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Abstract

Traditionally, downside risk aversion is the study of the placement
of a pure risk (a secondary risk) on either the upside or the downside
of a primary two-state risk. When the decision maker prefers to have
the secondary risk placed on the upside rather than the downside of the
primary lottery, he is said to display downside risk aversion. The literature
on the intensity of downside risk aversion has been clear on the point
that greater prudence is not equivalent to greater downside risk aversion,
although the two concepts are linked. In the present paper we present a
new, and we argue equally natural, concept of the downside risk aversion
of a decision maker, namely the fraction of a zero mean risk that the
decision maker would optimally place on the upside. We then consider
how this measure can be used to identify the intensity of downside risk
aversion. Specifically, we show that greater downside risk aversion in our
model can be accurately measured by a relationship that is very similar
to, although somewhat stronger than, greater prudence.
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Allocative Downside Risk Aversion

1 Introducion
Downside risk aversion (DSRA) has now become a standard inclusion in the
literature of the study of choice under risk. It is, therefore, natural that a
measure of the intensity of downside risk aversion be known. This has proved
to be a rather more difficult task than would be expected, and more than one
measure has been suggested. Concretely, two measures of local downside risk
aversion can be found in the literature - the ratio of third to first derivates of
utility (see for example, Modica and Scarsini 2005, and Crainich and Eeckhoudt
2007), and the "Schwartzian derivative" (see, for example, Keenan and Snow
2002, 2009a and 2009b).1 Globally, Keenan and Snow (2009b) show that the
intensity of downside risk aversion is found by a positive third derivative of the
function that transforms one utility function (the less downside risk averse one)
into another (the more downside risk averse one).
In the present paper we reconsider the issue of a measure of downside risk

aversion, and we provide a new concept of how we can understand what downside
risk aversion is. We argue that this new definition is equally natural as that
which is currently in use. Then we consider some comparative statics of this
new definition of downside risk aversion, and above all we consider how utility
functions can be ranked according to the new definition of intensity of downside
risk aversion. Concretely, we find that intensity can be reliably measured by a
concept that is very similar to prudence.

2 Traditional downside risk aversion
Traditionally, the literature on DSRA starts with a comparison of two lotteries,
each of which contains two independent risks. In both lotteries, the decision
maker faces a first risk which is a one-half chance of the loss of x2 and a one-
half chance of a gain of x1, where xi ≥ 0 i = 1, 2, and xi > 0 for at least one
i = 1, 2.2 We denote this as the “x risk”, or the “primary risk”. Then, a second
lottery, defined by a random variable ey, which is characterized by having zero
mean Eey = 0 and postive variance (we denote this second risk as the “ey risk”,
or the “secondary risk”), is placed either on the “upside” or the “downside” of
the first risk. That is, the decision maker is asked to rank the two following
expected utility measures3:

1Although Menezes et al. (1980) identifyed prudence as aversion to downside risk, prudence
cannot be shown to measure the intensity of downside risk aversion. In fact, since the ratio of
third to first derivatives of utility is the product of prudence and risk aversion, the Crainich
and Eeckhoudt measure uses, implicitly, prudence.

2 In several studies, x1 is set at 0. Really, this restriction is not needed - all that is required
is that the lottery has an upside and a downside.

3Here, u represents a strictly increasing and concave Von Neumann-Morgenstern indirect
utility function for wealth, and w is an amount of non-random initial wealth, which is assumed
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1. ey is on the upside, giving expected utility of 12Eu(w+x1+ey)+ 1
2u(w−x2).

2. ey is on the downside, giving expected utility of 12u(w + x1) +
1
2Eu(w −

x2 + ey).
It is not difficult to show that (see Appendix 1), conditional upon marginal

utility being convex (i.e. u000 > 0), then the expected utility of having ey on the
upside is always greater than the expected utility of having it on the downside.
That is

u000 > 0⇒ 1

2
Eu(w+x1+ey)+ 1

2
u(w−x2) >

1

2
u(w+x1)+

1

2
Eu(w−x2+ey). (1)

A decision maker displaying such preferences is then characterized as suffering
downside risk aversion.
In order to measure the intensity of downside risk aversion in terms of the

shape of the utility function u, the traditional strategy has been to define a
concept that is akin to a risk premium, such that the inequality in (1) is replaced
by an equality. This, for example is the methodology adopted by Crainich and
Eeckhoudt (2007). Imagine that the secondary risk was intially placed on the
downside, and that the decision maker is compensated by a sure-thing payment
of, say, m, in the good state such that the decision maker is indifferent to the
lottery in which the zero mean risk is placed on the upside. That is, m must
satisfy

1

2
Eu(w + x1 + ey) + 1

2
u(w − x2) =

1

2
u(w + x1 +m) +

1

2
Eu(w − x2 + ey). (2)

Using a second-order Taylor expansion, Crainich and Eeckhoudt (2007) show
that m can be expressed as a function of u

000

u0 , and therefore
u000

u0 can be taken as
being a measure of the intensity of downside risk aversion, since the greater is
u000

u0 , the greater would have to be the upside compensation, m, for having the
risk located on the downside.4

3 A new downside risk aversion methodology:
allocative downside risk aversion

Imagine that, instead of looking for a simple preference of where to locate the
secondary lottery as above, we ask the following question of our decision maker.
Given the choice, what fraction of the zero mean risk would you like to locate on
the upside of the primary risk? That is, we allow our decision maker to locate a

to be greater than or equal to 0.
4There is, actually, a dificulty with the Crainich and Eeckhoudt approach. Concretely,

although the left-hand-side of (1) is greater than its right-hand-side, and introducing the
compensation m we can increase the value of the right-hand-side, it is not clear that the the
equality that we search for can ever be achieved. That is, there is no guarantee that there
actually exists an m that satisfies (2). In fact, it can be shown that it is generally true that
there is no universal solution. This issue, however, will not be addressed in the current paper.
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fraction λ of ey on the upside, and thus a fraction (1− λ) on the downside, and
then ask what is the optimal value of λ?
To study this choice, we define the indirect utility function

U(λ) =
1

2
Eu(w1 + λey) + 1

2
Eu(w2 + (1− λ)ey)

=
1

2
[Eu(w1 + λey) +Eu(w2 + (1− λ)ey)]

where w1 = w + x1 and w2 = w − x2, so that w1 > w2.
The first-order condition for an optimal choice of λ is

U 0(λ∗) = 0 =⇒ 1

2
[Eu0(w1 + λ∗ey)ey −Eu0(w2 + (1− λ∗)ey)ey] = 0

The second order condition, U 00(λ∗) < 0 is satisfied by concavity of u.
Note that the first-order condition can be expressed as

λ∗ ← Eu0(w1 + λ∗ey)ey −Eu0(w2 + (1− λ∗)ey)ey = 0
Define G(λ) ≡ Eu0(w1 + λ∗ey)ey − Eu0(w2 + (1− λ∗)ey)ey. By definition, we now
have G(λ∗) = 0. Consider G(0);

G(0) = Eu0(w1)ey −Eu0(w2 + ey)ey
= u0(w1)Eey −Eu0(w2 + ey)ey
= −Eu0(w2 + ey)ey

where we have used the fact that Eey = 0.
Now, from elementary statistics, we know that, for any two random variablesea and eb it is true that cov(ea,eb) = Eeaeb−EeaEeb. That is, Eeaeb = cov(ea,eb)+EeaEeb.

Given that, we know that

Eu0(w2 + ey)ey = cov(u0(w2 + ey), ey) + Eu0(w2 + ey)Eey
= cov(u0(w2 + ey), ey)

where again we have used the fact that Eey = 0.
Under concavity of u, it must be true that the greater is y, the smaller

is u0(w2 + y), that is, cov(u0(w2 + ey), ey) < 0. Finally, then, we note that
G(0) = −Eu0(w2 + ey)ey = −cov(u0(w2 + ey), ey) > 0. So the slope of the first
derivative of the indirect utility function at λ = 0 is strictly positive.
Using an identical analysis, it is straight forward to show that G(1) < 0,

that is, the slope of the first derivative of the indirect utility function at λ = 1
is strictly negative. Together with the strict concavity of the indirect utility
function, we now know that the following is true:

Lemma 1 0 < λ∗ < 1, that is, neither extreme is a solution to the problem.
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Note that this result is due only to concavity of the utility function, not to
convexity of marginal utility.
In and of itself, lemma 1 is interesting. It says that moving all of the zero-

mean risk to the upside of the primary risk is not actually an optimal allocation
for the decision maker. Or in other words, a comparison between having the
zero mean risk on either the upside or the downside, as is traditionally done in
the downside risk aversion literature, is a comparison of two sub-optimal risk
allocations.
In what follows, the following lemma will be useful on several occasions:

Lemma 2 Let h(w+λy) be an increasing (resp. decreasing) function, with w >
0 and λ > 0, and let ey be a zero mean random variable. Then Eh(w+λey)ey > 0
(resp. < 0).

Proof. We prove here the case of h increasing. For any y < 0 it is true that
h(w + λy) < h(w), and for any y > 0 it is true that h(w + λy) > h(w). But
then,

∀y < 0 h(w + λy)y > h(w)y

∀y > 0 h(w + λy)y > h(w)y

Thus, we have ∀y h(w + λy)y ≥ h(w)y, with equalty only when y = 0. Given
that, take expectations over ey, to get Eh(w+ λey)ey > h(w)Eey = 0. The case of
h decreasing is proved in an analogous manner.
We now state and prove the following theorem:

Theorem 1 Assuming that the decision maker suffers from downside risk aver-
sion (that is, marginal utility is convex), the optimal risk allocation is charac-
terized by λ∗ > 1

2 , that is, more than half of the zero mean risk is held on the
upside.

Proof. We only need to prove that G
¡
1
2

¢
> 0. That is, we need to show that

Eu0(w1+
1
2ey)ey−Eu0(w2+

1
2ey)ey > 0, i.e. that Eu0(w1+ 1

2ey)ey > Eu0(w2+
1
2ey)ey.

Consider how the function Eu0(w + 1
2ey)ey changes with w. The derivative with

respect to w is Eu00(w + 1
2ey)ey. Since we are assuming that marginal utility is

convex, we must have u000 > 0, that is, u00 is an increasing function. Thus, from
Lemma 2, Eu00(w+ 1

2ey)ey > 0, or in short, Eu0(w+ 1
2ey)ey is an increasing function

of w. Thus Eu0(w1 + 1
2ey)ey > Eu0(w2 +

1
2ey)ey which was what was required to

be shown.
This theorem provides us with a new definition of downside risk aversion;

if the optimal choice of risk allocation is to place more than half of the zero
mean risk on the upside of the other risk, then the decision maker displays
downside risk aversion. In order to differentiate with the traditional measure of
downside risk aversion, and to highlight the fact that our measure of downside
risk aversion is founded upon an optimal risk allocation, we define “allocative”
downside risk aversion:
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Definition 1 If λ∗ > 1
2 , the decision maker displays allocative downside risk

aversion.

It also seems natural to say that the greater is λ∗, i.e. the more of the zero
mean risk the decision maker would like to place on the upside, the greater is the
intensity of allocative downside risk aversion that this decision maker displays.
Indeed, we will also define

Definition 2 If λ∗a > λ∗b >
1
2 , then decision maker “a” displays greater alloca-

tive downside risk aversion than does individual “b”.

4 Comparative statics
In this section we will discuss some comparative statics issues. Firstly, we will
show how λ∗ changes with the parameters of the other risk, that is, x1 and x2.
Secondly, we will consider the relationship between λ∗ and the characteristics of
the utility function. Throughout we retain the assumption that marginal utility
is convex (i.e. u000 > 0) in order that the decision maker is indeed downside risk
averse.

Theorem 2 An increase in either x1 or x2 leads to a greater optimal value of
λ.

Proof. From the implicit function theorem, and the fact that the second deriv-
ative of the objective function is negative from the second order condition, the
sign of ∂λ∗

∂x1
is the same as the sign of ∂G

∂x1
, where G(λ) ≡ Eu0(w+ x1 + λ∗ey)ey−

Eu0(w − x2 + (1− λ∗)ey)ey. Carrying out the implied derivative yields
∂G

∂x1
= Eu00(w + x1 + λ∗ey)ey

However, under the condition that marginal utility is convex, u00 is an increasing
function, and so from Lemma 2 Eu00(w+x1+λ

∗ey)ey > 0. Thus, we have ∂λ∗

∂x1
> 0.

The proof of ∂λ∗

∂x2
> 0 is done in an analogous manner.

This theorem points to an interesting aspect of downside risk aversion. When
the primary risk (the x risk) becomes more risky,5 then the optimal allocative
response is to place a greater part of the secondary risk (that defined by ey)
on the upside. That is, a riskier x lottery leads to greater allocative downside
risk aversion. This result can be related to the concept of temperance under
a background risk (see Gollier and Pratt, 1996), and it shows that allocative
downside risk aversion is aggrevated by an increase in the primary risk.
Secondly, what happens to the optimal risk allocation as the size of risk-free

wealth, w, increases? As it happens, we can sign this effect only under a dubious
assumption on the higher order derivatives of utility. Concretely, we have the
following result:

5The x risk becomes more risky when x1 − x2 increases, which occurs if either x1 or x2
increases. Since the probability of each xi is set at one-half, it is not possible to alter the
riskiness of the x lottery by changing its probabilities.
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Theorem 3 If u0000(z) > 0, then λ∗ increases with w.

Proof. From the implicit function theorem, and the first-order condition for
λ∗, and recalling that w1 = w + x1 > w2 = w − x2, we have

sign
∂λ∗

∂w
= sign [Eu00(w1 + λ∗ey)ey −Eu00(w2 + (1− λ∗)ey)ey]

Define G(λ) ≡ Eu00(w1+λey)ey−Eu00(w2+(1−λ)ey)ey, so that the expression
on the right-hand-side is just G(λ∗). At λ = 1, we get G(1) = Eu00(w1 + ey)ey >
0, where the sign is given by lemma 2 and the fact that u00 is an increasing
function. Secondly, at λ = 1

2 , we get G(
1
2) = Eu00(w1 +

1
2ey)ey−Eu00(w2 +

1
2ey)ey.

However, consider H(z) = Eu00(z + 1
2ey)ey. We have H 0(z) = Eu000(z + 1

2ey)ey.
In order to sign this, we need to know if u000 is increasing or decreasing, and
then we can use Lemma 2. Concretely, if u000 is increasing (i.e. u0000 > 0), then
H 0(z) = Eu000(z + 1

2ey)ey > 0, and G(z) would be an increasing function of z. In
this case (since w1 > w2), we would have Eu00(w1+ 1

2ey)ey−Eu00(w2+
1
2ey)ey > 0.

Given that, in the case of u0000 > 0, it would be true that G(λ) > 0 for all
λ between one-half and one, if G(λ) were a monotone function. But since
G0(λ) = Eu000(w1 + λey)ey2 + Eu000(w2 + (1 − λ)ey)ey2 > 0, it turns out that G
is indeed monotone (increasing, in fact), and so in this case we would have
G(λ∗) > 0, and correspondingly ∂λ∗

∂w > 0.
A similar result applies if we consider the effect of an increase in the size of

the risk ey. To do so, set ey = kes, with k > 0. Then an increase in k corresponds
to an increase in the size of the risk ey.
Theorem 4 If u0000 > 0, then λ∗ increases with k.

Proof. From the implicit function theorem, and the first-order condition for
λ∗, we have

sign
∂λ∗

∂k
= sign [Eu00(w1 + λ∗kes)λ∗kes−Eu00(w2 + (1− λ∗)kes)(1− λ∗)kes]

Now define G(λ) ≡ Eu00(w1 + λkes)λkes − Eu00(w2 + (1 − λ)kes)(1 − λ)kes,
so that the expression on the right-hand-side is just G(λ∗). At λ = 1, we
get G(1) = Eu00(w1 + kes)kes > 0, where the sign is given by lemma 2 and
the fact that u00 is an increasing function. Secondly, at λ = 1

2 , we get G(
1
2) =

Eu00(w1+
1
2kes)12kes−Eu00(w2+ 1

2kes) 12kes. Now considerH(z) = Eu00(z+ 1
2kes)12kes.

We have H 0(z) = Eu000(z + 1
2kes)12kes. If u000 is increasing (i.e. u0000 > 0), then

H 0(z) > 0, and G(z) would be an increasing function of z. In this case (since
w1 > w2), we would have G(12 ) > 0. Given that, in the case of u0000 > 0, it
would be true that G(λ) > 0 for all λ between one-half and one, if G(λ) were
a monotone function. But since G0(λ) = Eu000(w1 + λkes)λ(kes)2 + Eu000(w2 +
(1− λ)ey)(1− λ)(kes)2 +Eu00(w1 + λkes)kes+Eu00(w2 + (1− λ)kes)kes > 0 (where
again we have used the fact that u00 is an increasing function and lemma 2) it
turns out that G is indeed monotone (increasing, in fact), and so in this case
we would have G(λ∗) > 0, and correspondingly ∂λ∗

∂k > 0.
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The assumption needed to derive a crisp comparative static result for risk-
free wealth and the size of the allocatable risk, that the fourth derivative of
utility is positive, can be thought to be somewhat dubious. It is more common
to see the assumption that the derivatives of utility alternate in sign, with
the negatively numbered derivatives (i.e. first, third, etc.) being positive in
sign, and the positively numbered derivatives (i.e. second, fourth, etc.) being
negative in sign. Concretely, a positive fourth derivative implies that absolute
prudence is not necessarily decreasing in wealth, but does not alter the more
common assumptions of positive and decreasing absolute risk aversion.
Indeed, it is well known that in order to get an unambiguous wealth effect

in ordinarly problems in which a single risk is to be undertaken, one needs to
make a non-standard assumption on the third derivative of utility - concretely
that it is negative, which would in turn imply that the decision maker would
not suffer downside risk aversion. A positive fourth derivative, while certainly
not the most comfortable of assumptions, is certainly far less obtrusive than
non-standard assumptions on the third derivative.
Finally, we now consider the relationship between allocative downside risk

aversion and the shape of the utility function u, in order to discuss the in-
tensity of allocative downside risk aversion. This is of importance, since in
the literature to date two measures of the intensity of downside risk aversion
have been proposed. First, we have the product of risk aversion and pru-

dence,
³
−u00

u0

´³
−u000

u00

´
= u000

u0 , and second we have the Schwartzian derivative,

u000/u0 − (3/2)(u00/u0)2 = (−u00/u0) [−(u000/u00)− (3/2)(−u00/u0)]. Positive pru-
dence, which shares the same sufficient condition as does positive downside risk
aversion, namely that marginal utility is convex, has also been closely linked
by some authors to behavior related to downside risk aversion (see, for exam-
ple, Menezes et al. (1980), Kimball (1990), and Jindapon and Nielson (2007)),
but it is not true that greater prudence is equivalent to greater downside risk
aversion in the traditional sense. On the other hand, an increase in u000

u0 does
lead to a greater willingness to accept the secondary risk to the downside rather
than having it on the upside, as was shown by Crainich and Eeckhoudt (2007).
Both of the accepted measures indicate that we cannot say anything about tra-
ditional downside risk aversion without implying the measures of both absolute
risk aversion and absolute prudence.
For what follows, define:

Definition 3 u2 is “strongly” more prudent than u1 if, for all w it holds that
u0002 (w) ≥ u0001 (w) and −u002(w) ≤ −u001(w), with strict inequality for at least one of
the two relationships. If both inequalities are strict, then u2 is “strictly strongly”
more prudent than u1.

We have the following result:

Theorem 5 If we have two utility functions, u1 and u2 such that u2 is strongly
more prudent than u1, then 1

2 < λ∗1 < λ∗2 < 1.
Proof. See Appendix 2.
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Note that this theorem says nothing about how the two utility functions
rank in terms of the Eeckhoudt and Crainich measure of intensity of downside
risk aversion, or the Swartzian derivative.

5 Conclusion
In this paper we have re-considered the definition and the comparative statics
of downside risk aversion. There has been considerable debate concerning the
meaning and characterisation of greater downside risk aversion. Here, rather
than looking at willingness to pay or to accept (for which we find certain theo-
retical difficulties regarding existence), we have modelled downside risk aversion
as an optimal allocation of a secondary, zero-mean, risk over the states of nature
of a primary risk. Using this methodology, we find a natural definition of down-
side risk aversion as the choice of holding more than one-half of the secondary
risk on the upside of the primary risk. We then interpret greater “allocative”
downside risk aversion as a greater share of the secondary risk that is held on
the upside of the primary lottery.
Is this interpretation of downside risk averison superior to the more tradi-

tional methodology in which one considers willingness to pay, or to accept, to
locate all of a zero mean risk on one side or the other of a primary binomial
risk? We believe so, since it is a general fact that risks can be allocated - over
parties, over states of nature, etc. Indeed, the general theory of optimal risk
bearing and insurance is founded on such an assumption. Since the traditional
downside risk aversion methodology considers a sub-optimal allocation of the
allocatable risk, we find that our approach (which corrects for this sub-optimal
allocation) does indeed have a good deal of theoretical logic attached.
Besides introducing and defining allocative downside risk aversion, we have

looked at some of the comparative statics of allocative downside risk aversion.
We find that it is unambiguously aggrevated by an increase in the size of the
primary risk in a way that looks to be related to the concept of temperence.
We also find that allocative downside risk averison is increasing in the wealth
and the size of the allocatable risk if the fourth derivative of utility is positive.
Finally we define the concept of strongly greater prudence, and prove that a
strong increase in prudence aggrevates allocative downside risk aversion.
Our research agenda on allocative downside risk aversion is still rather pop-

ulated. The present study has suggested that the results presented are only the
starting point of what may turn out to be a promising research path. We won-
der what sort of comparative statics effects can be proved under an assumption
of negative fourth derivative of utility? We also remain interested in discovering
the type of utility transformation that captures a strong increase in prudence.
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Appendix 1
Define

U(λ) =
1

2
Eu(w + x1 + λey) + 1

2
Eu(w − x2 + (1− λ)ey)

=
1

2
[Eu(w + x1 + λey) +Eu(w − x2 + (1− λ)ey)]

We want to show that if marginal utility, u0, is convex, then U(0) < U(1).
We have

2U(0) = Eu(w + x1) +Eu(w − x2 + ey) = u(w + x1) +Eu(w − x2 + ey)
2U(1) = Eu(w + x1 + ey) +Eu(w − x2) = Eu(w + x1 + ey) + u(w − x2)

Thus we need to show that

u(w + x1) +Eu(w − x2 + ey) < Eu(w + x1 + ey) + u(w − x2)
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This re-orders to

Eu(w − x2 + ey)− u(w − x2) < Eu(w + x1 + ey)− u(w + x1)

or
Eu(w2 + ey)− u(w2) < Eu(w1 + ey)− u(w1)

where w1 = w + x1 and w2 = w − x2, so that w1 > w2.
Now, define J(w) ≡ Eu(w + ey) − u(w). What we need to show is that

J(w1) > J(w2). The slope of J is J 0(w) = Eu0(w + ey) − u0(w). Now, if u0 is
convex, then we know that Eu0(w + ey) > u0(w + Eey). Since, for the case at
hand, we have Eey = 0, this now reads Eu0(w + ey) > u0(w). However, this says
that the function J(w) is increasing, and so J(w1) > J(w2) as required.

Appendix 2
In order to prove the result it is useful to re-write the problem in terms of

the density and distribution of the secondary risk. Concretely, the marginal
utility of λ was given above as:

U 0(λ) =
1

2
Eu0(w + x1 + λỹ)ỹ − 1

2
Eu0(w − x2 + (1− λ)ỹ)ỹ

However, assuming that the density corresponding to ey is f(y), and that this
variable is defined on support (a, b), then we get

U 0(λ) =
1

2

Z b

a

u0(w + x1 + λy)yf(y)dy − 1
2

Z b

a

u0(w − x2 + (1− λ)y)yf(y)dy

Integrating by parts, this becomes

U 0(λ) = −1
2

Z b

a

λu00(w+x1+λy)H(y)dy+
1

2

Z b

a

(1−λ)u00(w−x2+(1−λ)y)H(y)dy
(3)

where H(y) =
R y
a
sf(s)ds. Note that: 1) H(a) = H(b) = 0; 2) H 0(y) = yf(y),

and so H 0(y) < 0 if y < 0, and H 0(y) > 0 if y > 0; 3) therefore it follows that
H(y) < 0 for y ∈ (a, b).
Now, in order to consider how a change in the utility function u(x) affects

the value of λ∗, we assume that utility depnds upon a shift variable α. That is,
we now assume that, when wealth is z, rather than u(z) utility is u(α, z). In
this way a value of α defines a family, or class, of utility functions (see Diamond
and Stiglitz 197?). Given this, we now get λ = λ∗(α), and we can consider how
a change in α affects the optimal solution.
Using standard notation for derivatives, the optimal solution λ∗(α) is the

solution to:Z b

a

ux(α,w + x1 + λy)yf(y)dy −
Z b

a

ux(α,w − x2 + (1− λ)y)yf(y)dy = 0
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Taking the derivative with respect to α gives:Z b

a

uαx(α,w + x1 + λy)yf(y)dy +

Z b

a

uxx(α,w + x1 + λy)λαy
2f(y)dy−

−
Z b

a

uαx(α,w − x2 + (1− λ)y)yf(y)dy+

+

Z b

a

uxx(α,w − x2 + (1− λ)y)λαy
2f(y)dy = 0

Solving for λα = ∂λ∗

∂α we find that:

∂λ∗

∂α
= −

R b
a
uαx(α,w + x1 + λy)yf(y)dy −

R b
a
uαx(α,w − x2 + (1− λ)y)yf(y)dyR b

a
uxx(α,w + x1 + λy)y2f(y)dy +

R b
a
uxx(α,w − x2 + (1− λ)y)y2f(y)dy

the denominator of which satisfies:

D2(α, λ) =

Z b

a

[uxx(α,w + x1 + λy) + uxx(α,w − x2 + (1− λ)y)]y2f(y)dy < 0

Thus, the sign of ∂λ∗

∂α is the same as the sign of:

D1(α, λ) =

Z b

a

[uαx(α,w + x1 + λy)− uαx(α,w − x2 + (1− λ)y)]yf(y)dy =

= −
Z b

a

[λuαxx(α,w + x1 + λy)−

−(1− λ)uαxx(α,w − x2 + (1− λ)y)]H(y)dy

where the second line is found by deriving by parts. Now, using the second
expression for D1(α, λ) we get (recall that H(y) < 0, and of course w+x1+ 1

2y >
w − x2 +

1
2y for all y):

D1(α,
1

2
) = −1

2

Z b

a

[uαxx(α,w + x1 +
1

2
y)− uαxx(α,w − x2 +

1

2
y)]H(y)dy ≥ 0

if uαxxx ≥ 0.

And using the first expression for D1(α, λ) we get:

∂

∂λ
D1(α, λ) =

Z b

a

[uαxx(α,w + x1 + λy) + uαxx(α,w − x2 + (1− λ)y)]y2f(y)dy ≥ 0

if uαxx ≥ 0.

Therefore, if uαxx ≥ 0 (a family of utility with uxx non-decreasing in α)
and uαxxx ≥ 0 (a family of utility with uxxx non-decreasing in α) it turns out
that D1(α, λ) is non-decreasing in λ. And since D1(α,

1
2) ≥ 0, it must hold that

D1(α, λ) ≥ 0 for all λ > 1
2 . In particular, if at least one of the inequalities
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uαxx ≥ 0 and uαxxx ≥ 0, then it follows that D1(α, λ) > 0 for all λ > 1
2 . In

such a case we can conclude that:

∂λ∗

∂α
= −D1(α, λ

∗)

D2(α, λ
∗)

> 0

This proves that, under the assumptions of u00 < 0 and u000 > 0, changes in the
utility function such that u0002 ≥ u0001 and u001 ≤ u002 , with strict inequality for at
least one of these relationships, then 1

2 < λ∗1 < λ∗2 < 1. But, this is what we
have defined as a strong increase in prudence.
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