current slope of the yield curve and future inflation, and a cointegrating
relationship between term interest rates (typically ranging from 1 to 5 years) and inflation.2 An-
other empirical investigation, which is closely related to this article because it uses NS components
as latent factors to represent the yield curve, is the vector autoregressive (VAR) model of Diebold

1Ten of twelve central banks in the Bank for International Settlements (2005) survey use NS models or the Svensson
(1995) extension, and recent examples of the application of NS models not otherwise referenced in this article include
Jankowitsch and Pilcher (2004), Steeley (2004), Diebold, Ji and Li (2005), and Gürkaynak, Sack and Wright (2006).
Dahlquist and Svensson (1996), Bliss (1997), and Ioannides (2003) are examples that report favourable empirical
comparisons with other approaches to modelling the yield curve.

2Berk (1998) provides a useful survey. Recent examples reporting these results include: Hamilton and Kim
(2002), Bordo and Haubrich (2004), Nakaota (2005) and Paya, Matthews and Peel (2005) for yield curve/output
relationships; Estrella, Rodrigues and Schich (2003) for yield curve/inflation relationships; and Fahmy and Kandi
(2003) and Lai (2004) for interest rate/inflation cointegration. Estrella (2004) pp. 722-723 notes that the various
justifications advanced for these empirical relationships are generally informal or heuristic: e.g real business cycles,
countercyclical monetary policy, and life-cycle consumption to justify yield curve/output relationships; and the Fisher
hypothesis with assumed constant or stationary real interest rates to justify yield curve/inflation relationships and
interest rate/inflation cointegration.
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et al. (2006).3 The latter confirms the relationships from the yield curve to the macroeconomic
variables already noted, but also establishes their reverse; i.e the long-maturity level of the yield
curve responds to changes in inflation (and also to changes in real activity, as measured by capacity
utilisation), and the slope of the yield curve responds to changes in real activity and inflation.

To show how the ANS framework explains the empirical results above, section 4 uses it to
explicitly derive theoretical econometric relationships between the yield curve, output growth, and
inflation analogous to the OLS regressions and the Diebold et al. (2006) VAR application mentioned
above. Those derivations embed the two-way yield curve/macroeconomic empirical relationships
already noted, but with several predicted extensions, and also provide a transparent theoretical basis
for why the data should support those empirical relationships. Estimating the derived econometric
relationships using 54 years of United States data in section 5 provides empirical support for the
predictions from the ANS framework, and also highlights that occasional and highly persistent
changes to term premia have played a very influential role with historical relationships between the
yield curve, output growth, and inflation.

Section 6 concludes, and then briefly discusses several potential applications for the ANS frame-
work.

2 The NS and ANS models of the yield curve

This section introduces the key aspects of the NS class of yield curve models and the intertemporally-
consistent and arbitrage-free ANS model from Krippner (2006) that are relevant to this article.

Models of the NS class are generally linearly equivalent to the following specification:

f (t,m) =
3X

n=1

βNSn (t) · gn(φ,m) (1)

where f (t,m) is the (instantaneous continuously-compounding) forward rate curve as at time t
as a function of time-to-maturity m, βNSn (t) are three coefficients at time t that are associated
with the three time-invariant functions of time-to-maturity gn (φ,m), and the latter are defined as
g1 (φ,m) = 1, g2 (φ,m) = − exp (−φm), and g3 (φ,m) = − exp (−φm) (−2φm + 1), where φ is a
positive constant parameter that governs the rate of exponential decay.4 Figure 1 illustrates these
functions, which are named the Level, Slope, and Bow modes based on their intuitive shapes, and
hence βNS1 (t), βNS2 (t), and βNS3 (t) are the Level, Slope, and Bow coefficients. The (zero-coupon
continuously-compounding) interest rate curve, at time t and as a function of time-to-maturity m,

is then R (t,m) = 1
m

Z m

0
f(t,m)dm and that is sometimes used as a direct link to estimating the

NS coefficients from derived zero-coupon yield curve data. Alternatively, the associated discount
function exp [−m ·R (t,m)] provides the basis for estimating the NS coefficients at time t by fitting
the market-quoted prices and cashflows of the interest rate securities that compose the yield curve
at time t. In either case, the parameter φ is generally fixed at a value that provides an appropriate
fit to the overall series of historical yield curve data.

[ Figure 1 here ]
The ANS model from Krippner (2006) adds the minimum number of additional parameters

required to address the theoretical criticism by Filopovíc (1999 and 2000) that NS models cannot
be intertemporally-consistent and arbitrage free. Specifically, “the expected path of the short rate”

3Diebold, Piazzesi and Rudebusch (2005) provides a summary of Diebold et al. (2006) and suggested extensions
in the context of recent advances in the macro-finance literature.

4The original NS article notes that the components are a solution to a second-order differential equation with equal
roots. The alternative NS models of Svensson (1995), Bliss (1997), and Mansi and Phillips (2001) are analogous to
the specification in equation 1, but they also contain exponential terms with different decay rates.
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for the ANS model is defined as:

Et [r (t+m)] =
3X

n=1

λn (t) · gn (φ,m) (2)

where Et is the expectations operator conditional upon information available at time t, Et [r (t+m)]
is the expected path of the (instantaneous continuously-compounding) short rate as at time t and
as a function of future horizonm (so t+m is a future point in time), and λn (t) are three latent state
variables associated with the NS functions gn (φ,m). The dynamics for Et [r (t+m)] are defined
as
P3

n=1 σn · gn (φ,m) · dWn (t), where σn are constant standard deviation parameters and dWn (t)
are independent Wiener variables under the physical (i.e not risk-neutral) measure. The associated
forward rate curve derived via the Heath, Jarrow and Morton (1992) (hereafter HJM) framework
is then:

f (t,m) = σ1ρ1m+
3X

n=1

βn (t) · gn (φ,m)−
3X

n=1

σ2n · hn (φ,m) (3)

where βn (t) = γn+λn (t), γn are constant term premia parameters derived as γ1 =
1
φ(−σ2ρ2+σ3ρ3),

γ2 =
1
φ (−σ2ρ2 − 2σ3ρ3), γ3 = 1

φσ3ρ3, ρn are constant market prices of risk, and hn(φ,m) are

time-invariant functions of maturity derived as h1(φ,m) = 1
2m

2, h2(φ,m) = 1
2φ2
[1− exp (−φm)]2,

h3(φ,m) =
1
2φ2
[1− exp (−φm)− 2mφ exp (−φm)]2.

Hence, the ANS model from Krippner (2006) retains the essence of the NS approach, in that
the yield curve at time t is still represented with just three coefficients β1 (t), β2 (t), and β3 (t).
However, the subtle enhancement to NS models is that the ANS model embeds consistency between
the dynamics of the time series of ANS coefficients and the effect those dynamics have on each
observation of the yield curve under the standard assumption that the market will price securities
to exclude arbitrage opportunities. The estimation of the ANS model also retains the essence of
the NS approach, in that the ANS coefficients at time t are estimated from the yield curve data at
time t, and the two free parameters φ and ρ1 are determined to provide an appropriate fit to the
overall series of historical yield curve data.

Anticipating the complete discussion of the data and the empirical application from section
5, figure 2 illustrates an example of the results from estimating the ANS model by fitting the
yield curve data for September 2003. Figure 3 illustrates the time series of a representative yield
and slope measure from the time series of yield curve data. Figure 4 plots the time series of the
estimated ANS coefficients β1 (t), β2 (t), and β3 (t) obtained from the full sample of yield curve
data.

[ Figure 2 here ], [ Figure 3 here ], [ Figure 4 here ]

3 An economic foundation for the ANS model of the yield curve

This section proceeds in three sub-sections to establish a macroeconomic foundation for the ANS
model of the yield curve. Section 3.1 specifies a generic model of the economy and notes how the
factors in that economy may be aggregated into the macroeconomic quantities of output growth and
inflation. Section 3.2 derives the yield curve associated with the generic economy under rational
expectations and shows that the level and shape of that yield curve is composed of expectations of
output growth and inflation. Section 3.3 then explicitly relates the derived yield curve model and its
macroeconomic foundation to the ANS model thereby allowing the state variables and parameters
of ANS model to be interpreted in terms of the state variables and parameters of the original model
of the economy.

Note that in keeping with the minimal specification of the ANS model, and also to maximise the
transparency of the concepts and derivations, the economic model is developed using independent
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factors with uncorrelated Gaussian dynamics. However, with the usual trade-off against parsi-
mony and transparency, the assumptions could be relaxed and the model generalised if particular
applications required more sophistication.5

3.1 A generic model for the economy

This model outlined in this section is a generalised multifactor version of the standard continuous-
time general-equilibrium economy proposed by Cox et al. (1985a) (hereafter CIR), specified with
Vasicek (1977) dynamics (i.e Gaussian innovations). Hereafter, this is abbreviated to the generalised
CIR-Vasicek model, or the GCV model for short. Note that the GCV model has some parallels
with the model of Berardi and Esposito (1999) (hereafter BE) that is also based on a multifactor
CIR economy embedding Vasicek dynamics (although with constant steady-state parameters and
a single inflation state variable), and so references to the BE model are made as appropriate.

The GCV economy is based on an arbitrary number J real factors of production (e.g capital,
labour, productivity, etc., all potentially by industry sector etc.), each with its own associated
deflator/inflation factor. The dynamics of the GCV economy are represented by 2J processes
analogous to the Vasicek (1977) specification, i.e:

dsj (t) = −κj [sj (t)− θj (t)] dt+ σ1,jdz1,j (t) (4)

where sj (t) for j = 1 to J are the real state variables representing instantaneous growth on
returns to the factors of production in the economy at time t; κj are positive constant mean-
reversion parameters; θj (t) are the steady-state (i.e long-run) values of sj (t) that are allowed to
vary stochastically over time as dθj (t) = σ0,jdz0,j (t); σ0,j and σ1,j are positive constant standard
deviation parameters with σ0,j ¿ σ1,j ; and dz0,j (t) are dz1,j (t) are independent Wiener variables
under the physical measure. For j = J + 1 to 2J , sj (t) are the inflation state variables. As noted
in BE p. 155, these have the form sJ+j (t) = πj (t)− σ2p,j , where πj (t) is the instantaneous rate of
inflation for the factor of production j and σ2p,j is a constant parameter representing the variance
of instantaneous changes in the deflator j. Similarly, θJ+j (t) = θπ,j (t) − σ2p,j , where θπ,j (t) is
the steady-state rate of inflation for the factor of production j. The remaining parameters for the
inflation state variables are analogous to the real state variables.

The state variables and steady-state variables of the GCV model may be accumulated into four
macroeconomic quantities. Respectively, with brief justification:

1. dY (t) =
PJ

j=1 sj (t) is (instantaneous) real output growth. As noted in BE p. 147, the real
wealth of individuals in a CIR economy is completely invested in the production process,
the return on that production process is the income of individuals, and individuals optimally
allocate that income to consumption and investment. Hence, the sum of growth on the returns
to the factors of production in the economy is production growth, which equals income growth
and expenditure growth, and these are the three standard expressions of output growth for
the economy.

2. dY ∗ (t) =
PJ

j=1 θj (t) is (instantaneous) real steady-state output growth. If the real returns
to the factors of production are all growing at their steady-state values, then real output must
be growing at its steady-state value.

5 In particular, without changing the nature of the framework in this article, it is straightforward to allow for
interdependence between the factors and for correlated innovations by applying principal components (a proof is
available from the author on request). The square-root innovations of Cox, Ingersoll and Ross (1985b), weakly mean-
reverting steady-state variables, and time-varying volatilities and market prices of risk could be readily accomodated,
but would also require corresponding changes to the ANS model. In principle, more complex aspects such as Phillips
curve inflation/output relationships, Taylor rule monetary policy reaction functions, monetary policy credibility
effects, etc., could be incorporated by specifying them within the economic model, deriving the associated forward
rate curve, and adding the required components to the ANS model.
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3. dP (t) = σ2P +
P2J

j=J+1 sj (t) is (economy-wide instantaneous) inflation. This follows as
for item 1, but substituting the inflation component of nominal wealth and abbreviatingP2J

j=J+1 σ
2
p,j to σ

2
P , which is the variance of inflation.

4. dP ∗ (t) = σ2P +
P2J

j=J+1 θj (t) is (instantaneous) steady-state inflation. This follows as for
item 2, but substituting the steady-state inflation variables and using σ2P from item 3.

The practical intuition of the GCV macroeconomy is therefore an anticipated equilibrium com-
posed of expected long-term potential output growth dY ∗ (t) plus expected long-term inflation
dP ∗ (t). Regarding dynamics, dY ∗ (t) and dP ∗ (t) evolve over time as low-variance Gaussian ran-
dom walks, respectively

PJ
j=1 σ0,jdz0,j (t) and

P2J
j=J+1 σ0,jdz0,j (t). These innovations allow for

persistent “shocks” to dY ∗ (t) and dP ∗ (t), which in turn relate back to persistent variations in
the underlying factors of production (e.g changes to anticipated long-term population growth, or
changes to expected productivity growth due to technological change, etc.). Current output growth
dY (t) and inflation dP (t) can vary from their steady-state values, but are always expected to re-
turn to dY ∗ (t) and dP ∗ (t) over time due to the mean-reverting dynamics of equation 4. Regarding
the stochastic components, dY (t) and dP (t) will be impacted respectively by the innovationsPJ

j=1 σ1,jdz1,j (t) and
P2J

j=J+1 σ1,jdz1,j (t), which allow for transitory “shocks” to output growth
and inflation (e.g credit channel restrictions on capital investment, terms of trade shifts, etc.).

3.2 The yield curve associated with the GCV economy

As noted in BE, the nominal short rate at any given time is the sum of the state variables sj (t);
i.e r (t) =

P2J
j=1 sj (t). That defines the short rate and its dynamics for the GCV economy, and

the associated forward rate curve may then be derived via the HJM framework. The full details of
these calculations are contained in appendix B, with just the relevant results summarised below in
two propositions, each followed by a brief discussion of their practical intuition.

Proposition 1 The GCV expected path of the short rate
The expected path of the short rate for the economy specified in equation 4 is:

Et [r (t+m)] =
2JX
j=1

Et [sj (t+m)] (5)

=
2JX
j=1

θj (t) +
2JX
j=1

[sj (t)− θj (t)] · exp (−κjm) (6)

= dY ∗ (t) + dP ∗ (t)− σ2P +Et[dX (t+m)] (7)

where Et [sj (t+m)] is the expected path of the state variable j as at time t and as a function of
future horizon m; Et[dX (t+m)] is the expected path of the deviation of output growth plus infla-
tion from their steady-state values, as at time t and as a function of future horizon m. Specifically,
Et[dX (t+m)] = Et [dY (t+m) + dP (t+m)− dY ∗ (t+m)− dP ∗ (t+m)] where each of the lat-
ter are the values of the macroeconomic quantities defined in section 3.1 as at time t and as a
function of future horizon m.

Proof. In appendix B.2

The intuition underlying equation 7 is essentially that the current value of the short rate r (t)
equates to current output growth dY (t) plus inflation dP (t) less inflation variance σ2P , the long-
horizon expected value of the short rate equates to long-term potential output growth dY ∗ (t) plus
expected long-term inflation dP ∗ (t) less inflation variance σ2P ,

6 and for intermediate horizons the

6Formally, limm→0Et [r (t+m)] = r (t) =
P2J

j=1 sj (t) = dY (t) + dP (t) − σ2P , and limm→∞Et [r (t+m)] =P2J
j=1

P2J
j=1 θj (t) = dY ∗ (t) + dP ∗ (t)− σ2P .
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expected path of the short rate reflects the expected mean reversion of output growth plus inflation
back to their steady-state values.

Proposition 2 The GCV forward rate curve
The (default-free) forward rate curve for the economy specified in equation 4 is:

f (t,m) =
2JX
j=1

θj (t) +m ·
2JX
j=1

σ0,jρ0,j −m2 ·
2JX
j=1

1

2
σ20,j

+
2JX
j=1

[sj (t)− θj (t)] · exp (−κjm) +
2JX
j=1

£
σ1,jρ1,j − σ0,jρ0,j

¤ ·Bj (m) (8)

−
2JX
j=1

1

2

£
σ21,j − σ20,j

¤ · [Bj (m)]
2

= dY ∗ (t) + dP ∗ (t)− σ2P +Et[dX (t+m)] + TP (m) + V E (m) (9)

where Bj (m) =
1
κj
[1− exp (−κjm)] is the Vasicek (1977) functional form, ρ0,j and ρ1,j are respec-

tively constant market prices of risk associated with the innovations dz0,j (t) and dz1,j (t), TP (m)
is the term premium as a function of time-to-maturity m that collects the terms m ·P2J

j=1 σ0,jρ0,j+P2J
j=1

£
σ1,jρ1,j − σ0,jρ0,j

¤·Bj (m), and V E (m) is the volatility effect as function of time-to-maturity

m that collects the terms −m2 ·P2J
j=1

1
2σ
2
0,j −

P2J
j=1

1
2

h
σ21,j − σ20,j

i
· [Bj (m)]

2.

Proof. In appendix B.3

The GCV forward rate curve is the expected path of the short rate with two series of adjustments
for the effects of dynamics so that arbitrage opportunities are precluded. One series of adjustments
is for the pure effects that volatilities (i.e σ0,j and σ1,j) have on expected returns relative to a
compounding rolling investment in the short rate. The other series of adjustments is for the
combined effects of volatilities (i.e quantities of risk) and the market prices of risk (i.e ρ0,j and ρ1,j).
This adjustment represents a term premium, which compensates investors for bearing the risk of
investing in fixed interest securities of time-to-maturitym relative to a risk-free compounding rolling
investment in the short rate over time t to t+m. Note that this relative risk exists even with default-
free securities; i.e changes to f (t,m) via the innovations σ0,jdz0,j (t) and σ1,jdz1,j (t) will change

the interest rate curve R (t,m) = 1
m

Z m

0
f(t,m)dm and the discount function exp [−m ·R (t,m)],

and will therefore lead to unanticipated changes in the prices of the fixed interest securities that
compose the yield curve.

3.3 Relating the ANS model to the yield curve of the generic economy

An explicit macroeconomic foundation for the ANS model from section 2 may now be provided by
comparing it to the functional form and dynamics for the GCV expected path of the short rate and
the forward rate curve that have been defined in terms of economic state variables and macroeco-
nomic quantities. Proposition 4 summarises the results of that comparison for the Level component
of the ANS model, Proposition 5 summarises the results for the Slope and Bow components, and
both are followed by their respective proofs and a discussion of their practical intuition.

Proposition 3 The ANS Level component
The key relationship between the ANS Level component and the GCV steady-state components

is:
β1 (t)− γ1 = dY ∗ (t) + dP ∗ (t)− σ2P (10)

For completeness, the dynamics of the ANS Level component relate to the dynamics of the GCV
model as follows: σ1dW1 (t) =

P2J
j=1 σ0,jdz0,j (t), σ

2
1 =

P2J
j=1 σ

2
0,j, and σ1ρ1 =

P2J
j=1 σ0,jρ0,j.
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Proof. The only component that is constant by future horizon in equation 2 is λ1 (t)·g1 (φ,m) =
λ1 (t) = β1 (t) − γ1. Equating the latter to the components that are constant by future horizon
in equations 6 and 7 gives β1 (t) − γ1 =

P2J
j=1 θj (t) = dP ∗ (t) + dY ∗ (t) − σ2P . Regarding dy-

namics: equating the stochastic components of β1 (t) and dP ∗ (t) + dY ∗ (t) gives σ1dW1 (t) =P2J
j=1 σ0,jdz0,j (t); equating the components of m

2 from equations 3 and 8 gives σ21 · h1 (φ,m) =
σ21 · 12m2 = m2 ·P2J

j=1
1
2σ
2
0,j , and so σ21 =

P2J
j=1 σ

2
0,j ; and equating the components of m from

equations 3 and 8 gives σ1ρ1m = m ·P2J
j=1 σ0,jρ0,j , and so σ1ρ1 =

P2J
j=1 σ0,jρ0,j .

Hence, the Level coefficient from the ANS model equates to within a parametric term premium
to steady-state output growth plus steady-state inflation less inflation variance within the GCV
economy. Moreover, the entire Level component of the ANS forward rate curve including the effects
of dynamics, i.e σ1ρ1m+βn (t)−σ21 · 12m2, equates to the entire steady-state component of the GCV
forward rate equation, i.e the first line of equation 8. The latter correspondence carries through to
the interest rate curves and discount functions for the ANS and GCV models, and so ensures that
when yield curve data for default-free securities observed at time t are fitted using the ANS model,
the Level coefficient β1 (t) will be a consistent estimate to within the term premium γ1 of the sum
of the steady-state components of the GCV model as at time t.

Proposition 4 The ANS Slope and Bow components
The key relationship between the ANS Slope and Bow components and the non-steady-state GCV

components is:

−
3X

n=2

[βn (t)− γn] · gn (φ,m) ' Et[dX (t+m)] (11)

For completeness, the dynamics of the ANS Slope and Bow components relate to the GCV model as
follows:

P3
n=2 σn ·gn(φ,m) ·dWn (t) ' −

P2J
j=1 [σ1,jdz1,j (t)− σ0,jdz0,j (t)] ·exp (−κjm) ,

P3
n=2 σ

2
n ·

h2(φ,m) ' −
P2J

j=1
1
2

h
σ21,j − σ20,j

i
· [Bj (m)]

2, and
P3

n=2 γn · gn(φ,m) '
P2J

j=1

£
σ1,jρ1,j − σ0,jρ0,j

¤ ·
Bj (m).

Proof. Equating the non-steady-state components of equations 6 and 7, Et[dX (t+m)] =P2J
j=1 [sj (t)− θj (t)] · exp (−κjm). Define φ = median(κj), which is a positive constant because

all κj are positive constants. Expressing κj = φ (1 +∆j), where ∆j is the relative difference of
κj from φ,

P2J
j=1 [sj (t)− θj (t)] · exp (−κjm) = exp (−φm) ·P2J

j=1 [sj (t)− θj (t)] · exp (−∆jφm).
The first-order Taylor expansion of exp (−∆jφm) around ∆j = 0 is exp (−∆jφm) ' 1 − ∆jφm,

and so Et[dX (t+m)] ' exp (−φm) ·
hP2J

j=1 [sj (t)− θj (t)]− φm ·P2J
j=1 [sj (t)− θj (t)]∆j

i
. The

latter may be expressed using the functions of future horizon m for the ANS expected path
of the short rate from equation 2; i.e Et[dX (t+m)] '

h
−P2J

j=1 [sj (t)− θj (t)] ·
¡
1− 1

2∆j

¢i ·
[− exp (−φm)]+

h
−P2J

j=1 [sj (t)− θj (t)]
1
2∆j

i
·[− exp (−φm) (−2φm+ 1)] = λ2 (t)·g2 (φ,m)+λ3 (t)·

g3 (φ,m) = [β2 (t)− γ2] · [− exp (−φm)] + [β3 (t)− γ3] · [− exp (−φm) (−2φm+ 1)]. Hence, β2 (t)−
γ2 = −

P2J
j=1 [sj (t)− θj (t)] ·

¡
1 + 1

2∆j

¢
and β3 (t) − γ3 = −

P2J
j=1 [sj (t)− θj (t)]

1
2∆j . Regarding

dynamics, the stochastic components of the GCV model are −P2J
j=1 [σ1,jdz1,j (t)− σ0,jdz0,j (t)] ·

exp (−κjm), which may be approximated as
P3

n=2 σn ·gn(φ,m) ·dWn (t) by following the first-order
Taylor expansion approach outlined above. Finally, Krippner (2006) has already shown that the
components

P3
n=2 λn (t) · gn (φ,m) and

P3
n=2 σn · gn(φ,m) · dWn (t) within the HJM framework

produce a term premium component
P3

n=2 γn · gn(φ,m) and a volatility effect
P3

n=2 σ
2
n · h2(φ,m).

Matching these respectively to their non-steady-state GCV counterparts gives
P3

n=2 γn ·gn(φ,m) 'P2J
j=1

£
σ1,jρ1,j − σ0,jρ0,j

¤ ·Bj (m) and
P3

n=2 σ
2
n · h2(φ,m) ' −

P2J
j=1

1
2

h
σ21,j − σ20,j

i
· [Bj (m)]

2.

The first level of intuition on the result above is that, because the Level components of the ANS
model equate to the steady-state components of the GCV model, the “remainder” of the default-
free yield curve as estimated by the ANS model (i.e the Slope plus Bow components plus the yield
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residuals) must therefore reflect the non-steady-state components of the GCVmodel relative to their
steady-state components. More precisely, the proof for Proposition 4 shows that the combination
of the ANS Slope plus Bow components equates to within a parametric term premium function to
the first-order Taylor approximation around the median value of the mean reversions κj of the 2J
state variables relative to their steady-state values within the GCV economy. Hence, the ANS yield
residuals correspond to the second-order and higher terms from the Taylor expansion of the GCV
model rate, which may be assumed to negligible given the close empirical fit of the ANS model
(and NS models generally) to observed yield curve data.7

In summary then, using just three state variables β1 (t), β2 (t), and β3 (t), and two free pa-
rameters φ and ρ1, the ANS forward rate curve provides a practically-tenable representation of
the generic GCV forward rate curve containing 2J state variables with associated standard devia-
tions and market prices of risk, 2J steady-state variables with associated standard deviations and
market prices of risk, 2J mean-reversion parameters, and J inflation variance parameters.8 The
ANS model therefore provides a reduction in dimensionality that is commonly undertaken using
latent factor models for the yield curve, such as in Ang and Piazzesi (2003) and in the Diebold
et al. (2006) application of the NS model, but with a theoretical justification for the ANS compo-
nents via the precise first-order approximation to the GCV model. The aggregation of the GCV
state variables and steady-state variables into four macroeconomic quantities (i.e steady-state out-
put growth, steady-state inflation, output growth, and inflation) then provides the macroeconomic
foundation for the ANS model.

4 Econometric relationships for the ANS model coefficients, and
inflation and output growth

The ANS framework (i.e the ANS model from section 2 with its macroeconomic foundation from
section 3) has an obvious connection to the field of macro-finance, given that it offers a theoretically-
rigorous yet parsimonious and intuitive connection between the yield curve, output growth, and
inflation. As a simple and practical illustration of applying it as a macro-finance tool, the ANS
framework is used in this section to derive theoretical econometric relationships between the yield
curve, output growth, and inflation. This essentially requires converting the ANS framework re-
lationships in continuous time to discrete-time, and an annual basis is used to make for ready
comparison to the existing empirical macro-finance literature.9

The elements of equation 10 are all contemporaneous, and so its discrete-time version may
simply be written as:

β1,t − [∆Y ∗ (t) +∆P ∗ (t)] = α∗ + ε∗t (12)

where β1,t is the annual average of the estimated Level coefficients over the prior year to time t,
∆Y ∗ (t) is annual steady-state output growth to time t, ∆P ∗ (t) is annual steady-state inflation to

7This implies that |∆j | < 1. Note also that the ANS model could be extended arbitrarily by adding higher-order
exponential-polynomial functions, which would correspond to additional terms in the Taylor approximation of the
non-steady state components of the GCV model. In this sense, the approximation of the GCV model with the
ANS model is “natural”. Conversely, arbitrary approximations based on other functions, e.g simple polynomials as
in McCulloch (1971) or Chebyshev polynomials as in Pham (1998), are “unnatural” because the addition of each
higher-order term does not directly correspond to an extra term in the Taylor expansion.

8For example, even a minimal CGV model based on a single industry with a single factor of production (i.e J = 1)
would require two state variables (output and inflation), two steady-state variables, and 11 parameters. A more
sophisticated specification based on just two industries and the three typical factors of production (i.e capital, labour,
and total factor productivity) would give six factors of production (i.e J = 6), and would require 12 state variables,
12 steady-state variables, and 66 parameters.

9Of course, the ANS framework would be applicable to any other time-step and horizon (and to forward horizons)
by straightforward modifications to the derivation in this section.
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time t,10 α∗ captures the parameters γ1 and σ2P and any other systematic differences between β1,t
and [∆Y ∗ (t)−∆P ∗ (t)] (e.g persistent measurement biases in the macroeconomic data), and ε∗t
captures any time-varying components (e.g subsequent revisions to macroeconomic data). Assum-
ing ε∗t to be stationary, equation 12 represents a (1,-1) cointegrating relationship between β1,t and
[∆Y ∗ (t)−∆P ∗ (t)]. Note that all of the data in equation 12 are Gaussian processes, and so OLS
estimation and standard unit root tests are applicable.

Equation 11 is an intertemporal relationship between the estimated Slope and Bow coefficients
at time t and Et[dX (t+m)], the expected path of the deviation of output growth plus inflation from
their steady-state values over time t to t+m. The discrete-time measure for the latter on an annual
basis (i.e future horizon m = 1) is Et [∆X (t+ 1)] = Et[∆Y (t+ 1) +∆P (t+ 1) −∆Y ∗ (t+ 1) −
∆P ∗ (t+ 1)], where the quantity on the right-hand side is the expected annual change of dY (t)
and dP (t) less dY ∗ (t) and dP ∗ (t). The corresponding quantity for the left-hand side of equation

11 may be calculated directly for arbitrary m as − 1
m

Z t+m

t

"
3X

n=2

[βn (t)− γn] · gn(φ,m)
#
dm =

[βn (t)− γn] ·
3X

n=2

qn (m), where qn (m) = − 1
m

Z m

0
gn(φ,m)dm, and the two required integrals are

q2 (m) = − 1
φm [exp (−φm)− 1], and q3 (m) =

1
φm [2φm exp (−φm) + exp (−φm)− 1]. For the year-

ahead horizon (i.e m = 1) in this application and using φ = 1.03 as obtained in the empirical
application of the following section, q2 (1) = 0.6231 and q3 (1) = 0.0878. Hence, the resulting
relationship between Et [∆X (t+ 1)] and the estimated Slope and Bow coefficients at time t is:

Et [∆X (t+ 1)] = α0,1 + α1,1 · [β2 (t) · q2 (1) + β3 (t) · q3 (1)] + ε (t+ 1) (13)

where α0,1 captures the parameters [γ2 · q2 (1) + γ3 · q3 (1)] and any other systematic effects, and
ε (t+ 1) captures any time-varying effects. All of the data in equation 13 are Gaussian processes,
and so OLS estimation is applicable.

There are close parallels between the econometric relationships derived above and the OLS
regressions and Diebold et al. (2006) VAR that have been applied within the existing empirical
macro-finance literature. Firstly, the cointegrating relationship in equation 12 is the same form as
typical tests for (1,-1) cointegration between term interest rates and inflation as motivated by the
Fisher hypothesis. Equation 12 also embeds the two-way relationship established in Diebold et al.
(2006) between inflation and the NS Level coefficient βNS1 (t), assuming (reasonably) that any effects
of not consistently accounting for dynamics in βNS1 (t) are relatively minor compared to the typical
variation in β1 (t) over time. Secondly, the relationship in equation 13 is the same form as typical
intertemporal OLS regressions of current annual output growth or current annual inflation on the
lagged slope of the yield curve; i.e ∆Y (t) or ∆P (t) = α0 + α1 · [GS10 (t− L) -TB3 (t− L)] + εt,
where L represents the lag length (typically four quarters). Equation 13 also embeds the two-way
relationships established in Diebold et al. (2006) between output growth or inflation and the NS
Slope coefficient, again assuming βNS2 (t) moves similarly to β2 (t) over time.

Importantly, however, the ANS framework adds a succinct theoretical basis for why the data
should support those empirically-established relationships. Regarding cointegration, inflation and
the long-maturity level of the yield curve (as captured by term interest rates or the βNS1 (t) co-
efficient) both reflect the process for expected long-term inflation. Regarding the intertemporal
regressions, future output growth (or future inflation) and the shape of the yield curve (as captured
by [GS10 (t) -TB3 (t)] or the βNS2 (t) coefficient) both reflect the process for expected short-term
output growth (or expected short-term inflation). The succinct theoretical basis provided by the
ANS framework also highlights how the empirical relationships may be undermined (aside from

10Formally and for arbitrary m, 1
m

Z t

t−m
β1 (u) du corresponds to 1

m

Z t

t−m
[dY ∗ (u) + dP ∗ (u)] du. For m = 1,Z t

t−1
β1 (u) du = β1,t and

Z t

t−1
[dY ∗ (u) + dP ∗ (u)] du = [∆Y ∗ (t) +∆P ∗ (t)].
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measurement errors), i.e: (1) when expectations of output growth and inflation are not efficiently
incorporated into the yield curve; (2) when those expectations prove inaccurate (i.e if “shocks”
to output growth and/or inflation are relatively large); and (3) when changes to term premia and
volatilities become a material consideration.

Finally, the econometric relationships derived via the ANS framework suggest several extensions
to the relationships estimated in the existing empirical macro-finance literature. Firstly, decom-
posing future output growth and inflation data into short-term and long-term components should
improve the empirical correlations with yield curve data. Secondly, yield curve data should relate
better to economy-wide measures of inflation, rather than to consumer price inflation measures.
Thirdly, the VAR application of Diebold et al. (2006) finds no statistically-significant relationship
between inflation or output growth and the Bow (or Curvature) coefficient βNS3 (t) in its own right,
but the ANS framework suggests that βNS3 (t) should play a role in relating the shape of the yield
curve to future inflation and output growth.

5 An empirical application to US data

This section estimates the econometric relationships derived from the ANS model framework using
US data. To make the results directly comparable to the existing empirical macro-finance literature,
the analysis is undertaken in-sample using annual data at a quarterly frequency. Section 5.1 outlines
that data, and section 5.2 discusses the results of the estimations.

5.1 Description of the yield curve, output growth, and inflation data

The interest rate data used in the empirical application are the monthly averages of the federal
funds rate, the 3-month Treasury bill rate, and the 1-year, 3-year, 5-year, 10-year, and 20-year
or 30-year constant-maturity bond rates,11 all obtained from the online Federal Reserve Economic
Database (hereafter the FRED) on the Federal Reserve Bank of St. Louis website. The sample
period is July 1954 (the first month federal funds rate data is available) to February 2008 (the last
month available at the time of the analysis), giving 644 monthly observations of the yield curve.

The monthly time series of ANS Level, Slope, and Bow coefficients derived from the yield curve
data have already been illustrated in figure 4, and these were calculated following the method
outlined in appendix C of Krippner (2006). To briefly summarise, the federal funds rate and the
3-month Treasury bill rate have defined zero-coupon cashflows (i.e settlement price with principle
plus interest at maturity), and the government bond cashflows assume that the yield-to-maturity
corresponds to a par semi-annual bond (settlement price of 1, six-monthly coupons of half the
yield-to-maturity, and principle of 1 plus coupon at maturity). The estimation of β1 (t), β2 (t), and
β3 (t) for each yield curve observation is undertaken via the least squares minimisation of discounted
cashflows with given values of φ and ρ1, and estimates of σ1, σ2, and σ3 obtained as the annualised
standard deviations of changes in the coefficients β1 (t), β2 (t), and β3 (t) from an initial pass of
the entire historical yield curve data series with all σn = 0. A grid search is used to determine that
the point estimates of the free parameters φ = 1.03 and ρ1 = 2.66% provide the best overall fit to
the entire historical yield curve data series, and the associated point estimates of the annualised
standard deviations are σ1 = 0.77%, σ2 = 2.26%, and σ3 = 1.74%.

The data series β1,t is then calculated as the twelve-month trailing average of β1 (t), and taking
the last month of each quarter provides the relevant quarterly data (214 observations) for β1,t,
β2 (t) and β3 (t) in equations 12 and 13.

Direct measurements of the idealised GCV macroeconomic quantities in equations 12 and 13
are not available over the full time period,12 and so proxy data are necessarily required. Hence, the

1120-year data is unavailable from January 1987 to September 1993, and so 30-year data (with a 30-year maturity)
is used during this period for the estimation of the ANS model.
12For example, the Survey of Professional Forecasters data from the Philidelphia Federal Reserve website only

contains long-term (i.e 10-year) expectations of inflation and output growth from 1991.
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proxy for steady-state output growth ∆Y ∗ (t) is the annual change in the Congressional Budget
Office potential GDP (see Congressional Budget Office (2001) for calculation details), and the proxy
for steady-state inflation ∆P ∗ (t) is the annual change in the GDP deflator.

Following the existing empirical literature, e.g see Estrella et al. (2003), equation 13 may be es-
timated using realised values of ∆X (t) regressed against the values of [β2 (t) · q2 (1) + β3 (t) · q3 (1)]
lagged four quarters. From the previous section, ∆X (t) = ∆Y (t) +∆P (t) −∆Y ∗ (t) −∆P ∗ (t),
and the proxies for ∆Y ∗ (t) and ∆P ∗ (t) have already been discussed. Output growth ∆Y (t) is
proxied by the annual change in GDP, and inflation ∆P (t) is proxied by the annual change in the
GDP deflator. Note that because ∆P ∗ (t) and ∆P (t) have been proxied by the same quantity,
∆P ∗ (t)−∆P (t) = 0, and so ∆X (t) = ∆Y (t)−∆Y ∗ (t) for the empirical analysis in this article.

The quarterly index levels for the macroeconomic data series mentioned are available from the
FRED, and annual changes are calculated from the logarithms of those levels. To allow a visual
inspection of some of the relationships to be estimated, figure 5 plots the time series of β1,t and
[∆Y ∗ (t) +∆P ∗ (t)] data, and figure 6 plots the difference between those series. Figure 7 illustrates
the time series of ∆Y ∗ (t) and ∆Y (t) that are used to calculate ∆X (t), and figure 8 plots ∆X (t)
and [β2 (t) · q2 (1) + β3 (t) · q3 (1)] lagged four quarters.

[ Figure 5 here ] [ Figure 6 here ], [ Figure 7 here ], [ Figure 8 here ]
As a further comparison to the existing empirical macro-finance literature, estimations analo-

gous to equations 12 and 13 are also undertaken based on annual GDP growth and annual changes
in the GDP deflator individually, and also using the original interest rate data rather than the ANS
coefficients. Specifically, the additional interest data are the trailing annual average of the monthly
3-year government bond yield GS3(t) illustrated in figure 3 (hereafter denoted as AGS3t), and the
slope of the yield curve [GS10 (t) -TB3 (t)] from figure 3.

5.2 Empirical results and discussion

Table 1 contains the results of standard augmented Dickey-Fuller (ADF) and Phillips-Perron (PP)
unit root tests with an estimated constant for all of the data series used in the empirical analysis.
The lag lengths for the ADF tests are the theoretical three quarters (given that annual data at
a quarterly frequency induces MA(3) autocorrelation) and an automatic number of lags selected
using the method from Hamilton (1994) p. 530, which resulted in lag lengths ranging from 0 to 26
quarters. Similarly, the Newey and West (1987) window widths for the PP tests are three quarters
and an automatic window width selected using the method from Newey and West (1994), which
resulted in window widths ranging from 7 to 11 quarters. Unit root tests for first differences are
also undertaken as required, but with a theoretical lag length/window width of four quarters, and
standard unit root tests are also applied when testing for cointegration, given that the cointegration
vector of (1,-1) is imposed in all cases.

[ Table 1 here ]
The first point of note is that the ANS Level coefficient β1 (t) and its annual average β1,t

are highly persistent, in that they do not reject the unit root hypothesis. That matches the
persistence of the macroeconomic variables, given that steady-state output growth ∆Y ∗ (t), steady-
state inflation ∆P ∗ (t), and their sum [∆Y ∗ (t) +∆P ∗ (t)] also reject the hypothesis of a unit
root. The first differences of β1 (t), β1,t, ∆Y

∗ (t), ∆P ∗ (t), and [∆Y ∗ (t) +∆P ∗ (t)] all reject the
unit root hypothesis, and so all have the same I(1) order of integration. This result confirms
that the parsimonious random-walk specifications for the Level coefficient and the GCV steady-
state variables within the ANS framework are appropriate/adequate representations of the data in
practice.

The second point of note is that the hypothesis of β1,t and [∆Y
∗ (t) +∆P ∗ (t)] being cointe-

grated with a (1,-1) vector is rejected. The analogous comparative tests for (1,-1) cointegration
between β1,t and∆P

∗ (t), AGS3t and [∆Y ∗ (t) +∆P ∗ (t)], and AGS3t and∆P ∗ (t) are also rejected.
An inspection of the time series β1,t − [∆Y ∗ (t) +∆P ∗ (t)] in figure 6 shows that the deviations
between β1,t and [∆Y

∗ (t) +∆P ∗ (t)] have averaged around zero for the entire sample, but there
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was a highly persistent break from around the late 1970s/early 1980s. The latter is not surprising
given the context of substantial change in the US economic and financial environment during the
late-1970s to the mid-1980s. For example, a significant economic change was the Federal Reserve’s
Volcker-led disinflation from October 1979, and the subsequent maintenance of low inflation with-
out the gold standard. Significant financial changes were progressive market deregulation, including
eliminating interest rate restrictions and rationalising reserve requirements, and an increasing role
for securitisation. Prior empirical work also mentions these reasons when establishing and docu-
menting structural breaks between 1979:Q4 to 1984:Q1.13

The theoretical structure of the ANS framework would attribute the break to changes in the
volatility and/or term premium for the Level coefficient, which in turn should correspond with
changes to the risk parameters for steady-state growth plus steady-state inflation; i.e σ21 =

P2J
j=1 σ

2
0,j

and σ1ρ1 =
P2J

j=1 σ0,jρ0,j respectively (changes in the inflation variance σ
2
P may also contribute).

The parsimony of the ANS framework also offers a convenient means for establishing and document-
ing those changes; i.e formally test for structural breaks in the time series β1,t− [∆Y ∗ (t) +∆P ∗ (t)]
based on supporting evidence from changes in the economic and financial environments that pre-
vailed at the time, and re-estimate the ANS model over each of those periods to confirm that the
volatilties and/or market prices of risk do change materially. However, such an investigation is
beyond the scope of the simple illustration in this article, and remains to be undertaken in future
work.

Regarding the non-Level coefficients, the ANS Slope and Bow coefficients are mean revert-
ing, in that they each strongly reject the unit root hypothesis. That property carries through to
[β2 (t) · q2 (1) + β3 (t) · q3 (1)], and is consistent with the mean reversion in output growth ∆Y (t)
and output growth less potential output growth, i.e ∆X (t) = ∆Y (t)−∆Y ∗ (t), given those series
also strongly reject the unit root hypothesis.

Table 2 contains the results from estimating the regression in equation 13 and the analogous
comparative regressions. All of the estimated standard errors are adjusted using the Newey and
West (1987) technique with a window width of three quarters to correct for the effect of MA(3)
autocorrelation induced in ε (t+ 1) due to the use of intertemporal data with an annual horizon at
a quarterly frequency.

[ Table 2 here ]
The first point of note is that the regression in equation 13 shows a strong relationship be-

tween ∆X (t) and lagged [β2 (t) · q2 (1) + β3 (t) · q3 (1)], with highly significant estimates of the
coefficient α1,1. Similar results are obtained for the analogous comparative regressions of ∆Y (t)
on lagged [β2 (t) · q2 (1) + β3 (t) · q3 (1)], ∆X (t) on lagged [GS10 (t) -TB3 (t)], and ∆Y (t) on lagged
[GS10 (t) -TB3 (t)]. The latter reproduces the standard result in the literature that [GS10 (t) -TB3 (t)]
correlates strongly with future output growth, but as suggested by the ANS framework, the corre-
lation with ∆X (t) is even stronger.

The second point of note is the rejection of the hypothesis that α1,1 has the predicted value of 1.
An inspection of figure 8 shows evidence of a structural change for the relationship between ∆X (t)
and lagged [β2 (t) · q2 (1) + β3 (t) · q3 (1)] from around the late 1970s/early 1980s, and the context for
that has already been discussed above. The ANS framework would suggest that the change is due to
changes in the volatilties and/or the market prices of risk for the Slope and Bow coefficients, which
should in turn correspond with changes to the risk parameters for output growth plus inflation
relative to their steady-state values; i.e

P3
n=2 σ

2
n · h2(φ,m) ' −

P2J
j=1

1
2

h
σ21,j − σ20,j

i
· [Bj (m)]

2

and
P3

n=2 γn · gn(φ,m) '
P2J

j=1

£
σ1,jρ1,j − σ0,jρ0,j

¤ · Bj (m) respectively. Once again, the ANS

13For example, based on statistical tests for unknown breakpoints, Estrella et al. (2003) identifies structural breaks
in October 1979 and October 1982 when the yield curve is used as an indicator of future inflation, and in September
1983 when the yield curve is used as an indicator of future output. Using a similar technique, Aïssa and Jouini
(2003) documents a break in the inflation process in June 1982, and Lai (2004) suggests a break between mid-1980
and early-1981. Jardet (2004) documents a break in the yield curve/output relationship in March 1984, and the yield
curve forecasting application of Krippner (2006) implies a break in yield curve term premia between September 1979
and October 1982.
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framework offers a convenient means for further investigation of this aspect, but that is beyond the
scope of this article and remains to be undertaken in future work.

Finally, note that the estimate of α0,1 is significantly negative. This indicates that average term
premia over the entire sample were materially positive; i.e the shape of the yield curve overstated
future values of ∆X (t) on average.

6 Conclusions and potential applications

The ANS framework (i.e the ANS model with its macroeconomic foundation) developed in this
article establishes a formal theoretical justification for the NS approach to modelling the yield curve
with simple components of time-to-maturity allowing for Gaussian dynamics. At the same time, the
ANS framework also provides a theoretically-rigorous yet parsimonious and intuitive macro-finance
tool. The simple and practical application in this article provides a ready interpretation of a series
of empirical results from the macro-finance literature that relate the level and slope of the yield
curve to output growth and inflation. However, the empirical application of the ANS framework
also highlights that historical relationships between the yield curve, output growth, and inflation
have been influenced by time-varying potential growth and especially by occasional and highly
persistent changes to term premia. Investigating the latter within the ANS framework remains as
a topic for future work.

The ANS framework, or straightforward extensions, may be applied more generally as a tool
within macro-finance where the user is satisfied that a minimal model containing just the core
variables of interest rates, output growth, and inflation with Gaussian dynamics is sufficient. An
obvious example is extracting implied market expectations of output growth and inflation from the
yield curve, particularly long-term inflation expectations with appropriate allowances for occasional
changes in term premia. Or in reverse, the ANS framework could be used to assess the sensitivity
of yield curve changes, and so the risk for fixed interest portfolios, to unanticipated changes in
output growth and/or inflation (or suggest optimal positions for active views on data surprises).
And given that the ANS framework is intertemporally-consistent and arbitrage-free, it also offers
a means of valuing and hedging some of the macroeconomic derivatives that have been suggested
by Shiller (1993 and 2003), and that have been provided to the market over recent years; e.g see
Frankel and O’Neill (2002), Chicago Mercentile Exchange (2005), and Goldman Sachs (2005).

A Deriving the GCV forward rate curve

This appendix proceeds in three sub-sections: (1) outlining the general relationship between the
expected path of the short rate and the forward rate curve within the HJM framework;14 (2)
calculating the expected path of the short rate for the GCV economy; and (3) calculating the
forward rate curve for the GCV economy via the HJM framework.

A.1 The HJM framework

HJM specifies the relationship between the forward rate curve and the short rate under the physical
measure as:
14This sub-section is abbreviated from Krippner (2006) appendix A, but makes the important clarification that

the notation is based on time and time-to-maturity, as used for the market models originally introduced in Brace,
Gatarek and Musiela (1997) (hereafter BGM), rather than the HJM time and time-of-maturity notation. Specifically,
f (t,m) = fBGM (t,m) = fHJM (t, t+m).
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r (t+m) = f (t,m) +
NX
n=1

Z m

0
σn (v,m)

½Z m

v
σn (v, u) du

¾
dv

−
NX
n=1

Z m

0
σn (v,m) ρndv +

NX
n=1

Z t+m

t
σn (t,m) dWn (t) (14)

where r (t+m) is the short rate at time t as a function of future horizon m (so t +m is a future
point in time); f (t,m) is the forward rate curve at time t as a function of time-to-maturity m; N is
the number of independent stochastic processes that impart instantaneous random changes to the
forward rate curve; σn (v,m) is the volatility function for the process n; ρn is the market price of
risk for the process n; dWn (v) are independent Wiener variables under the physical measure; and
u and v are dummy integration variables.

Applying the expectations operator as at time t to equation 14 and rearranging gives:

f (t,m) = Et [r (t+m)] +
NX
n=1

Z m

0
σn (v,m) ρndv −

NX
n=1

Z m

0
σn (v,m)

½Z m

v
σn (v, u) du

¾
dv (15)

where Et [r (t+m)] is the expected path of the short rate as at time t as a function of future horizon
m.

A.2 The GCV expected path of the short rate

Heuristically, the expected path of the short rate for the GCV economy may be obtained by applying
the expectations operator to equation 4 and solving the resulting ordinary differential equation in
future timem. That is, Et [dsj (t+m)] = −κj {Et [dsj (t+m)]− θj (t)} dm, which has the solution
Et [sj (t+m)] = θj (t) + [sj (t)− θj (t)] · exp (−κjm), and summing over all j reproduces equation
6.

However, the presence of the stochastic process for the steady-state variables makes the calcula-
tion more subtle.15 Hence, with reference to equation 4, define a point u so that t < u < t+m and
dsj (u) = −κj [sj (u)− θj (u)] du+σ1,jdz1,j (u). This may be re-arranged as dsj (u)+κjsj (u) du =
κjθj (u) du + σ1,jdz1,j (u) and expressed as d [sj (u) · exp (κju)] = κjθj (u) · exp (κju) du + σ1,j ·
exp (κju) dz1,j (u). Integrating from t to t+m and taking the result for the lower limit of integra-
tion to the right-hand side gives the result:

sj (t+m) · exp (κj [t+m]) = sj (t) · exp (κjt) + κj

Z t+m

t
θj (u) · exp (κju) du

+

Z t+m

t
σ1,j · exp (κju) dz1,j (u) (16)

To evaluate κj
R t+m
t θj (u)·exp (κju) du, first note that equation 4 defines dθj (v) = σ0,jdz0,j (v).

Integrating from t to u and taking the result for the lower limit of integration to the right-
hand side gives θj (u) = θj (t) + σ0,j

R u
t dz0,j (v). Substituting this result into κj

R t+m
t θj (u) ·

exp (κju) du and expanding gives κjθj (t)
R t+m
t exp (κju) du+κjσ0,j

R t+m
t exp (κju)

£R u
t dz0,j (v)

¤
du.

The first integral is θj (t) [exp (κju)]
t+m
t = θj (t) [exp (κj [t+m])− exp (κjt)], and the second inte-

gral is κjσ0,j
R t+m
t

³R t+m
v exp (κju) du

´
dz0,j (v), where the stochastic Fubini theorem has been

used to reverse the sequence of integration. The inner integral is 1
κj
[exp (κj [t+m])− exp (κjv)],

and so the final expression of κj
R t+m
t θj (u) · exp (κju) du is θj (t) [exp (κj [t+m])− exp (κjt)] +

σ0,j
R t+m
t [exp (κj [t+m])− exp (κjv)] dz0,j (v).

15 I thank Carl Chiarella for pointing this out, and for detailing how the calculation should be approached.
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Substituting that result into equation 16 and factoring out exp (κj [t+m]) across the entire
equation gives the final expression for sj (t+m) and its dynamics, i.e:

sj (t+m) = sj (t) · exp (−κjm) + θj (t) · [1− exp (−κjm)]
+σ0,j

Z t+m

t
dz0,j (v)− σ0,j

Z t+m

t
exp (−κj [t+m− v]) dz0,j (v)

+σ1,j

Z t+m

t
exp (−κj [t+m− u]) dz1,j (u) (17)

Applying the expectations operator as at time t then gives Et [sj (t+m)] = θj (t)+ [sj (t)− θj (t)] ·
exp (−κjm), and summing over all j reproduces equation 6.

Regarding equation 7, Et [r (t+m)] = Et

hP2J
j=1 sj (t+m)

i
= Et[dY (t+m) + dP (t+m) −

σ2P ] = Et

£
dY ∗ (t+m) + dP ∗ (t+m)− σ2P

¤
+ Et [dX (t+m)], where Et [dX (t+m)] is defined in

Proposition 1. Then note that Et[dY
∗ (t+m) + dP ∗ (t+m) − σ2P ] = Et

hP2J
j=1 θj (t+m)

i
=

Et

hP2J
j=1 θj (t) + σ0,j

R t+m
t dz0,j (v)

i
=
P2J

j=1 θj (t) = dY ∗ (t)+dP ∗ (t)−σ2P . Hence, Et [r (t+m)] =

dY ∗ (t) + dP ∗ (t)− σ2P +Et[dX (t+m)].

A.3 The GCV forward rate curve

The stochastic terms in equation 17 define how innovations in each GCV factor will impart instanta-
neous random changes to the expected path of the short rate. Equation 15 shows those innovations
will be simultaneously reflected in the forward rate curve, and that defines the volatility functions
required for the HJM framework calculations.

Firstly, σ0,j
R t+m
t dz0,j (v) from equation 17 shows that an innovation dz0,j (t) will result in an

instantaneous parallel shift of σ0,j ·dz0,j (t) to f (t,m). Therefore, this contribution to the volatility
function for factor j is σn (t,m) = σ0,j , which gives the first equation 15 integral

Rm
0 σ0,jρ0,jdv =

σ0,jρ0,j · [v]m0 = σ0,jρ0,j ·m, and the second equation 15 integral
Rm
0 σ0,j ·

©Rm
v σ0,jdu

ª
dv =

Rm
0 σ0,j ·

{σ0,j · [u]mv } dv =
Rm
0 σ20,j · [m− v] dv = σ20,j ·

h
mv − v2

2

im
0
= 1

2σ
2
0,j ·m2.

Secondly, the third line of equation 17 shows that an innovation dz1,j (t) will result in an in-
stantaneous non-parallel shift of σ1,j · exp (−κjm) · dz1,j (t) (i.e an exponential decay function by
time-to-maturitym) to f (t,m). Therefore, this contribution to the volatility function for factor j is
σn (t,m) = σ1,j ·exp (−κjm), which gives the first equation 15 integral

Rm
0 σ1,j ·exp (−κjv)·ρ1,jdv =

σ1,jρ1,j ·
h
− 1

κj
exp (−κjv)

im
0
= σ1,jρ1,j · Bj (m) where Bj (m) =

1
κj
[1− exp (−κjm)]. The second

equation 15 integral is calculated in two steps, i.e:
Rm
v σn (v, u) du =

Rm
s σ1,j ·exp (−κj [u− v]) du =

σ1,j ·
h
− 1

κj
exp (−κj [u− v])

im
v
=

σ1,j
κj
·[1− exp (−κj [m− v])]. Then

Rm
0 σn (v,m)

©Rm
v σn (v, u) du

ª
dv

is calculated as:
Rm
0 σ1,j ·exp (−κj [m− v])·σ1,jκj

·[1−exp (−κj [m− v])]dv =
σ21,j
κj
·Rm0 [exp (−κj [m− v])−

exp (−2κj [m− v])]dv =
σ21,j
κ2j
· [exp (−κj [m− v])− 1

2 exp (−2κj [m− v])]m0 =
σ21,j
κ2j
· [1−exp (−κjm)−

1
2 +

1
2 exp (−2κjm)] =

σ21,j
2κ2j

· [1− exp (−κjm) + exp (−2κjm)] = σ21,j
2κ2j

· [1− exp (−κjm)]2 = −12σ21,j ·
[Bj (m)]

2

Thirdly, the second component on line 2 of equation 17 shows that innovations in dz0,j (t) will
also result in an instantaneous non-parallel shift of −σ0,j · exp (−κjm) · dz0,j (t) to f (t,m), in
addition to the parallel shift already noted earlier. The integrals for these non-parallel components
follow those for dz1,j (t) above, giving the results −σ0,jρ0,j ·Bj (m) and 1

2σ
2
1,j · [Bj (m)]

2.
Substituting Et [r (t+m)] from section A.2 and the calculations from this section into equation

15 gives equation 8. Equation 9 follows from a straightforward substitution of the results from the
last paragraph in appendix A.2.
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Figure 1: The three modes used to represent the forward rate curve f (t,m) in NS models. This
illustration uses φ = 1.03.
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Figure 2: Yield curve data for the month of September 2003 and the fitted yields based on
the estimated ANS model. The estimated Level, Slope, and Bow coefficients are, respectively,
β1 (Sep-03) = 5.96%, β2 (Sep-03) = 8.67%, and β3 (Sep-03) = −3.90%. The ANS parameters are
φ = 1.03, ρ1 = 2.66%, σ1 = 0.77%, σ2 = 2.26%, and σ3 = 1.74%.
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Figure 3: The 3-year government bond yield, GS3(t), and the slope of the yield curve, denoted
[GS10(t)-TB3(t)], as measured by the spread between the 10-year government bond yield, GS10(t),
and the 3-month Treasury bill rate, TB3(t).
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Figure 4: The time series of the estimated ANS coefficients, i.e Level β1 (t), Slope β2 (t), and Bow
β3 (t). The ANS coefficients at each point in time are estimated using the seven points of yield
curve data observed at that point in time, as in the example for September 2003 illustrated in figure
2.
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Figure 5: The time series of the annual average Level coefficient β1,t and annual potential output
growth plus annual inflation [∆Y ∗ (t) +∆P ∗ (t)].

-6

-4

-2

0

2

4

6

8

19
54

19
58

19
62

19
66

1 9
7 0

1 9
7 4

1 9
7 8

1 9
8 2

19
86

19
90

19
94

19
98

20
02

2 0
0 6

2 0
1 0

Time (t )

Pe
rc

en
t

β1,t - [∆Y*(t)+∆P*(t)]

Figure 6: The time series of the annual average Level coefficient β1,t less annual potential output
growth plus annual inflation [∆Y ∗ (t) +∆P ∗ (t)].
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Figure 7: The time series of annual GDP growth, ∆Y (t), and the annual change in Congressional
Budget Office potential GDP, ∆Y ∗ (t). These data are used to construct the ∆X(t) = ∆Y (t) −
∆Y ∗ (t) data plotted in figure 8.
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Figure 8: The time series of ∆X (t) = ∆Y (t) − ∆Y ∗ (t) based on the ∆Y (t) and ∆Y ∗ (t) data
plotted in figure 7, and [β2 (t) · q2 (1) + β3 (t) · q3 (1)] lagged four quarters.
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Time series \ unit root tests
ADF PP ADF PP ADF PP

Level coefficient, β1(t) -1.93 -1.75 -1.64 -1.67 -7.07 *** -13.15 ***

Slope coefficient, β2(t) -3.48 *** -3.97 *** -4.13 *** -4.33 *** n/a n/a

Bow coefficient, β3(t) -3.40 ** -5.72 *** -3.64 *** -6.47 *** n/a n/a

Annual average Level 
coefficient, β1,t

-1.55 -1.57 -1.74 -1.59 -4.29 *** -5.31 ***

Steady-state output growth, 
∆Y*(t)

-1.29 -1.79 -1.03 -1.93 -3.66 *** -4.74 ***

Steady-state inflation, ∆P*(t) -2.66 * -2.07 -1.51 -2.10 -6.74 *** -9.12 ***

Steady-state output growth plus 
inflation, [∆Y*(t)+∆P*(t)]

-2.72 * -2.09 -1.41 -2.06 -6.73 *** -8.85 ***

β1,t - [∆Y*(t)+∆P*(t)] -2.43 -1.83 -1.81 -1.87 -5.56 *** -7.00 ***

β1,t - ∆P*(t) -2.52 -1.93 -2.10 -1.96 -5.68 *** -7.22 ***

Annual average 3-year bond 
yield, AGS3t

-2.02 -1.91 -1.82 -1.95 -4.70 *** -5.44 ***

AGS3t - [∆P*(t)+∆P*(t)] -2.46 -2.06 -2.32 -1.99 -6.13 *** -7.09 ***

AGS3t - ∆P*(t) -2.60 * -2.20 -2.74 * -2.12 -6.23 *** -7.14 ***

Output growth, ∆Y(t) -7.24 *** -5.68 *** -3.29 ** -4.68 *** n/a n/a

∆X(t) = ∆Y(t) - ∆Y*(t) -8.00 *** -5.92 *** -4.30 *** -5.02 *** n/a n/a

Lagged β2(t).q2(1)+β3(t).q3(1) -3.59 *** -3.99 *** -4.11 *** -4.32 *** n/a n/a

Lagged 10-year yield less 3-
month rate [GS10(t)-TB3(t)] -4.53 *** -4.88 *** -3.29 ** -5.07 *** n/a n/a

First difference testTest on level with Test on level with
selected lag/window3Q lag/window with 4Q lag/window

Table 1: Unit root tests with an estimated constant. ADF is augmented Dickey-Fuller,
and PP is Phillips-Perron. ***, **, * respectively represent 1, 5, and 10 percent levels
of significance based on the critical values -3.46, -2.88, and -2.57 from Hamilton (1994)
p.763, Case 2.
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Regression \ results R2 α0,1 s.e α0,1 α1,1 s.e α1,1 α1,1 - 1

∆X(t) = ∆Y(t) - ∆Y*(t) on 
lagged [β2(t).q2(1)+β3(t).q3(1)] 0.189 -1.07 *** 0.35 0.67 *** 0.15 -0.33 **

∆X(t) on lagged                          
[GS10(t)-TB3(t)]

0.229 -1.24 *** 0.35 0.89 *** 0.17 n/a

∆Y(t) on lagged 
[β2(t).q2(1)+β3(t).q3(1)] 0.108 2.42 *** 0.39 0.52 *** 0.16 n/a

∆Y(t) on lagged                 
[GS10(t)-TB3(t)]

0.153 2.22 *** 0.38 0.74 *** 0.18 n/a

Table 2: Results of estimating equation 13 and the analogous comparative regressions.
***, **, * respectively represent 1, 5, and 10 percent two-tailed levels of significance
based on the t-statistics α/s.e α with 208 degrees of freedom.
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