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Abstract

The generalised extreme-value (GEV) distribution is widely used for modelling
and characterising extremes. It is a flexible 3-parameter distribution that combines
three extreme-value distributions within a single framework: the Gumbel, Frechet
and Weibull. Common methods used for estimating the GEV parameters are the
method of maximum likelihood and the method of L-moments.

In this paper we generalise the mixed maximum likelihood and L-moments esti-
mation procedures proposed by Morrison and Smith (2002) and derive the asymp-
totic properties of the resulting estimates. Analytic expressions are given for the
asymptotic covariance matrices in a number of important cases, including the esti-
mators proposed by Morrison and Smith (2002). These expressions are verified by
simulation and the efficiencies of the various estimators established.

The asymptotic results are compared to those obtained for small samples, and
the properties of the various estimators, including full maximum likelihood estima-
tors and L-moment estimators, are considered. Finally, these methods are applied
to an analysis of Wellington maximum daily rainfall data and graphical tools are
developed, using simplified constraints for the support of the log-likelihood, which
assist with the determination of the estimates in practice.

Keywords: GEV distribution; mixed estimation methods; asymptotic proper-
ties; small samples; quantile estimation.
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1 Introduction

The distribution of extremes, such as maximum daily temperatures or minimum daily
returns, is of common interest to many disciplines including the natural and social scien-
tists. Katz et al. (2002) provides a comprehensive review of the analysis of hydrological
extremes, and Coles (2001) provides a general introduction to the analysis of extreme val-
ues. Embrechts et al. (1997) and McNeil et al. (2005) consider the modelling of extremes
in insurance, finance and quantitative risk management. However, for many analyses,
there is often limited data available on extremes and so fitting an extreme value distribu-
tion can lead to difficulties, particularly for the estimation of extreme quantiles. In such
cases there is a need to better understand the asymptotic and small sample properties of
the parameters of the extreme value distribution chosen, and its quantiles.

This paper is concerned with the fitting of the generalised extreme-value (GEV) distribu-
tion, introduced by Jenkinson (1955), which is widely used for modelling and characteris-
ing extremes. The GEV distribution is a flexible 3-parameter distribution that combines
three extreme-value distributions within a single framework: the Gumbel (EV1), Frechet
(EV2) and Weibull (EV3). Common methods of estimating the GEV parameters are
the method of maximum likelihood (Prescott and Walden, 1980) and the method of L-
moments (Hosking, 1990). While L-moment estimators produce biased estimates, Hosking
et al. (1985) found them to be preferable to maximum likelihood estimators in small sam-
ples because they resulted in estimated quantiles with smaller variances. For a range of
hydrologically important cases, Madsen et al. (1997) showed that GEV quantiles esti-
mated from small samples using conventional method of moments estimates were more
accurate than those based on either maximum likelihood or L-moments. Martins and Ste-
dinger (2000) considered restricting the shape of the GEV distribution using a suitable
Bayesian prior. They showed that, for heavy tailed GEV distributions, the maximum a
posteriori (MAP) estimators (penalised maximum likelihood estimators) again provided
better estimates of GEV quantiles than maximum likelihood, method of moments and
L-moments, in the case of small samples.

Morrison and Smith (2002) proposed two methods for estimating the GEV parameters
that combine both maximum likelihood and L-moment methods. The resulting estimators
of the shape parameter displayed reduced variance compared to the maximum likelihood
estimator, and reduced bias compared to the L-moment estimator. Furthermore, their
study showed the root mean square errors of the mixed method estimators were superior
to those of L-moment estimators for flood size samples, although the root mean square
errors of the corresponding quantiles were slightly inferior. However, while Morrison and
Smith (2002) established that their methods produce estimates that are consistent and
asymptotically Gaussian, they did not provide analytical expressions for the asymptotic
covariance matrix.

In Section 2 we generalise the estimation procedure proposed by Morrison and Smith
(2002) to moments other than L-moments, and derive the asymptotic properties of the
resulting estimates. In particular, analytic expressions are given for the asymptotic co-
variance matrices in a number of important cases, including the estimators proposed
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by Morrison and Smith (2002). Using simplified constraints for the support of the log-
likelihood, graphical tools are developed in Section 3 which assist with the determination
of the estimates in practice. In Section 4, the asymptotic results established in Section 2
are verified by simulation and the efficiencies of the various estimators established. The
asymptotic results are contrasted and compared to those obtained for small samples, and
the properties of the various estimators, including full maximum likelihood estimators
and the L-moment estimators, are considered. The corresponding quantile estimators
are also assessed for accuracy and bias. The various methods are applied to an analysis
of Wellington maximum daily rainfall data in Section 5 and conclusions are drawn in
Section 6.

2 GEV estimation using mixed methods

Consider estimating the parameters α > 0, β, κ of the GEV distribution with cumulative
distribution function

F (x|θ) =

{
exp{−[1− κx−β

α
]
1
κ} (κ 6= 0)

exp{− exp[−x−β
α

]} (κ = 0)
(1)

where θ = (β, α, κ)T and x is bounded above by β + α/κ when κ > 0, below by β + α/κ
when κ < 0. Here β, α and κ are location, scale and shape parameters respectively, and
the constraints on x are equivalent to requiring κ(x−β) < α. Note that κ < 0 corresponds
to the Frechet distribution, κ > 0 corresponds to the Weibull distribution, and the case
κ = 0 (the Gumbel distribution) is the limit of the κ 6= 0 form as κ approaches zero,

The log-likelihood of a random sample X1, . . . , Xn drawn from the GEV distribution is
given by

lnL(θ) = −n lnα−
n∑
i=1

(1− κXi − β
α

)
1
κ + (

1

κ
− 1)

n∑
i=1

ln(1− κXi − β
α

) (2)

and the corresponding maximum likelihood estimator is the value of θ at which lnL(θ)
attains its maximum value. A feasible solution is subject to the parameter constraints

α > 0, κ
Xi − β
α

≤ 1 (i = 1, . . . , n) (3)

and we further assume that −0.5 < κ < 0.5. The latter ensures that the Xi have finite
second moments and satisfy the maximum likelihood regularity conditions given in Smith
(1985). In particular, these conditions on κ ensure that both L-moment and the maximum
likelihood estimates are consistent with asymptotic (large sample) Gaussian distributions
(see Prescott and Walden 1980, Hosking 1990).

Suppose now that θ is estimated by a mixture of two methods; maximum likelihood and
method of moments. A central case of interest here is where α and β are estimated as
functions of the remaining parameter κ by the method of moments using the first two
L-moments

λ1 = E(X1) = β +
α

κ
(1− Γ(1 + κ)), λ2 = 1

2
E(|X1 −X2|) =

α

κ
(1− 2−κ)Γ(1 + κ) (4)
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with λ1, λ2 estimated by

λ̂1 =
1

n

n∑
i=1

Xi, λ̂2 =
1

n(n− 1)

∑
i<j

|Xi −Xj|. (5)

Then κ is estimated by maximising the log-likelihood lnL(θ) with α, β constrained to
be the solution of (4) and (5). These estimators, denoted by θ̂, are the MIX2 estimators
proposed by Morrison and Smith (2002).

Note that λ3 = κ and (4) yield a continuously differentiable 1-1 mapping between the
parameters θ and λ = (λ1, λ2, λ3)

T where

β = λ1 −
λ2(1− Γ(1 + λ3))

(1− 2−λ3)Γ(1 + λ3)
, α =

λ2λ3

(1− 2−λ3)Γ(1 + λ3)
, κ = λ3 (6)

so that θ̂ is now given by (6) with λ replaced by λ̂ where λ̂1, λ̂2 are given by (5) and

λ̂3 = arg max
λ3

lnL(λ̂1, λ̂2, λ3). (7)

This mixed estimation estimation procedure will be referred to as method M1.

From Results 1 and 2 in the Appendix,
√
n(θ̂−θ) has an asymptotic Gaussian distribution

with mean zero and covariance matrix JTV J where

V = BCBT , C =

 C11 C12 0
C21 C22 0

0 0 I
(λ)
33

 , B−1 =

 1 0 0
0 1 0

I
(λ)
31 I

(λ)
32 I

(λ)
33


and Cij = limn→∞ cov(λ̂i, λ̂j) for i, j = 1, 2. The Jacobean of the transformation (6) is
given by

J =
∂θT

∂λ
=

 1 0 0
β−λ1

λ2

α
λ2

0
α
κ
ψ(1 + κ) + (β − λ1)

ln 2
1−2κ

α
κ
(1− κψ(1 + κ) + κ ln 2

1−2κ ) 1

 (8)

where ψ(x) = d ln Γ(x)/dx is the digamma function and Γ(x) is the gamma function. The
matrix I(λ) = JI(θ)JT where I(θ), the information matrix of the GEV distribution with
parameters θ, is given by Result 2 in the Appendix. Since

n var(λ̂1) = var(X1), n cov(λ̂1, λ̂2) = cov(X1, |X1 −X2|),

n var(λ̂2) =
n− 1

n− 2
cov(|X1 −X2|, |X2 −X3|) +

var(|X1 −X2|)
2(n− 1)

it follows that

C11 = var(X1), C12 = C21 = cov(X1, |X1 −X2|), C22 = cov(|X1 −X2|, |X2 −X3|)
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and straightforward, but demanding, integration now yields

C11 =
α2

κ2
[Γ(1 + 2κ)− Γ(1 + κ)2]

C12 = C21 = −α
2

κ2
[(1− 2−2κ)Γ(1 + 2κ)− 2(1− 2−κ)Γ(1 + κ)2] (9)

C22 =
α2

κ2
[Γ(1 + 2κ)(1 + 2−2κ+2(Hκ(

1
2
)− 1

2
))− Γ(1 + κ)2(3− 2−κ+2 + 2−2κ+2)]

where

Hκ(x) = 2F1(κ, 2κ; 1 + κ;−x) = 2
1 + 2κ

xκ
Γ(1 + κ)2

Γ(2 + 2κ)
B1+κ(

x

1 + x
) +

1− x
(1 + x)1+2κ

for x > 0, κ > −1. Here 2F1(.) is the hypergeometric function, and Bφ(.) the symmetric
beta distribution function with parameter φ > 0.

The formulae for the Cij (i, j = 1, 2) agree with those of Hosking et al. (1985). Note
that we have given an alternative formula for Hκ(x) involving the symmetric beta distri-
bution function. This has the advantage of ready implementation in standard statistical
computing packages where the beta distribution function is typically available.

Other mixed GEV estimation methods

The same arguments can be used to establish the asymptotic distribution of the estimators
that result when only one moment estimate is used with the remaining two parameters
estimated by maximum likelihood. Consider, for example, the first L-moment constraint
for β and estimating α, κ by maximum likelihood subject to this constraint (this is the
MIX1 method proposed in Morrison and Smith, 2002). In this case the mapping between
θ and λ is given by

λ1 = β +
α

κ
(1− Γ(1 + κ)), λ2 = α, λ3 = κ

with λ1 estimated by λ̂1 as before and λ2, λ3 estimated by constrained maximum likeli-
hood. Calling this estimation procedure method M2, the asymptotic distribution of the
M2 estimators is again given by Results 1 and 2 in the Appendix, but now

C =

 C11 0 0

0 I
(λ)
22 I

(λ)
23

0 I
(λ)
32 I

(λ)
33

 , B−1 =

 1 0 0

I
(λ)
21 I

(λ)
22 I

(λ)
23

I
(λ)
31 I

(λ)
32 I

(λ)
33

 , vJ =

 1 0 0
J21 1 0
J31 0 1


where

J21 =
β − λ1

α
, J31 =

α

κ
ψ(1 + κ)Γ(1 + κ)− β − λ1

κ
I(λ) = JI(θ)JT

with C11 given in (9) and I(θ) given by Result 2 in the Appendix.
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Finally, it is noted that constrained maximum likelihood with other forms of moment
estimates could be chosen including, for example, robust estimates of location and scale. In
the latter case, one might use the median and interquartile range for λ1 and λ2 respectively.
Such estimates are not only robust to outliers, but also allow consideration of a wider
range of values of κ including the infinite variance case when κ ≤ −0.5. Since the
second L-moment is proportional to Gini’s mean difference, it is already a reasonably
robust estimate of scale, but the first L-moment, the sample mean, is not. Thus, another
possibility would be to replace the sample mean by the sample median or trimmed mean
which will yield a more robust estimate of location. Once again, the same approach can
be used in either case to establish the asymptotic distribution of the resulting estimators.

Consider the case of robust moment estimates of location and scale given by the sample
median and the second L-moment λ̂2 respectively, where λ̂2 is given by (5). Here the
mapping between θ and λ is given by

λ1 = β +
α

κ
(1− (ln 2)κ), λ2 =

α

κ
(1− 2−κ)Γ(1 + κ), λ3 = κ

with λ1 estimated by the sample median, λ2 estimated by (5), and λ3 estimated by
constrained maximum likelihood. Calling this estimation procedure method M3, the
asymptotic distribution of the M3 estimators is the same as the M1 estimators, but with
C11, C12 = C21 and J31 replaced by

C11 = α2(ln 2)2κ−2

C12 =
α2

κ
(ln 2)κ−1Γ(1 + κ)(3− 2−κ+1 − 4G1+κ(ln 2) + 2−κ+2G1+κ(2 ln 2))

J31 =
α

κ
(ln 2)κ ln ln 2 + (β − λ1)(

ln 2

1− 2κ
− ψ(1 + κ))

where Gκ(.) denotes the survivor function of the Gamma distribution with shape parame-
ter κ and unit scale parameter. The formula for C12 was derived using results in Ferguson
(1996) and, in particular, a generalisation of the argument given in Ferguson (1999).

Using these results, Figure 1 plots the square-root of the asymptotic relative efficiency of
the M1, M2 and M3 estimators of β, α and κ for β = 0, α = 1 and −0.5 < κ < 0.5.
Here the asymptotic root-efficiency, expressed as a percentage, gives the ratio of the large-
sample standard deviation of the maximum likelihood estimator of the given parameter
to the large-sample standard deviation of its estimator.

For κ > −0.35 all asymptotic root-efficiencies exceed 80% and for κ > −0.4 all root-
efficiencies exceed 70%. Although method M3 is generally less efficient than Methods M1
and M2 (particularly for the location parameter β), it does offer better estimates for values
of κ near -0.5. This is expected since the median can be shown to be a better location
estimator than the mean when κ < −0.1, and is considerably better when κ < −0.4 (the
GEV distribution is a heavy-tailed Frechet distribution for κ < 0). With the exception of
the location estimate, methods M1 and M3 are comparable so that the choice of using a
robust location estimator is not too costly in terms of asymptotic efficiency.
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Figure 1: Percentage root-efficiency of the M1 (red), M2 (green) and M3 (blue) estimators of
β (left panel), α (middle panel) and κ (right panel) for β = 0, α = 1 and −0.5 < κ < 0.5.

3 Computational issues

All the methods considered, including maximum likelihood, involve constrained optimi-
sation of the log-likelihood (2). The constraints fall into three groups; constraints (3)
related to the support of the GEV density, moment constraints such as (4) with λ1, λ2

estimated by (5), and the technical constraint −0.5 < κ < 0.5. The latter condition
ensures that the family of GEV distributions under consideration have finite variance and
satisfy maximum likelihood regularity conditions (see Smith 1985). This restriction is
unlikely to be a major problem in practice. In hydrology it is commonly assumed that
κ lies in a more restrictive range (see Hosking et al. 1985, Martins and Stedinger 2000,
for example). However, and as noted in Katz et al. (2002), bound constraints for κ are
commonly adopted for technical convenience at the possible expense, in some cases, of
physical interpretation.

Imposing constraints on κ is known to improve the performance of likelihood-based GEV
estimation techniques in small samples. Martins and Stedinger (2000) report implausibly
large estimates of κ for unconstrained maximum likelihood using small samples and show
that this problem is eliminated when the range of κ is restricted using a suitable Bayesian
prior. Coles and Dixon (1999) use penalised maximum likelihood to restrict the range
of κ, resulting in maximum likelihood estimates with improved small sample properties.
Morrison and Smith (2002) impose moment constraints which have a similar effect. This
is similarly the case here as shown in Section 4.

The estimation strategy we have adopted is to optimise over all parameters other than
κ, taking careful account of the constraints, and form a profile log-likelihood that is a
function of κ alone. This profile log-likelihood can then be plotted and optimised over
κ. The optimisations involved have reduced dimension and take advantage of simplified
constraints. As shown in Section 4, this procedure proves to be numerically robust,
graphically informative, and computationally efficient.
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Consider first the estimation method M1. The constraint (3) is equivalent to

α > 0 α > κ(max
i
Xi − β) α > −κ(β −min

i
Xi) (10)

which yields

λ̂2 > (max
i
Xi − λ̂1)(1− 2−κ), λ̂2 > −(λ̂1 −min

i
Xi)(1− 2−κ)

after substituting for α, β using (4) and (5). Since miniXi < λ̂1 < maxiXi this relation
can be inverted to give κ−M1 < κ < κ+

M1 where

κ−M1 = − ln

(
1 +

λ̂2

λ̂1 −mini xi

)
/ ln 2, κ+

M1 = − ln

(
1− λ̂2

maxiXi − λ̂1

)
/ ln 2

and κ−M1 < 0, κ+
M1 > 0 unless the sample is degenerate. The intersection of this interval

with (−0.5, 0.5) yields the simple constraint

max(κ−M1,−0.5) < κ < min(κ+
M1, 0.5). (11)

Note that these bounds are determined solely from the data. They lead to computationally
simple, transparent and numerically robust parameter estimates which can be used in their
own right, or as initial estimates to more computationally intensive methods such as full
maximum likelihood.

In the case of maximum likelihood, only the constraints (10) and −0.5 < κ < 0.5 apply.
However, we further assume that

min
i
Xi ≤ β ≤ max

i
Xi (12)

since β is the e−1 = 0.3679 quantile of the GEV distribution. The probability that the
interval [miniXi,maxiXi] does not include β is

1− P (min
i
Xi ≤ β ≤ max

i
Xi) = e−n + (1− e−1)n

which is less than 10−4 for n > 20 and less than 10−5 for n > 25. Thus, provided n is not
very small, it will be reasonable in practice to assume that (12) holds so that β always lies
within the range of the data. Note that this constraint will only impact on small sample
performance and vanishes for large samples. Now constraint (10) becomes

α > αML =

{
κ(maxiXi − β) (κ ≥ 0)
−κ(β −miniXi) (κ < 0)

(13)

where αML is a simple piecewise linear function of β given κ and the data. The sim-
ple constraints (12) and (13) can now be used to determine the profile log-likelihood
maxβ,α lnL(θ) which is a function of κ alone and the data.

Similar considerations apply to methods M2 and M3. For method M2 the constraints are

α > αM2 =

{
κ(maxiXi − λ̂1)/Γ(1 + κ) (κ ≥ 0)

−κ(λ̂1 −miniXi)/Γ(1 + κ) (κ < 0)
(14)
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and −0.5 < κ < 0.5. For method M3 there is the single constraint

max(κ−M3,−0.5) < κ < min(κ+
M3, 0.5) (15)

where κ−M3 < 0 and κ+
M3 > 0 are the solutions to

1− 2−κ

(ln 2)κ
Γ(1 + κ) = − λ̂2

λ̂1 −miniXi

,
1− 2−κ

(ln 2)κ
Γ(1 + κ) =

λ̂2

maxiXi − λ̂1

respectively. Method M3 shares the same properties of transparency and computational
simplicity as method M1.

For each of the four methods considered, it is readily shown that the asymptotic covariance
matrix of

√
n(θ̂ − θ) does not depend on β and takes the form α 0 0

0 α 0
0 0 1

Ω

 α 0 0
0 α 0
0 0 1

 (16)

where the 3-dimensional matrix Ω has elements that depend only on κ. This allows for
the simple tabulation and evaluation of the asymptotic covariance matrices for the case
β = 0, α = 1, with the more general cases obtained by scaling the results using (16).

4 Numerical study and an application

A simulation study was undertaken to check how well the asymptotic results given in
Section 2 applied in practice. Three sample sizes were considered, n = 30, 60 and 120,
for random samples from a GEV distribution with β = 0, α = 1 and a range of values
of κ between -0.5 and 0.5. For each choice of κ, 1000 independent random samples were
generated and the M1, M2, M3 and maximum likelihood estimates determined. Using
these simulations, the estimated bias and root-mean-squared error for each method and
choice of κ was then computed as a function of κ. The result for n = 30 is plotted in
Figure 2 together with the asymptotic root-mean-squared errors (standard errors in this
case since the estimates are asymptotically unbiased).

For n = 30 all methods show reasonable agreement with the asymptotic results when
κ > −0.3, both in terms of the estimated bias (which should be close to zero) and the
estimated root-mean-squared-error. Note, however, the small underestimation of the scale
parameter α in the case of maximum likelihood and the closely allied method M2. When
κ < −0.3 biases become more evident, particularly for the methods based on the L-
moments whose variances become infinite as κ approaches −0.5. For the estimates of κ,
the estimated root-mean-squared-error was generally less that the asymptotic value as
might be expected given that the κ estimates were restricted to the interval (-0.5,0.5). In
such cases a censored form of the asymptotic Gaussian distribution may prove to be a more
appropriate approximation. Although all methods performed comparably for κ > −0.3,
maximum likelihood generally performed well over all the values of κ considered.

9



0
0.

4

−0.4 0 0.4

M1

0
0.

4

−0.4 0 0.4

M2

0
0.

4

−0.4 0 0.4

M3

0
0.

4

−0.4 0 0.4

ML

0
0.

4

−0.4 0 0.4

0
0.

4

−0.4 0 0.4

0
0.

4

−0.4 0 0.4

0
0.

4

−0.4 0 0.4

0
0.

4

−0.4 0 0.4

κκ

0
0.

4

−0.4 0 0.4

κκ

0
0.

4
−0.4 0 0.4

κκ

0
0.

4

−0.4 0 0.4

κκ

Figure 2: Plots of the asymptotic root-mean-squared-error (black), simulated root-mean-
squared-error (red) and simulated bias (blue) of the M1 (column 1), M2 (column 2), M3 (col-
umn 3) and maximum likelihood (ML, column 4) estimators of β = 0 (row 1), α = 1 (row 2) and
κ (row 3) for n = 30 and −0.5 < κ < 0.5. The simulated results are based on 1000 replications.

As expected, the results for n = 60 and n = 120 showed improvements over those for
n = 30. Nevertheless, although considerably reduced, residual biases for κ < −0.35
remained even for n = 120. As before, maximum likelihood performed well over all κ in
the interval (-0.5, 0.5). Simulation of very large samples (n = 1000) at selected values of
κ < −0.3 served to validate the formulae for the asymptotic variances given in Section 2.

We now consider an application of these mixed methods for fitting the GEV distribution
to a sample of 24-hour annual maximum rainfall from Wellington, New Zealand (41.286
◦S, 174.767 ◦E) over the period 1940 to 1999. Summary statistics of the data are given
in Table 1, both for the entire data set and for the data disaggregated by the two phases

- IPO + IPO All
Sample size 31 29 60
Mean (first L-moment) 82.0 75.5 78.9
Median 73.9 70.1 73.6
Standard deviation 28.7 19.0 24.5
Second L-moment 16.3 10.4 13.6
Maximum 153.2 121.2 153.2
Minimum 47.0 51.4 47.0

Table 1: 24-hour annual maximum rainfall statistics (mm) for Wellington, New Zealand, over
the period 1940-1999 and for each phase of the IPO. The negative phase of the IPO spans the
period 1946-1976, and the positive phases from 1940-1945, and from 1977-1999.
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Figure 3: Profile log-likelihoods for the M1 (top left), M2 (top right), M3 (bottom left) and
maximum likelihood (bottom right) methods applied to Wellington 24-hour annual maximum
rainfall over the period 1940-1999 using L-moments,. The vertical lines mark the respective
estimates of κ.

(positive and negative) of the Interdecadal Pacific Oscillation (IPO). The IPO is associated
with large-scale atmospheric and oceanic patterns over the Pacific Ocean, and has been
shown to have an impact on annual maximum rainfall series in some regions of New
Zealand (see Thompson, 2006).

The estimation methods described in Section 2 were first applied to the entire data set.
For comparison purposes, a corresponding analysis using L-moments (see Hoskings et
al., 1985) was also undertaken. Plots of the resulting profile likelihoods for methods
M1, M2, M3 and maximum likelihood are given in Figure 3. Note that, in this case,
the limits (11) and (15) are -0.50, 0.29 and -0.45, 0.27 respectively, while methods M2
and maximum likelihood have profile likelihoods defined over the entire range considered
(−0.5 < κ < 0.5). The curvature of any of these profile likelihoods at its point of maxima
is proportional to the standard error of the corresponding estimate.

Table 2 shows the various parameter estimates and their (asymptotic) standard errors
where the latter are given in Section 2 for methods M1, M2, M3 and maximum likelihood.
In the case of L-moments the standard errors were obtained from tables provided in
Hosking et al. (1985) and Madsen et al. (1997). The parameter estimates from methods
M1, M2, M3 and maximum likelihood are all very similar, and slightly different from
those obtained from the method of L-moments. However the latter differences are not
statistically significant, being approximately one standard error apart. Nevertheless it is
interesting to note that the likelihood-based methods all preferred a slightly heavier tail
which may have ramifications for quantile estimation which is sensitive to the estimates
of the shape parameter κ.
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Method β α κ
L 66.98 (2.67) 18.22 (2.12) -0.07 (0.10)
M1 66.29 (2.40) 16.45 (1.87) -0.16 (0.10)
M2 66.19 (2.40) 16.43 (1.87) -0.17 (0.10)
M3 67.18 (2.89) 16.94 (1.98) -0.14 (0.10)
ML 66.32 (2.41) 16.54 (1.89) -0.17 (0.10)

Table 2: Parameter estimates obtained by fitting the GEV distribution to Wellington 24-hour
annual maximum rainfall over the period 1940-1999 using L-moments, methods M1, M2, M3
and maximum likelihood (ML). Asymptotic standard errors are given in parentheses.

This analysis was repeated for the observations falling in each phase of the IPO and
the results are reported in Table 3. For each IPO phase the likelihood-based estimates
again prefer a heavier tail than the method of L-moments, with the differences in the
various parameter estimates within each phase being much smaller than those between
the two IPO phases. In particular, the differences between the scale parameters for each
IPO phase suggest real differences, although these are still not statistically significant,
with the annual extreme rainfalls being more variable and heavier during the negative
phase of the IPO than in the positive phase (see also Table 1). These conclusions are
further reinforced by a more formal likelihood ratio test which gives a p-value of 15%
and retains the null hypothesis that thee is no difference between the 24-hour annual
maximum rainfall within each phase of the IPO. This result is also consistent with the
findings of Thompson (2006).

- IPO + IPO
Method β α κ β α κ
L 68.30 (4.71) 23.24 (3.62) -0.01 (0.14) 65.99 (2.77) 13.06 (2.30) -0.14 (0.16)
M1 66.96 (4.07) 20.05 (3.15) -0.15 (0.14) 65.66 (2.55) 12.10 (2.02) -0.20 (0.15)
M2 66.98 (4.07) 20.05 (3.14) -0.15 (0.14) 65.87 (2.55) 12.12 (2.01) -0.18 (0.15)
M3 66.47 (4.66) 19.65 (3.27) -0.17 (0.15) 65.54 (2.94) 11.98 (2.13) -0.21 (0.16)
ML 67.13 (4.09) 20.16 (3.17) -0.16 (0.14) 65.97 (2.56) 12.21 (2.02) -0.19 (0.15)

Table 3: Parameter estimates obtained by fitting the GEV distribution to Wellington 24-hour
annual maximum rainfall over the period 1940-1999 using methods M1, M2, M3 and maximum
likelihood (ML). Asymptotic standard errors are given in parentheses. The first 4 columns are
for negative IPO; the second four rows are for positive IPO

5 Conclusions

Mixed maximum likelihood and L-moments estimation procedures proposed by Morrison
and Smith (2002) have been generalised to include other forms of moment estimators.
The asymptotic properties of the resulting estimators have been derived and analytic
expressions given for the asymptotic covariance matrices in a number of important cases.
These expressions were verified by simulation and the efficiencies of the various estimators
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established. Furthermore, the estimation procedures developed take careful account of the
various parameter constraints and use profile likelihoods for estimating κ. An advantage
of the latter is that they are amenable to simple graphical analysis and so, in practice,
have the potential to provide a better understanding of the the strengths and weaknesses
of the data being modelled.

The asymptotic properties of these likelihood-based methods compare favourably with
those obtained from finite samples with sample sizes as small as n = 30 and for values
of κ > −0.3. In particular, for n ≥ 30, the method of maximum likelihood generally
performed well over all values of κ in the range −0.5 < κ < 0.5 considered. Finally, the
methods were applied to 24-hour annual maximum rainfall in Wellington, New Zealand,
to try and detect any differences between the GEV distributions fitted to the positive and
negative phases of the IPO. No significant differences were found.

The impact of these estimation methods on the corresponding GEV quantile estimators
has yet to be assessed and remains the focus of further research. Bias correction based
on the censored asymptotic Gaussian distributions of the estimates of κ will also be
investigated.

Appendix

Consider estimating the parameters θ = (β, α, κ)T of the GEV distribution (1) from a
random sample X = (X1, . . . , Xn)T drawn from that distribution. Let

λ = λ(θ) (17)

be a reparameterisation of θ where λ3 = κ and λ(θ) is a continuously differentiable 1-
1 mapping between λ and θ so that the log-likelihood lnL(λ) based on λ is formally
equivalent to lnL(θ) given by (2). Assume that λ is estimated by λ̂ where

λ̂1 = λ̂1(X), λ̂2 = λ̂2(X), λ̂3 = arg max
λ3

lnL(λ̂1, λ̂2, λ3) (18)

and λ̂1, λ̂2 are known unbiased estimators of λ1, λ2. Further assume that the joint
distribution of

√
n(λ̂1 − λ1),

√
n(λ̂2 − λ2) is asymptotically Gaussian and known. Now

estimate θ by
θ̂ = θ(λ̂)

where θ(λ) denotes the inverse of the mapping (17).

We now determine the asymptotic properties of λ̂ and then, using these, the required
asymptotic properties of θ̂.

Result 1 Let X1, . . . , Xn be independent and identically distributed random variables with
GEV distribution (1) and parameters λ given by (17) with −1

2
< λ3 = κ < 1

2
. If λ is

estimated by λ̂ given by (18), then
√
n(λ̂−λ) is asymptotically Gaussian with zero mean
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and covariance matrix V = BCBT where

C =

 C11 C12 0
C21 C22 0

0 0 I
(λ)
33

 , B−1 =

 1 0 0
0 1 0

I
(λ)
31 I

(λ)
32 I

(λ)
33


with

Cij = lim
n→∞

n cov(λ̂i, λ̂j) (i, j = 1, 2)

and I(λ) is the information matrix of the GEV distribution with parameters λ.

Proof

The consistency of λ̂ follows by assumption and from the asymptotic results given in Smith
(1985). To establish the asymptotic distribution of λ̂ we expand h(λ) = n−1∂ lnL(λ)/∂λ3

in a first order Taylor series about λ(0), the true value of λ. This yields

0 = h(λ̂) = h(λ(0)) +
∂h(λ(0))

∂λT
(λ̂− λ(0)) + o(|λ̂− λ(0)|)

so that 1 0 0
0 1 0

−∂h(λ(0))/∂λT

√n(λ̂− λ(0)) =
√
n

 λ̂1 − λ(0)
1

λ̂2 − λ(0)
2

h(λ0)

+ o(
√
n|λ̂− λ(0)|).

The matrix on the left hand side of the above converges to B−1 and, using standard
central limit theorems (see Hosking, 1990, and Lee, 1990, for example) the first term on
the right hand side is asymptotically Gaussian with zero mean. Note that

√
nh(λ(0)) is

asymptotically independent of λ̂1 and λ̂2. This follows since λ̂1, λ̂2 are unbiased and

cov(g(X),
∂ lnL(λ)

∂λ3

) = E(g(X)
∂ lnL(λ)

∂λ3

) =
∂

∂λ3

E(g(X))

for any statistic g(X) = g(X1, . . . , Xn) whose expectation is finite and continuously dif-

ferentiable with respect to λ. Since the variance of
√
nh(λ(0)) converges to I

(λ)
33 the result

follows.

Result 2 Under the conditions of Result 1, if θ = (β, α, κ)T is estimated by θ̂ given by
(17) with λ replaced by λ̂, then

√
n(θ̂ − θ) is asymptotically Gaussian with zero mean

and covariance matrix Σ = JTV J where J is the Jacobean of the transformation given
by J = ∂θT/∂λ. Moreover, the information matrix I(λ) of the GEV distribution with
parameters λ is given by

I(λ) = JI(θ)JT

where the information matrix I(θ) of the GEV distribution with parameters θ is given by

1
α2κ2

 κ2(δ2 − 1) κ(δ2 − 1− Γ(2− κ)) −α(δ2 − 1 + κδ3)
κ(δ2 − 1− Γ(2− κ)) δ2 − 2Γ(2− κ) −α

κ (δ2 − Γ(2− κ) + κ(δ3 − δ1))
−α(δ2 − 1 + κδ3) −α

κ (δ2 − Γ(2− κ) + κ(δ3 − δ1)) α2

κ2 (δ2 + 2κ(δ3 − δ1) + κ2(δ21 + π2

6 ))
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with

δ1 = 1− γ, δ2 = 1 + (1− κ)2Γ(1− 2κ), δ3 = Γ(2− κ)(ψ(1− κ)− 1− κ
κ

)

and γ denotes Euler’s constant.

Result 2 follows from Result 1 and the transformation (17). The information matrix I(θ)

is given in Prescott and Walden (1980).

The same arguments can be used to establish the asymptotic distribution of the estimators
that result when only one moment estimate is used with the remaining two estimated by
maximum likelihood. Consider, for example, using a moment constraint for the location
parameter β and estimating α, κ by maximum likelihood subject to this constraint (if the
first L-moment is used then this gives the MIX1 method proposed in Morrison and Smith,
2002). Here the mapping between θ and λ is given by (17) with λ2 = α, λ3 = κ and now
λ is estimated by λ̂ with λ1 estimated by λ̂1(X) as before, and λ2, λ3 are estimated by
constrained maximum likelihood. With these changes Results 1 and 2 continue to apply
with

C =

 C11 0 0

0 I
(λ)
22 I

(λ)
23

0 I
(λ)
32 I

(λ)
33

 , B−1 =

 1 0 0

I
(λ)
21 I

(λ)
22 I

(λ)
23

I
(λ)
31 I

(λ)
32 I

(λ)
33

 , J =

 1 0 0
J21 1 0
J31 0 1

 .
Other possible subsets of constraints can also be handled in a similar way.
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